conversions-inl.h 22.8 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7

#ifndef V8_CONVERSIONS_INL_H_
#define V8_CONVERSIONS_INL_H_

8 9 10
#include <float.h>         // Required for DBL_MAX and on Win32 for finite()
#include <limits.h>        // Required for INT_MAX etc.
#include <stdarg.h>
11
#include <cmath>
12
#include "src/globals.h"       // Required for V8_INFINITY
13
#include "src/unicode-cache-inl.h"
14 15 16 17

// ----------------------------------------------------------------------------
// Extra POSIX/ANSI functions for Win32/MSVC.

18
#include "src/base/bits.h"
19
#include "src/base/platform/platform.h"
20 21
#include "src/conversions.h"
#include "src/double.h"
22
#include "src/objects-inl.h"
23
#include "src/strtod.h"
24

25 26
namespace v8 {
namespace internal {
27

28
inline double JunkStringValue() {
29
  return bit_cast<double, uint64_t>(kQuietNaNMask);
30 31 32
}


33 34 35 36 37
inline double SignedZero(bool negative) {
  return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}


38
// The fast double-to-unsigned-int conversion routine does not guarantee
39 40
// rounding towards zero, or any reasonable value if the argument is larger
// than what fits in an unsigned 32-bit integer.
41
inline unsigned int FastD2UI(double x) {
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  // There is no unsigned version of lrint, so there is no fast path
  // in this function as there is in FastD2I. Using lrint doesn't work
  // for values of 2^31 and above.

  // Convert "small enough" doubles to uint32_t by fixing the 32
  // least significant non-fractional bits in the low 32 bits of the
  // double, and reading them from there.
  const double k2Pow52 = 4503599627370496.0;
  bool negative = x < 0;
  if (negative) {
    x = -x;
  }
  if (x < k2Pow52) {
    x += k2Pow52;
    uint32_t result;
57
#ifndef V8_TARGET_BIG_ENDIAN
58
    Address mantissa_ptr = reinterpret_cast<Address>(&x);
59 60 61
#else
    Address mantissa_ptr = reinterpret_cast<Address>(&x) + kIntSize;
#endif
62
    // Copy least significant 32 bits of mantissa.
63
    memcpy(&result, mantissa_ptr, sizeof(result));
64 65 66 67 68 69 70
    return negative ? ~result + 1 : result;
  }
  // Large number (outside uint32 range), Infinity or NaN.
  return 0x80000000u;  // Return integer indefinite.
}


71
inline float DoubleToFloat32(double x) {
72
  // TODO(yangguo): This static_cast is implementation-defined behaviour in C++,
73 74 75 76 77 78
  // so we may need to do the conversion manually instead to match the spec.
  volatile float f = static_cast<float>(x);
  return f;
}


79
inline double DoubleToInteger(double x) {
80 81
  if (std::isnan(x)) return 0;
  if (!std::isfinite(x) || x == 0) return x;
82
  return (x >= 0) ? std::floor(x) : std::ceil(x);
83 84 85 86 87 88
}


int32_t DoubleToInt32(double x) {
  int32_t i = FastD2I(x);
  if (FastI2D(i) == x) return i;
89 90 91 92 93 94 95 96 97
  Double d(x);
  int exponent = d.Exponent();
  if (exponent < 0) {
    if (exponent <= -Double::kSignificandSize) return 0;
    return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
  } else {
    if (exponent > 31) return 0;
    return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
  }
98 99 100
}


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
bool IsSmiDouble(double value) {
  return !IsMinusZero(value) && value >= Smi::kMinValue &&
         value <= Smi::kMaxValue && value == FastI2D(FastD2I(value));
}


bool IsInt32Double(double value) {
  return !IsMinusZero(value) && value >= kMinInt && value <= kMaxInt &&
         value == FastI2D(FastD2I(value));
}


bool IsUint32Double(double value) {
  return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
         value == FastUI2D(FastD2UI(value));
}


int32_t NumberToInt32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToInt32(number->Number());
}


uint32_t NumberToUint32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToUint32(number->Number());
}

