heap-inl.h 21.4 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#ifndef V8_HEAP_HEAP_INL_H_
#define V8_HEAP_HEAP_INL_H_
7

8 9
#include <cmath>

10
// Clients of this interface shouldn't depend on lots of heap internals.
11 12 13
// Do not include anything from src/heap other than src/heap/heap.h and its
// write barrier here!
#include "src/heap/heap-write-barrier.h"
14 15
#include "src/heap/heap.h"

16
#include "src/base/atomic-utils.h"
17
#include "src/base/platform/platform.h"
18
#include "src/feedback-vector.h"
19

20
// TODO(mstarzinger): There is one more include to remove in order to no longer
21
// leak heap internals to users of this interface!
22
#include "src/heap/spaces-inl.h"
23
#include "src/isolate-data.h"
24
#include "src/isolate.h"
25
#include "src/objects-inl.h"
26
#include "src/objects/allocation-site-inl.h"
27
#include "src/objects/api-callbacks-inl.h"
28
#include "src/objects/cell-inl.h"
29
#include "src/objects/descriptor-array.h"
30
#include "src/objects/feedback-cell-inl.h"
31
#include "src/objects/literal-objects-inl.h"
32
#include "src/objects/oddball.h"
33
#include "src/objects/property-cell.h"
34
#include "src/objects/scope-info.h"
35
#include "src/objects/script-inl.h"
36
#include "src/objects/slots-inl.h"
37
#include "src/objects/struct-inl.h"
38
#include "src/profiler/heap-profiler.h"
39
#include "src/sanitizer/msan.h"
40
#include "src/strings/string-hasher.h"
41
#include "src/zone/zone-list-inl.h"
42

43 44
namespace v8 {
namespace internal {
45

46 47
AllocationSpace AllocationResult::RetrySpace() {
  DCHECK(IsRetry());
jgruber's avatar
jgruber committed
48
  return static_cast<AllocationSpace>(Smi::ToInt(object_));
49 50
}

51
HeapObject AllocationResult::ToObjectChecked() {
52 53 54 55
  CHECK(!IsRetry());
  return HeapObject::cast(object_);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
Isolate* Heap::isolate() {
  return reinterpret_cast<Isolate*>(
      reinterpret_cast<intptr_t>(this) -
      reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
}

int64_t Heap::external_memory() {
  return isolate()->isolate_data()->external_memory_;
}

void Heap::update_external_memory(int64_t delta) {
  isolate()->isolate_data()->external_memory_ += delta;
}

void Heap::update_external_memory_concurrently_freed(intptr_t freed) {
  external_memory_concurrently_freed_ += freed;
}

void Heap::account_external_memory_concurrently_freed() {
  isolate()->isolate_data()->external_memory_ -=
      external_memory_concurrently_freed_;
  external_memory_concurrently_freed_ = 0;
}

RootsTable& Heap::roots_table() { return isolate()->roots_table(); }

82 83 84
#define ROOT_ACCESSOR(Type, name, CamelName)                           \
  Type Heap::name() {                                                  \
    return Type::cast(Object(roots_table()[RootIndex::k##CamelName])); \
85
  }
86
MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
87
#undef ROOT_ACCESSOR
88

89
#define ROOT_ACCESSOR(type, name, CamelName)                                   \
90
  void Heap::set_##name(type value) {                                          \
91 92 93 94 95 96
    /* The deserializer makes use of the fact that these common roots are */   \
    /* never in new space and never on a page that is being compacted.    */   \
    DCHECK_IMPLIES(deserialization_complete(),                                 \
                   !RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)); \
    DCHECK_IMPLIES(RootsTable::IsImmortalImmovable(RootIndex::k##CamelName),   \
                   IsImmovable(HeapObject::cast(value)));                      \
97
    roots_table()[RootIndex::k##CamelName] = value->ptr();                     \
98 99 100 101
  }
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR

102
void Heap::SetRootMaterializedObjects(FixedArray objects) {
103
  roots_table()[RootIndex::kMaterializedObjects] = objects->ptr();
104 105
}

106 107
void Heap::SetRootScriptList(Object value) {
  roots_table()[RootIndex::kScriptList] = value->ptr();
108 109
}

