test-macro-assembler-mips64.cc 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29
#include <iostream>  // NOLINT(readability/streams)
30

31
#include "src/init/v8.h"
32 33
#include "test/cctest/cctest.h"

34
#include "src/base/utils/random-number-generator.h"
35
#include "src/codegen/macro-assembler.h"
36
#include "src/execution/simulator.h"
37
#include "src/objects/heap-number.h"
38
#include "src/utils/ostreams.h"
39
#include "src/objects/objects-inl.h"
40

41 42
namespace v8 {
namespace internal {
43

44 45
// TODO(mips64): Refine these signatures per test case.
using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4);
46 47 48
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
49 50 51

#define __ masm->

52 53 54 55 56 57 58
TEST(BYTESWAP) {
  DCHECK(kArchVariant == kMips64r6 || kArchVariant == kMips64r2);
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  struct T {
59 60 61 62 63
    uint64_t s8;
    uint64_t s4;
    uint64_t s2;
    uint64_t u4;
    uint64_t u2;
64
  };
65

66
  T t;
67 68 69 70 71 72 73 74 75
  uint64_t test_values[] = {0x5612FFCD9D327ACC,
                            0x781A15C3,
                            0xFCDE,
                            0x9F,
                            0xC81A15C3,
                            0x8000000000000000,
                            0xFFFFFFFFFFFFFFFF,
                            0x0000000080000000,
                            0x0000000000008000};
76

77
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
78 79 80

  MacroAssembler* masm = &assembler;

81
  __ Ld(a4, MemOperand(a0, offsetof(T, s8)));
82
  __ nop();
83
  __ ByteSwapSigned(a4, a4, 8);
84
  __ Sd(a4, MemOperand(a0, offsetof(T, s8)));
85

86
  __ Ld(a4, MemOperand(a0, offsetof(T, s4)));
87
  __ nop();
88
  __ ByteSwapSigned(a4, a4, 4);
89
  __ Sd(a4, MemOperand(a0, offsetof(T, s4)));
90

91
  __ Ld(a4, MemOperand(a0, offsetof(T, s2)));
92
  __ nop();
93
  __ ByteSwapSigned(a4, a4, 2);
94
  __ Sd(a4, MemOperand(a0, offsetof(T, s2)));
95

96
  __ Ld(a4, MemOperand(a0, offsetof(T, u4)));
97
  __ nop();
98 99
  __ ByteSwapUnsigned(a4, a4, 4);
  __ Sd(a4, MemOperand(a0, offsetof(T, u4)));
100

101
  __ Ld(a4, MemOperand(a0, offsetof(T, u2)));
102
  __ nop();
103
  __ ByteSwapUnsigned(a4, a4, 2);
104
  __ Sd(a4, MemOperand(a0, offsetof(T, u2)));
105 106 107 108 109

  __ jr(ra);
  __ nop();

  CodeDesc desc;
110
  masm->GetCode(isolate, &desc);
111 112
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
113
  auto f = GeneratedCode<F3>::FromCode(*code);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int32_t in_s4 = static_cast<int32_t>(test_values[i]);
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint32_t in_u4 = static_cast<uint32_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s8 = test_values[i];
    t.s4 = static_cast<uint64_t>(in_s4);
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u4 = static_cast<uint64_t>(in_u4);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse<uint64_t>(test_values[i]), t.s8);
    CHECK_EQ(ByteReverse<int32_t>(in_s4), static_cast<int32_t>(t.s4));
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint32_t>(in_u4), static_cast<uint32_t>(t.u4));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
135
}
136 137 138

TEST(LoadConstants) {
  CcTest::InitializeVM();
139
  Isolate* isolate = CcTest::i_isolate();
140 141 142 143 144 145 146 147 148 149
  HandleScope handles(isolate);

  int64_t refConstants[64];
  int64_t result[64];

  int64_t mask = 1;
  for (int i = 0; i < 64; i++) {
    refConstants[i] = ~(mask << i);
  }

150
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
151 152 153 154 155 156
  MacroAssembler* masm = &assembler;