130 131 132 133
int64_t NumberToInt64(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return static_cast<int64_t>(number->Number());
}
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

bool TryNumberToSize(Isolate* isolate, Object* number, size_t* result) {
  SealHandleScope shs(isolate);
  if (number->IsSmi()) {
    int value = Smi::cast(number)->value();
    DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
           std::numeric_limits<size_t>::max());
    if (value >= 0) {
      *result = static_cast<size_t>(value);
      return true;
    }
    return false;
  } else {
    DCHECK(number->IsHeapNumber());
    double value = HeapNumber::cast(number)->value();
    if (value >= 0 && value <= std::numeric_limits<size_t>::max()) {
      *result = static_cast<size_t>(value);
      return true;
    } else {
      return false;
    }
  }
}


size_t NumberToSize(Isolate* isolate, Object* number) {
  size_t result = 0;
  bool is_valid = TryNumberToSize(isolate, number, &result);
  CHECK(is_valid);
  return result;
}


167 168 169 170 171
uint32_t DoubleToUint32(double x) {
  return static_cast<uint32_t>(DoubleToInt32(x));
}


172
template <class Iterator, class EndMark>
173 174 175
bool SubStringEquals(Iterator* current,
                     EndMark end,
                     const char* substring) {
176
  DCHECK(**current == *substring);
177 178 179 180 181 182 183 184 185 186 187 188
  for (substring++; *substring != '\0'; substring++) {
    ++*current;
    if (*current == end || **current != *substring) return false;
  }
  ++*current;
  return true;
}


// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
189 190 191
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
                              Iterator* current,
                              EndMark end) {
192
  while (*current != end) {
193
    if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
194 195 196 197 198 199 200 201
    ++*current;
  }
  return false;
}


// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
202 203 204 205 206
double InternalStringToIntDouble(UnicodeCache* unicode_cache,
                                 Iterator current,
                                 EndMark end,
                                 bool negative,
                                 bool allow_trailing_junk) {
207
  DCHECK(current != end);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

  // Skip leading 0s.
  while (*current == '0') {
    ++current;
    if (current == end) return SignedZero(negative);
  }

  int64_t number = 0;
  int exponent = 0;
  const int radix = (1 << radix_log_2);

  do {
    int digit;
    if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
      digit = static_cast<char>(*current) - '0';
    } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
      digit = static_cast<char>(*current) - 'a' + 10;
    } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
      digit = static_cast<char>(*current) - 'A' + 10;
    } else {
      if (allow_trailing_junk ||
          !AdvanceToNonspace(unicode_cache, &current, end)) {
        break;
      } else {
232
        return JunkStringValue();
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      }
    }

    number = number * radix + digit;
    int overflow = static_cast<int>(number >> 53);
    if (overflow != 0) {
      // Overflow occurred. Need to determine which direction to round the
      // result.
      int overflow_bits_count = 1;
      while (overflow > 1) {
        overflow_bits_count++;
        overflow >>= 1;
      }

      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
      number >>= overflow_bits_count;
      exponent = overflow_bits_count;

      bool zero_tail = true;
      while (true) {
        ++current;
        if (current == end || !isDigit(*current, radix)) break;
        zero_tail = zero_tail && *current == '0';
        exponent += radix_log_2;
      }

      if (!allow_trailing_junk &&
          AdvanceToNonspace(unicode_cache, &current, end)) {
262
        return JunkStringValue();
263 264 265 266 267 268 269 270 271 272 273 274 275 276
      }

      int middle_value = (1 << (overflow_bits_count - 1));
      if (dropped_bits > middle_value) {
        number++;  // Rounding up.
      } else if (dropped_bits == middle_value) {
        // Rounding to even to consistency with decimals: half-way case rounds
        // up if significant part is odd and down otherwise.
        if ((number & 1) != 0 || !zero_tail) {
          number++;  // Rounding up.
        }
      }

      // Rounding up may cause overflow.
277
      if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
278 279 280 281 282 283 284 285
        exponent++;
        number >>= 1;
      }
      break;
    }
    ++current;
  } while (current != end);

286 287
  DCHECK(number < ((int64_t)1 << 53));
  DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
288 289 290 291 292 293 294 295 296

  if (exponent == 0) {
    if (negative) {
      if (number == 0) return -0.0;
      number = -number;
    }
    return static_cast<double>(number);
  }