110
void Heap::SetRootStringTable(StringTable value) {
111
  roots_table()[RootIndex::kStringTable] = value->ptr();
112 113
}

114 115
void Heap::SetRootNoScriptSharedFunctionInfos(Object value) {
  roots_table()[RootIndex::kNoScriptSharedFunctionInfos] = value->ptr();
116 117
}

118
void Heap::SetMessageListeners(TemplateList value) {
119
  roots_table()[RootIndex::kMessageListeners] = value->ptr();
120 121
}

122 123 124
void Heap::SetPendingOptimizeForTestBytecode(Object hash_table) {
  DCHECK(hash_table->IsObjectHashTable() || hash_table->IsUndefined(isolate()));
  roots_table()[RootIndex::kPendingOptimizeForTestBytecode] = hash_table->ptr();
125 126
}

mlippautz's avatar
mlippautz committed
127
PagedSpace* Heap::paged_space(int idx) {
128 129
  DCHECK_NE(idx, LO_SPACE);
  DCHECK_NE(idx, NEW_SPACE);
130 131
  DCHECK_NE(idx, CODE_LO_SPACE);
  DCHECK_NE(idx, NEW_LO_SPACE);
132
  return static_cast<PagedSpace*>(space_[idx]);
mlippautz's avatar
mlippautz committed
133 134
}

135
Space* Heap::space(int idx) { return space_[idx]; }
mlippautz's avatar
mlippautz committed
136 137

Address* Heap::NewSpaceAllocationTopAddress() {
138
  return new_space_->allocation_top_address();
mlippautz's avatar
mlippautz committed
139 140 141
}

Address* Heap::NewSpaceAllocationLimitAddress() {
142
  return new_space_->allocation_limit_address();
mlippautz's avatar
mlippautz committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
}

Address* Heap::OldSpaceAllocationTopAddress() {
  return old_space_->allocation_top_address();
}

Address* Heap::OldSpaceAllocationLimitAddress() {
  return old_space_->allocation_limit_address();
}

void Heap::UpdateNewSpaceAllocationCounter() {
  new_space_allocation_counter_ = NewSpaceAllocationCounter();
}

size_t Heap::NewSpaceAllocationCounter() {
  return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
}
160

161
AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationType type,
162
                                   AllocationAlignment alignment) {
163 164 165
  DCHECK(AllowHandleAllocation::IsAllowed());
  DCHECK(AllowHeapAllocation::IsAllowed());
  DCHECK(gc_state_ == NOT_IN_GC);
166
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
167 168
  if (FLAG_random_gc_interval > 0 || FLAG_gc_interval >= 0) {
    if (!always_allocate() && Heap::allocation_timeout_-- <= 0) {
169
      return AllocationResult::Retry();
170
    }
171
  }
172 173
#endif
#ifdef DEBUG
174
  IncrementObjectCounters();
175
#endif
176

177 178
  bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;

179
  HeapObject object;
180
  AllocationResult allocation;
181 182

  if (AllocationType::kYoung == type) {
183
    if (large_object) {
184 185 186 187 188 189 190 191 192
      if (FLAG_young_generation_large_objects) {
        allocation = new_lo_space_->AllocateRaw(size_in_bytes);
      } else {
        // If young generation large objects are disalbed we have to tenure the
        // allocation and violate the given allocation type. This could be
        // dangerous. We may want to remove FLAG_young_generation_large_objects
        // and avoid patching.
        allocation = lo_space_->AllocateRaw(size_in_bytes);
      }
193
    } else {
194
      allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
195
    }
196
  } else if (AllocationType::kOld == type) {
197
    if (large_object) {
198
      allocation = lo_space_->AllocateRaw(size_in_bytes);
199 200 201
    } else {
      allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
    }
202
  } else if (AllocationType::kCode == type) {
203
    if (size_in_bytes <= code_space()->AreaSize() && !large_object) {
204
      allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
205
    } else {
206
      allocation = code_lo_space_->AllocateRaw(size_in_bytes);
207
    }
208
  } else if (AllocationType::kMap == type) {
209
    allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
210
  } else if (AllocationType::kReadOnly == type) {
211 212 213 214
#ifdef V8_USE_SNAPSHOT
    DCHECK(isolate_->serializer_enabled());
#endif
    DCHECK(!large_object);
215
    DCHECK(CanAllocateInReadOnlySpace());
216
    allocation = read_only_space_->AllocateRaw(size_in_bytes, alignment);
217 218
  } else {
    UNREACHABLE();
219
  }
220