  __ mov(a4, a0);
  for (int i = 0; i < 64; i++) {
    // Load constant.
    __ li(a5, Operand(refConstants[i]));
157
    __ Sd(a5, MemOperand(a4));
158 159 160 161 162 163 164
    __ Daddu(a4, a4, Operand(kPointerSize));
  }

  __ jr(ra);
  __ nop();

  CodeDesc desc;
165
  masm->GetCode(isolate, &desc);
166 167
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
168

169 170
  auto f = GeneratedCode<FV>::FromCode(*code);
  (void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
171 172 173 174 175 176 177 178 179
  // Check results.
  for (int i = 0; i < 64; i++) {
    CHECK(refConstants[i] == result[i]);
  }
}


TEST(LoadAddress) {
  CcTest::InitializeVM();
180
  Isolate* isolate = CcTest::i_isolate();
181 182
  HandleScope handles(isolate);

183
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
184 185 186 187 188 189 190 191 192 193 194 195 196
  MacroAssembler* masm = &assembler;
  Label to_jump, skip;
  __ mov(a4, a0);

  __ Branch(&skip);
  __ bind(&to_jump);
  __ nop();
  __ nop();
  __ jr(ra);
  __ nop();
  __ bind(&skip);
  __ li(a4, Operand(masm->jump_address(&to_jump)), ADDRESS_LOAD);
  int check_size = masm->InstructionsGeneratedSince(&skip);
197
  CHECK_EQ(4, check_size);
198 199
  __ jr(a4);
  __ nop();
200 201 202 203 204
  __ stop();
  __ stop();
  __ stop();
  __ stop();
  __ stop();
205 206 207


  CodeDesc desc;
208
  masm->GetCode(isolate, &desc);
209 210
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
211

212 213
  auto f = GeneratedCode<FV>::FromCode(*code);
  (void)f.Call(0, 0, 0, 0, 0);
214 215 216
  // Check results.
}

217 218 219 220 221 222 223 224 225

TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
226
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
227 228 229 230 231 232
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
233
  Label near_start, end, done;
234

235
  __ Push(ra);
236 237 238 239 240 241 242 243 244 245 246
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

247 248
  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });
249 250 251

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
252
    __ li(v0, values[i]);
253 254 255 256
    __ Branch(&done);
  }

  __ bind(&done);
257
  __ Pop(ra);
258 259 260 261 262 263 264
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
265
  masm->GetCode(isolate, &desc);
266 267
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
268
#ifdef OBJECT_PRINT
269
  code->Print(std::cout);
270
#endif
271
  auto f = GeneratedCode<F1>::FromCode(*code);
272
  for (int i = 0; i < kNumCases; ++i) {
273
    int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
274 275 276 277 278
    ::printf("f(%d) = %" PRId64 "\n", i, res);
    CHECK_EQ(values[i], res);
  }
}

279

280 281 282 283 284 285 286 287
TEST(jump_tables5) {
  if (kArchVariant != kMips64r6) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
288
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
289 290 291 292 293 294 295 296
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

297 298 299 300 301 302 303
  __ Push(ra);

  // Opposite of Align(8) as we have unaligned number of instructions in the
  // following block before the first dd().
  if ((masm->pc_offset() & 7) == 0) {
    __ nop();
  }
304 305

  {
306 307 308
    __ BlockTrampolinePoolFor(kNumCases * 2 + 6 + 1);

    __ addiupc(at, 6 + 1);
309
    __ Dlsa(at, at, a0, 3);
310
    __ Ld(at, MemOperand(at));
311 312 313
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
314 315 316
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)) so the first label goes to an 8 bytes aligned
    // location.
317 318 319 320 321 322 323
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
324
    __ li(v0, values[i]);
325 326 327 328 329
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
330
  __ Pop(ra);
331 332 333 334
  __ jr(ra);
  __ nop();

  CodeDesc desc;
335
  masm->GetCode(isolate, &desc);
336 337
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
338
#ifdef OBJECT_PRINT
339
  code->Print(std::cout);
340
#endif
341
  auto f = GeneratedCode<F1>::FromCode(*code);
342
  for (int i = 0; i < kNumCases; ++i) {
343
    int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
344 345 346 347 348
    ::printf("f(%d) = %" PRId64 "\n", i, res);
    CHECK_EQ(values[i], res);
  }
}