297
  DCHECK(number != 0);
298
  return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
299 300
}

301
// ES6 18.2.5 parseInt(string, radix)
302
template <class Iterator, class EndMark>
303 304 305 306
double InternalStringToInt(UnicodeCache* unicode_cache,
                           Iterator current,
                           EndMark end,
                           int radix) {
307
  const bool allow_trailing_junk = true;
308
  const double empty_string_val = JunkStringValue();
309 310 311 312 313 314 315 316 317 318 319 320

  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  bool negative = false;
  bool leading_zero = false;

  if (*current == '+') {
    // Ignore leading sign; skip following spaces.
    ++current;
    if (current == end) {
321
      return JunkStringValue();
322 323 324 325
    }
  } else if (*current == '-') {
    ++current;
    if (current == end) {
326
      return JunkStringValue();
327 328 329 330 331 332
    }
    negative = true;
  }

  if (radix == 0) {
    // Radix detection.
333
    radix = 10;
334 335 336 337 338 339
    if (*current == '0') {
      ++current;
      if (current == end) return SignedZero(negative);
      if (*current == 'x' || *current == 'X') {
        radix = 16;
        ++current;
340
        if (current == end) return JunkStringValue();
341 342 343 344 345 346 347 348 349 350 351
      } else {
        leading_zero = true;
      }
    }
  } else if (radix == 16) {
    if (*current == '0') {
      // Allow "0x" prefix.
      ++current;
      if (current == end) return SignedZero(negative);
      if (*current == 'x' || *current == 'X') {
        ++current;
352
        if (current == end) return JunkStringValue();
353 354 355 356 357 358
      } else {
        leading_zero = true;
      }
    }
  }

359
  if (radix < 2 || radix > 36) return JunkStringValue();
360 361 362 363 364 365 366 367 368

  // Skip leading zeros.
  while (*current == '0') {
    leading_zero = true;
    ++current;
    if (current == end) return SignedZero(negative);
  }

  if (!leading_zero && !isDigit(*current, radix)) {
369
    return JunkStringValue();
370 371
  }

372
  if (base::bits::IsPowerOfTwo32(radix)) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    switch (radix) {
      case 2:
        return InternalStringToIntDouble<1>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      case 4:
        return InternalStringToIntDouble<2>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      case 8:
        return InternalStringToIntDouble<3>(
            unicode_cache, current, end, negative, allow_trailing_junk);

      case 16:
        return InternalStringToIntDouble<4>(
            unicode_cache, current, end, negative, allow_trailing_junk);

      case 32:
        return InternalStringToIntDouble<5>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      default:
        UNREACHABLE();
    }
  }

  if (radix == 10) {
    // Parsing with strtod.
    const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
    // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
    // end.
    const int kBufferSize = kMaxSignificantDigits + 2;
    char buffer[kBufferSize];
    int buffer_pos = 0;
    while (*current >= '0' && *current <= '9') {
      if (buffer_pos <= kMaxSignificantDigits) {
        // If the number has more than kMaxSignificantDigits it will be parsed
        // as infinity.
408
        DCHECK(buffer_pos < kBufferSize);
409 410 411 412 413 414 415 416
        buffer[buffer_pos++] = static_cast<char>(*current);
      }
      ++current;
      if (current == end) break;
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
417
      return JunkStringValue();
418 419
    }

420
    SLOW_DCHECK(buffer_pos < kBufferSize);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    buffer[buffer_pos] = '\0';
    Vector<const char> buffer_vector(buffer, buffer_pos);
    return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
  }

  // The following code causes accumulating rounding error for numbers greater
  // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
  // 16, or 32, then mathInt may be an implementation-dependent approximation to
  // the mathematical integer value" (15.1.2.2).

  int lim_0 = '0' + (radix < 10 ? radix : 10);
  int lim_a = 'a' + (radix - 10);
  int lim_A = 'A' + (radix - 10);

  // NOTE: The code for computing the value may seem a bit complex at
  // first glance. It is structured to use 32-bit multiply-and-add
  // loops as long as possible to avoid loosing precision.

  double v = 0.0;
  bool done = false;
  do {
    // Parse the longest part of the string starting at index j
    // possible while keeping the multiplier, and thus the part
    // itself, within 32 bits.
    unsigned int part = 0, multiplier = 1;
    while (true) {
      int d;
      if (*current >= '0' && *current < lim_0) {
        d = *current - '0';
      } else if (*current >= 'a' && *current < lim_a) {
        d = *current - 'a' + 10;
      } else if (*current >= 'A' && *current < lim_A) {
        d = *current - 'A' + 10;
      } else {
        done = true;
        break;
      }