221
  if (allocation.To(&object)) {
222
    if (AllocationType::kCode == type) {
223 224 225 226
      // Unprotect the memory chunk of the object if it was not unprotected
      // already.
      UnprotectAndRegisterMemoryChunk(object);
      ZapCodeObject(object->address(), size_in_bytes);
227
      if (!large_object) {
228 229 230
        MemoryChunk::FromHeapObject(object)
            ->GetCodeObjectRegistry()
            ->RegisterNewlyAllocatedCodeObject(object->address());
231
      }
232
    }
233
    OnAllocationEvent(object, size_in_bytes);
234
  }
235

236
  return allocation;
237 238
}

239
void Heap::OnAllocationEvent(HeapObject object, int size_in_bytes) {
240 241
  for (auto& tracker : allocation_trackers_) {
    tracker->AllocationEvent(object->address(), size_in_bytes);
242 243
  }

244
  if (FLAG_verify_predictable) {
245 246 247 248
    ++allocations_count_;
    // Advance synthetic time by making a time request.
    MonotonicallyIncreasingTimeInMs();

249 250 251
    UpdateAllocationsHash(object);
    UpdateAllocationsHash(size_in_bytes);

252
    if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
Clemens Hammacher's avatar
Clemens Hammacher committed
253
      PrintAllocationsHash();
254
    }
255 256 257 258
  } else if (FLAG_fuzzer_gc_analysis) {
    ++allocations_count_;
  } else if (FLAG_trace_allocation_stack_interval > 0) {
    ++allocations_count_;
259 260 261 262
    if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
      isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
    }
  }
263 264
}

265 266 267 268 269 270
bool Heap::CanAllocateInReadOnlySpace() {
  return !deserialization_complete_ &&
         (isolate()->serializer_enabled() ||
          !isolate()->initialized_from_snapshot());
}

271
void Heap::UpdateAllocationsHash(HeapObject object) {
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  Address object_address = object->address();
  MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
  AllocationSpace allocation_space = memory_chunk->owner()->identity();

  STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
  uint32_t value =
      static_cast<uint32_t>(object_address - memory_chunk->address()) |
      (static_cast<uint32_t>(allocation_space) << kPageSizeBits);

  UpdateAllocationsHash(value);
}

void Heap::UpdateAllocationsHash(uint32_t value) {
  uint16_t c1 = static_cast<uint16_t>(value);
  uint16_t c2 = static_cast<uint16_t>(value >> 16);
  raw_allocations_hash_ =
      StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
  raw_allocations_hash_ =
      StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
}

293
void Heap::RegisterExternalString(String string) {
294 295
  DCHECK(string->IsExternalString());
  DCHECK(!string->IsThinString());
296 297 298
  external_string_table_.AddString(string);
}

299
void Heap::FinalizeExternalString(String string) {
300
  DCHECK(string->IsExternalString());
301
  Page* page = Page::FromHeapObject(string);
302
  ExternalString ext_string = ExternalString::cast(string);
303 304 305 306 307

  page->DecrementExternalBackingStoreBytes(
      ExternalBackingStoreType::kExternalString,
      ext_string->ExternalPayloadSize());

308
  ext_string->DisposeResource();
309 310
}

311 312
Address Heap::NewSpaceTop() { return new_space_->top(); }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
bool Heap::InYoungGeneration(Object object) {
  DCHECK(!HasWeakHeapObjectTag(object));
  return object->IsHeapObject() && InYoungGeneration(HeapObject::cast(object));
}

// static
bool Heap::InYoungGeneration(MaybeObject object) {
  HeapObject heap_object;
  return object->GetHeapObject(&heap_object) && InYoungGeneration(heap_object);
}

