test-macro-assembler-mips.cc 13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29
#include <iostream>  // NOLINT(readability/streams)
30

31
#include "src/base/utils/random-number-generator.h"
32 33 34
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"
35 36
#include "src/v8.h"
#include "test/cctest/cctest.h"
37 38 39 40 41


using namespace v8::internal;

typedef void* (*F)(int x, int y, int p2, int p3, int p4);
42
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

#define __ masm->


static byte to_non_zero(int n) {
  return static_cast<unsigned>(n) % 255 + 1;
}


static bool all_zeroes(const byte* beg, const byte* end) {
  CHECK(beg);
  CHECK(beg <= end);
  while (beg < end) {
    if (*beg++ != 0)
      return false;
  }
  return true;
}


TEST(CopyBytes) {
  CcTest::InitializeVM();
65
  Isolate* isolate = CcTest::i_isolate();
66 67 68 69 70 71
  HandleScope handles(isolate);

  const int data_size = 1 * KB;
  size_t act_size;

  // Allocate two blocks to copy data between.
72 73
  byte* src_buffer =
      static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
74 75
  CHECK(src_buffer);
  CHECK(act_size >= static_cast<size_t>(data_size));
76 77
  byte* dest_buffer =
      static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
78 79 80 81 82 83 84
  CHECK(dest_buffer);
  CHECK(act_size >= static_cast<size_t>(data_size));

  // Storage for a0 and a1.
  byte* a0_;
  byte* a1_;

85 86
  MacroAssembler assembler(isolate, NULL, 0,
                           v8::internal::CodeObjectRequired::kYes);
87 88 89 90 91 92 93 94 95 96 97 98 99
  MacroAssembler* masm = &assembler;

  // Code to be generated: The stuff in CopyBytes followed by a store of a0 and
  // a1, respectively.
  __ CopyBytes(a0, a1, a2, a3);
  __ li(a2, Operand(reinterpret_cast<int>(&a0_)));
  __ li(a3, Operand(reinterpret_cast<int>(&a1_)));
  __ sw(a0, MemOperand(a2));
  __ jr(ra);
  __ sw(a1, MemOperand(a3));

  CodeDesc desc;
  masm->GetCode(&desc);
100 101
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
102

103
  ::F f = FUNCTION_CAST< ::F>(code->entry());
104 105 106 107 108 109 110 111 112 113 114 115 116

  // Initialise source data with non-zero bytes.
  for (int i = 0; i < data_size; i++) {
    src_buffer[i] = to_non_zero(i);
  }

  const int fuzz = 11;

  for (int size = 0; size < 600; size++) {
    for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
      for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
        memset(dest_buffer, 0, data_size);
        CHECK(dest + size < dest_buffer + data_size);
117 118
        (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int>(src),
                                  reinterpret_cast<int>(dest), size, 0, 0);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        // a0 and a1 should point at the first byte after the copied data.
        CHECK_EQ(src + size, a0_);
        CHECK_EQ(dest + size, a1_);
        // Check that we haven't written outside the target area.
        CHECK(all_zeroes(dest_buffer, dest));
        CHECK(all_zeroes(dest + size, dest_buffer + data_size));
        // Check the target area.
        CHECK_EQ(0, memcmp(src, dest, size));
      }
    }
  }

  // Check that the source data hasn't been clobbered.
  for (int i = 0; i < data_size; i++) {
    CHECK(src_buffer[i] == to_non_zero(i));
  }
}


138 139 140 141 142 143 144 145
static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
  v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
  v8::Context::Scope context_scope(context);

146 147 148 149
  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
150
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
151 152 153 154
  i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o));
  i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
  double value = a->get_scalar(0);
  CHECK(std::isnan(value) &&
155
        bit_cast<uint64_t>(value) ==
156
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}

179

180 181 182 183 184 185 186 187
TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
188 189
  MacroAssembler assembler(isolate, NULL, 0,
                           v8::internal::CodeObjectRequired::kYes);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label near_start, end;

  __ addiu(sp, sp, -4);
  __ sw(ra, MemOperand(sp));

  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

  Label done;
  {
    __ BlockTrampolinePoolFor(kNumCases + 6);
    PredictableCodeSizeScope predictable(
        masm, (kNumCases + 6) * Assembler::kInstrSize);
    Label here;

    __ bal(&here);
    __ sll(at, a0, 2);  // In delay slot.
    __ bind(&here);
    __ addu(at, at, ra);
    __ lw(at, MemOperand(at, 4 * Assembler::kInstrSize));
    __ jr(at);
    __ nop();  // Branch delay slot nop.
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ lui(v0, (values[i] >> 16) & 0xffff);
    __ ori(v0, v0, values[i] & 0xffff);
    __ Branch(&done);
  }

  __ bind(&done);
  __ lw(ra, MemOperand(sp));
  __ addiu(sp, sp, 4);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
256 257
    int res =
        reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
258 259 260 261 262 263
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

  __ addiu(sp, sp, -4);
  __ sw(ra, MemOperand(sp));

  {
    __ BlockTrampolinePoolFor(kNumCases * 2 + 7 + 1);
    PredictableCodeSizeScope predictable(
        masm, kNumCases * kPointerSize + ((7 + 1) * Assembler::kInstrSize));
    Label here;

    __ bal(&here);
292
    __ sll(at, a0, 2);  // In delay slot.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    __ bind(&here);
    __ addu(at, at, ra);
    __ lw(at, MemOperand(at, 6 * Assembler::kInstrSize));
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ lui(v0, (values[i] >> 16) & 0xffff);
    __ ori(v0, v0, values[i] & 0xffff);
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
  __ lw(ra, MemOperand(sp));
  __ addiu(sp, sp, 4);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  masm->GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
  for (int i = 0; i < kNumCases; ++i) {
327
    int32_t res = reinterpret_cast<int32_t>(
328
        CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
329
    ::printf("f(%d) = %d\n", i, res);
330 331 332 333 334
    CHECK_EQ(values[i], res);
  }
}


335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assembler.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());

  F1 f = FUNCTION_CAST<F1>(code->entry());

  uint32_t res = reinterpret_cast<uint32_t>(
      CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
                             {0x4, 0x1, 3, 0xc},
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
                             {0x4, INT32_MAX >> 2, 3, 0xfffffffc},
                             {0x4, INT32_MAX >> 3, 4, 0xfffffff4},
                             {0x4, INT32_MAX >> 4, 5, 0xffffffe4},

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

416
#undef __