      // Update the value of the part as long as the multiplier fits
      // in 32 bits. When we can't guarantee that the next iteration
      // will not overflow the multiplier, we stop parsing the part
      // by leaving the loop.
      const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
      uint32_t m = multiplier * radix;
      if (m > kMaximumMultiplier) break;
      part = part * radix + d;
      multiplier = m;
468
      DCHECK(multiplier > part);
469 470 471 472 473 474 475 476 477 478 479 480 481 482

      ++current;
      if (current == end) {
        done = true;
        break;
      }
    }

    // Update the value and skip the part in the string.
    v = v * multiplier + part;
  } while (!done);

  if (!allow_trailing_junk &&
      AdvanceToNonspace(unicode_cache, &current, end)) {
483
    return JunkStringValue();
484 485 486 487 488 489 490 491 492 493 494 495
  }

  return negative ? -v : v;
}


// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
496 497 498 499 500
double InternalStringToDouble(UnicodeCache* unicode_cache,
                              Iterator current,
                              EndMark end,
                              int flags,
                              double empty_string_val) {
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  // To make sure that iterator dereferencing is valid the following
  // convention is used:
  // 1. Each '++current' statement is followed by check for equality to 'end'.
  // 2. If AdvanceToNonspace returned false then current == end.
  // 3. If 'current' becomes be equal to 'end' the function returns or goes to
  // 'parsing_done'.
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
  // 5. Code before 'parsing_done' may rely on 'current != end'.
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;

  // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
  const int kBufferSize = kMaxSignificantDigits + 10;
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
  int buffer_pos = 0;

  // Exponent will be adjusted if insignificant digits of the integer part
  // or insignificant leading zeros of the fractional part are dropped.
  int exponent = 0;
  int significant_digits = 0;
  int insignificant_digits = 0;
  bool nonzero_digit_dropped = false;

527 528 529 530 531 532 533
  enum Sign {
    NONE,
    NEGATIVE,
    POSITIVE
  };

  Sign sign = NONE;
534 535 536 537

  if (*current == '+') {
    // Ignore leading sign.
    ++current;
538
    if (current == end) return JunkStringValue();
539
    sign = POSITIVE;
540 541
  } else if (*current == '-') {
    ++current;
542
    if (current == end) return JunkStringValue();
543
    sign = NEGATIVE;
544 545
  }

546 547 548
  static const char kInfinityString[] = "Infinity";
  if (*current == kInfinityString[0]) {
    if (!SubStringEquals(&current, end, kInfinityString)) {
549
      return JunkStringValue();
550 551 552 553
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
554
      return JunkStringValue();
555 556
    }

557
    DCHECK(buffer_pos == 0);
558
    return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
559 560 561 562 563
  }

  bool leading_zero = false;
  if (*current == '0') {
    ++current;
564
    if (current == end) return SignedZero(sign == NEGATIVE);
565 566 567 568 569 570

    leading_zero = true;

    // It could be hexadecimal value.
    if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
      ++current;
571
      if (current == end || !isDigit(*current, 16) || sign != NONE) {
572
        return JunkStringValue();  // "0x".
573 574 575 576 577
      }

      return InternalStringToIntDouble<4>(unicode_cache,
                                          current,
                                          end,
578
                                          false,
579
                                          allow_trailing_junk);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

    // It could be an explicit octal value.
    } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
      ++current;
      if (current == end || !isDigit(*current, 8) || sign != NONE) {
        return JunkStringValue();  // "0o".
      }

      return InternalStringToIntDouble<3>(unicode_cache,
                                          current,
                                          end,
                                          false,
                                          allow_trailing_junk);

    // It could be a binary value.
    } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
      ++current;
      if (current == end || !isBinaryDigit(*current) || sign != NONE) {
        return JunkStringValue();  // "0b".
      }

      return InternalStringToIntDouble<1>(unicode_cache,
                                          current,
                                          end,
                                          false,
                                          allow_trailing_junk);
606 607 608 609 610
    }

    // Ignore leading zeros in the integer part.
    while (*current == '0') {
      ++current;
611
      if (current == end) return SignedZero(sign == NEGATIVE);
612 613 614
    }
  }