// static
bool Heap::InYoungGeneration(HeapObject heap_object) {
  bool result = MemoryChunk::FromHeapObject(heap_object)->InYoungGeneration();
#ifdef DEBUG
  // If in the young generation, then check we're either not in the middle of
  // GC or the object is in to-space.
  if (result) {
    // If the object is in the young generation, then it's not in RO_SPACE so
    // this is safe.
    Heap* heap = Heap::FromWritableHeapObject(heap_object);
    DCHECK_IMPLIES(heap->gc_state_ == NOT_IN_GC, InToPage(heap_object));
335 336 337 338 339
  }
#endif
  return result;
}

340
// static
341
bool Heap::InFromPage(Object object) {
342
  DCHECK(!HasWeakHeapObjectTag(object));
343
  return object->IsHeapObject() && InFromPage(HeapObject::cast(object));
344 345
}

346
// static
347
bool Heap::InFromPage(MaybeObject object) {
348
  HeapObject heap_object;
349
  return object->GetHeapObject(&heap_object) && InFromPage(heap_object);
350 351
}

352
// static
353 354
bool Heap::InFromPage(HeapObject heap_object) {
  return MemoryChunk::FromHeapObject(heap_object)->IsFromPage();
355 356
}

357
// static
358
bool Heap::InToPage(Object object) {
359
  DCHECK(!HasWeakHeapObjectTag(object));
360
  return object->IsHeapObject() && InToPage(HeapObject::cast(object));
361 362
}

363
// static
364
bool Heap::InToPage(MaybeObject object) {
365
  HeapObject heap_object;
366
  return object->GetHeapObject(&heap_object) && InToPage(heap_object);
367 368
}

369
// static
370 371
bool Heap::InToPage(HeapObject heap_object) {
  return MemoryChunk::FromHeapObject(heap_object)->IsToPage();
372 373
}

374
bool Heap::InOldSpace(Object object) { return old_space_->Contains(object); }
375

376
// static
377
Heap* Heap::FromWritableHeapObject(const HeapObject obj) {
378 379 380 381 382 383 384 385 386 387 388
  MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj);
  // RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to
  // find a heap. The exception is when the ReadOnlySpace is writeable, during
  // bootstrapping, so explicitly allow this case.
  SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE ||
              static_cast<ReadOnlySpace*>(chunk->owner())->writable());
  Heap* heap = chunk->heap();
  SLOW_DCHECK(heap != nullptr);
  return heap;
}

389
bool Heap::ShouldBePromoted(Address old_address) {
390 391 392 393
  Page* page = Page::FromAddress(old_address);
  Address age_mark = new_space_->age_mark();
  return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
         (!page->ContainsLimit(age_mark) || old_address < age_mark);
394 395
}

396
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
397
  DCHECK(IsAligned(byte_size, kTaggedSize));
398
  CopyTagged(dst, src, static_cast<size_t>(byte_size / kTaggedSize));
399 400
}

401
template <Heap::FindMementoMode mode>
402
AllocationMemento Heap::FindAllocationMemento(Map map, HeapObject object) {
403
  Address object_address = object->address();
404
  Address memento_address = object_address + object->SizeFromMap(map);
405
  Address last_memento_word_address = memento_address + kTaggedSize;
406
  // If the memento would be on another page, bail out immediately.
407
  if (!Page::OnSamePage(object_address, last_memento_word_address)) {
408
    return AllocationMemento();
409
  }
410
  HeapObject candidate = HeapObject::FromAddress(memento_address);
411
  MapWordSlot candidate_map_slot = candidate->map_slot();
412 413 414
  // This fast check may peek at an uninitialized word. However, the slow check
  // below (memento_address == top) ensures that this is safe. Mark the word as
  // initialized to silence MemorySanitizer warnings.
415 416 417
  MSAN_MEMORY_IS_INITIALIZED(candidate_map_slot.address(), kTaggedSize);
  if (!candidate_map_slot.contains_value(
          ReadOnlyRoots(this).allocation_memento_map().ptr())) {
418
    return AllocationMemento();
419
  }
420 421 422 423

  // Bail out if the memento is below the age mark, which can happen when
  // mementos survived because a page got moved within new space.
  Page* object_page = Page::FromAddress(object_address);
424 425 426 427
  if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
    Address age_mark =
        reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
    if (!object_page->Contains(age_mark)) {
428
      return AllocationMemento();
429 430 431
    }
    // Do an exact check in the case where the age mark is on the same page.
    if (object_address < age_mark) {
432
      return AllocationMemento();
433
    }
434 435
  }

436
  AllocationMemento memento_candidate = AllocationMemento::cast(candidate);
437 438 439 440 441 442 443 444

  // Depending on what the memento is used for, we might need to perform
  // additional checks.
  Address top;
  switch (mode) {
    case Heap::kForGC:
      return memento_candidate;
    case Heap::kForRuntime:
445
      if (memento_candidate.is_null()) return AllocationMemento();
446 447 448 449 450 451
      // Either the object is the last object in the new space, or there is
      // another object of at least word size (the header map word) following
      // it, so suffices to compare ptr and top here.
      top = NewSpaceTop();
      DCHECK(memento_address == top ||
             memento_address + HeapObject::kHeaderSize <= top ||
452
             !Page::OnSamePage(memento_address, top - 1));
453 454 455
      if ((memento_address != top) && memento_candidate->IsValid()) {
        return memento_candidate;
      }
456
      return AllocationMemento();
457 458 459 460
    default:
      UNREACHABLE();
  }
  UNREACHABLE();
461 462
}

463
void Heap::UpdateAllocationSite(Map map, HeapObject object,
464 465
                                PretenuringFeedbackMap* pretenuring_feedback) {
  DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_);
466 467 468 469 470 471 472
#ifdef DEBUG
  MemoryChunk* chunk = MemoryChunk::FromHeapObject(object);
  DCHECK_IMPLIES(chunk->IsToPage(),
                 chunk->IsFlagSet(MemoryChunk::PAGE_NEW_NEW_PROMOTION));
  DCHECK_IMPLIES(!chunk->InYoungGeneration(),
                 chunk->IsFlagSet(MemoryChunk::PAGE_NEW_OLD_PROMOTION));
#endif
473
  if (!FLAG_allocation_site_pretenuring ||
474
      !AllocationSite::CanTrack(map->instance_type())) {
475
    return;
476 477
  }
  AllocationMemento memento_candidate =
478
      FindAllocationMemento<kForGC>(map, object);
479
  if (memento_candidate.is_null()) return;
480

481 482 483 484
  // Entering cached feedback is used in the parallel case. We are not allowed
  // to dereference the allocation site and rather have to postpone all checks
  // till actually merging the data.
  Address key = memento_candidate->GetAllocationSiteUnchecked();
485
  (*pretenuring_feedback)[AllocationSite::unchecked_cast(Object(key))]++;
486
}
487

488
void Heap::ExternalStringTable::AddString(String string) {
489
  DCHECK(string->IsExternalString());
490 491
  DCHECK(!Contains(string));

492
  if (InYoungGeneration(string)) {
493
    young_strings_.push_back(string);
494
  } else {
495
    old_strings_.push_back(string);
496 497 498
  }
}

499
Oddball Heap::ToBoolean(bool condition) {
500 501
  ReadOnlyRoots roots(this);
  return condition ? roots.true_value() : roots.false_value();
502 503
}

504 505
int Heap::NextScriptId() {
  int last_id = last_script_id()->value();
506 507
  if (last_id == Smi::kMaxValue) last_id = v8::UnboundScript::kNoScriptId;
  last_id++;
508 509
  set_last_script_id(Smi::FromInt(last_id));
  return last_id;
510 511
}

512 513
int Heap::NextDebuggingId() {
  int last_id = last_debugging_id()->value();
514 515
  if (last_id == DebugInfo::DebuggingIdBits::kMax) {
    last_id = DebugInfo::kNoDebuggingId;
516 517 518 519 520 521
  }
  last_id++;
  set_last_debugging_id(Smi::FromInt(last_id));
  return last_id;
}