615
  bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
616 617 618 619

  // Copy significant digits of the integer part (if any) to the buffer.
  while (*current >= '0' && *current <= '9') {
    if (significant_digits < kMaxSignificantDigits) {
620
      DCHECK(buffer_pos < kBufferSize);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
      buffer[buffer_pos++] = static_cast<char>(*current);
      significant_digits++;
      // Will later check if it's an octal in the buffer.
    } else {
      insignificant_digits++;  // Move the digit into the exponential part.
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
    }
    octal = octal && *current < '8';
    ++current;
    if (current == end) goto parsing_done;
  }

  if (significant_digits == 0) {
    octal = false;
  }

  if (*current == '.') {
638
    if (octal && !allow_trailing_junk) return JunkStringValue();
639 640 641 642 643
    if (octal) goto parsing_done;

    ++current;
    if (current == end) {
      if (significant_digits == 0 && !leading_zero) {
644
        return JunkStringValue();
645 646 647 648 649 650 651 652 653 654 655
      } else {
        goto parsing_done;
      }
    }

    if (significant_digits == 0) {
      // octal = false;
      // Integer part consists of 0 or is absent. Significant digits start after
      // leading zeros (if any).
      while (*current == '0') {
        ++current;
656
        if (current == end) return SignedZero(sign == NEGATIVE);
657 658 659 660
        exponent--;  // Move this 0 into the exponent.
      }
    }

661 662
    // There is a fractional part.  We don't emit a '.', but adjust the exponent
    // instead.
663 664
    while (*current >= '0' && *current <= '9') {
      if (significant_digits < kMaxSignificantDigits) {
665
        DCHECK(buffer_pos < kBufferSize);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        buffer[buffer_pos++] = static_cast<char>(*current);
        significant_digits++;
        exponent--;
      } else {
        // Ignore insignificant digits in the fractional part.
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
      }
      ++current;
      if (current == end) goto parsing_done;
    }
  }

  if (!leading_zero && exponent == 0 && significant_digits == 0) {
    // If leading_zeros is true then the string contains zeros.
    // If exponent < 0 then string was [+-]\.0*...
    // If significant_digits != 0 the string is not equal to 0.
    // Otherwise there are no digits in the string.
683
    return JunkStringValue();
684 685 686 687
  }

  // Parse exponential part.
  if (*current == 'e' || *current == 'E') {
688
    if (octal) return JunkStringValue();
689 690 691 692 693
    ++current;
    if (current == end) {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
694
        return JunkStringValue();
695 696 697 698 699 700 701 702 703 704
      }
    }
    char sign = '+';
    if (*current == '+' || *current == '-') {
      sign = static_cast<char>(*current);
      ++current;
      if (current == end) {
        if (allow_trailing_junk) {
          goto parsing_done;
        } else {
705
          return JunkStringValue();
706 707 708 709 710 711 712 713
        }
      }
    }

    if (current == end || *current < '0' || *current > '9') {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
714
        return JunkStringValue();
715 716 717
      }
    }

718
    const int max_exponent = INT_MAX / 2;
719
    DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    int num = 0;
    do {
      // Check overflow.
      int digit = *current - '0';
      if (num >= max_exponent / 10
          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
        num = max_exponent;
      } else {
        num = num * 10 + digit;
      }
      ++current;
    } while (current != end && *current >= '0' && *current <= '9');

    exponent += (sign == '-' ? -num : num);
  }

  if (!allow_trailing_junk &&
      AdvanceToNonspace(unicode_cache, &current, end)) {
738
    return JunkStringValue();
739 740 741 742 743 744 745 746 747
  }

  parsing_done:
  exponent += insignificant_digits;

  if (octal) {
    return InternalStringToIntDouble<3>(unicode_cache,
                                        buffer,
                                        buffer + buffer_pos,
748
                                        sign == NEGATIVE,
749 750 751 752 753 754 755 756
                                        allow_trailing_junk);
  }

  if (nonzero_digit_dropped) {
    buffer[buffer_pos++] = '1';
    exponent--;
  }

757
  SLOW_DCHECK(buffer_pos < kBufferSize);
758 759 760
  buffer[buffer_pos] = '\0';

  double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
761
  return (sign == NEGATIVE) ? -converted : converted;
762 763
}

764 765
}  // namespace internal
}  // namespace v8
766 767

#endif  // V8_CONVERSIONS_INL_H_