522 523 524 525 526 527
int Heap::GetNextTemplateSerialNumber() {
  int next_serial_number = next_template_serial_number()->value() + 1;
  set_next_template_serial_number(Smi::FromInt(next_serial_number));
  return next_serial_number;
}

528 529 530 531 532 533 534 535 536 537 538 539
int Heap::MaxNumberToStringCacheSize() const {
  // Compute the size of the number string cache based on the max newspace size.
  // The number string cache has a minimum size based on twice the initial cache
  // size to ensure that it is bigger after being made 'full size'.
  size_t number_string_cache_size = max_semi_space_size_ / 512;
  number_string_cache_size =
      Max(static_cast<size_t>(kInitialNumberStringCacheSize * 2),
          Min<size_t>(0x4000u, number_string_cache_size));
  // There is a string and a number per entry so the length is twice the number
  // of entries.
  return static_cast<int>(number_string_cache_size * 2);
}
540 541 542 543 544 545 546 547 548 549 550 551 552

void Heap::IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
                                              size_t amount) {
  base::CheckedIncrement(&backing_store_bytes_, amount);
  // TODO(mlippautz): Implement interrupt for global memory allocations that can
  // trigger garbage collections.
}

void Heap::DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
                                              size_t amount) {
  base::CheckedDecrement(&backing_store_bytes_, amount);
}

553
AlwaysAllocateScope::AlwaysAllocateScope(Heap* heap) : heap_(heap) {
554
  heap_->always_allocate_scope_count_++;
555 556
}

557 558 559
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
    : AlwaysAllocateScope(isolate->heap()) {}

560
AlwaysAllocateScope::~AlwaysAllocateScope() {
561
  heap_->always_allocate_scope_count_--;
562 563
}

564 565
CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap)
    : heap_(heap) {
566 567 568
  if (heap_->write_protect_code_memory()) {
    heap_->increment_code_space_memory_modification_scope_depth();
    heap_->code_space()->SetReadAndWritable();
569
    LargePage* page = heap_->code_lo_space()->first_page();
570
    while (page != nullptr) {
571 572 573
      DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
      CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
      page->SetReadAndWritable();
574
      page = page->next_page();
575
    }
576 577 578 579
  }
}

CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() {
580 581
  if (heap_->write_protect_code_memory()) {
    heap_->decrement_code_space_memory_modification_scope_depth();
582
    heap_->code_space()->SetDefaultCodePermissions();
583
    LargePage* page = heap_->code_lo_space()->first_page();
584
    while (page != nullptr) {
585 586
      DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
      CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
587
      page->SetDefaultCodePermissions();
588
      page = page->next_page();
589
    }
590 591 592
  }
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
CodePageCollectionMemoryModificationScope::
    CodePageCollectionMemoryModificationScope(Heap* heap)
    : heap_(heap) {
  if (heap_->write_protect_code_memory() &&
      !heap_->code_space_memory_modification_scope_depth()) {
    heap_->EnableUnprotectedMemoryChunksRegistry();
  }
}

CodePageCollectionMemoryModificationScope::
    ~CodePageCollectionMemoryModificationScope() {
  if (heap_->write_protect_code_memory() &&
      !heap_->code_space_memory_modification_scope_depth()) {
    heap_->ProtectUnprotectedMemoryChunks();
    heap_->DisableUnprotectedMemoryChunksRegistry();
  }
}

611
CodePageMemoryModificationScope::CodePageMemoryModificationScope(
612
    MemoryChunk* chunk)
613
    : chunk_(chunk),
614 615
      scope_active_(chunk_->heap()->write_protect_code_memory() &&
                    chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
616
  if (scope_active_) {
617
    DCHECK(chunk_->owner()->identity() == CODE_SPACE ||
618
           (chunk_->owner()->identity() == CODE_LO_SPACE));
619
    chunk_->SetReadAndWritable();
620 621 622 623
  }
}

CodePageMemoryModificationScope::~CodePageMemoryModificationScope() {
624
  if (scope_active_) {
625
    chunk_->SetDefaultCodePermissions();
626 627 628
  }
}

629 630
}  // namespace internal
}  // namespace v8
631

632
#endif  // V8_HEAP_HEAP_INL_H_