349 350 351 352 353 354 355 356 357 358
TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
359
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
360 361
  MacroAssembler* masm = &assembler;

362 363 364 365 366 367
  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

368 369
  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
370 371 372
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + 2 * kSwitchTableCases) -
                         20;
373

374
  int values[kSwitchTableCases];
375
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
376
  Label labels[kSwitchTableCases];
377 378 379 380 381 382 383 384 385
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
386
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
387 388 389 390 391 392 393 394 395
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

396
  __ GenerateSwitchTable(a0, kSwitchTableCases,
397
                         [&labels](size_t i) { return labels + i; });
398
  gen_insn += (kSwitchTablePrologueSize + 2 * kSwitchTableCases);
399

400
  for (int i = 0; i < kSwitchTableCases; ++i) {
401 402 403 404
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
405 406
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);
407 408 409 410 411 412

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
413
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
414 415 416 417 418 419 420 421 422 423

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
424
  masm->GetCode(isolate, &desc);
425 426
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
427
#ifdef OBJECT_PRINT
428
  code->Print(std::cout);
429
#endif
430
  auto f = GeneratedCode<F1>::FromCode(*code);
431
  for (int i = 0; i < kSwitchTableCases; ++i) {
432
    int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
433 434 435 436
    ::printf("f(%d) = %" PRId64 "\n", i, res);
    CHECK_EQ(values[i], res);
  }
}
437

438 439 440
static uint64_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
441
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
442 443 444 445 446 447 448
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
449
  assembler.GetCode(isolate, &desc);
450 451
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
452

453
  auto f = GeneratedCode<F1>::FromCode(*code);
454

455
  uint64_t res = reinterpret_cast<uint64_t>(f.Call(rt, rs, 0, 0, 0));
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint64_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
473
                             {0x4, 0x1, 3, 0xC},
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
490 491 492
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFFFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFFFFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFFFFFFFFFE4},
493 494

                             // Signed addition overflow.
495 496 497 498 499
                             {INT32_MAX - 1, 0x1, 1, 0xFFFFFFFF80000000},
                             {INT32_MAX - 3, 0x1, 2, 0xFFFFFFFF80000000},
                             {INT32_MAX - 7, 0x1, 3, 0xFFFFFFFF80000000},
                             {INT32_MAX - 15, 0x1, 4, 0xFFFFFFFF80000000},
                             {INT32_MAX - 31, 0x1, 5, 0xFFFFFFFF80000000},
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint64_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Lsa(v0, %x, %x, %hhu)\n",
           tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}


static uint64_t run_dlsa(uint64_t rt, uint64_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
521
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
522 523 524 525 526 527 528
  MacroAssembler* masm = &assembler;

  __ Dlsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
529
  assembler.GetCode(isolate, &desc);
530 531
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
532

533
  auto f = GeneratedCode<FV>::FromCode(*code);
534

535
  uint64_t res = reinterpret_cast<uint64_t>(f.Call(rt, rs, 0, 0, 0));
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

  return res;
}


TEST(Dlsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int64_t rt;
    int64_t rs;
    uint8_t sa;
    uint64_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
553
                             {0x4, 0x1, 3, 0xC},
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT64_MAX, 1, 0x2},
                             {0x4, INT64_MAX >> 1, 2, 0x0},
570 571 572
                             {0x4, INT64_MAX >> 2, 3, 0xFFFFFFFFFFFFFFFC},
                             {0x4, INT64_MAX >> 3, 4, 0xFFFFFFFFFFFFFFF4},
                             {0x4, INT64_MAX >> 4, 5, 0xFFFFFFFFFFFFFFE4},
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

                             // Signed addition overflow.
                             {INT64_MAX - 1, 0x1, 1, 0x8000000000000000},
                             {INT64_MAX - 3, 0x1, 2, 0x8000000000000000},
                             {INT64_MAX - 7, 0x1, 3, 0x8000000000000000},
                             {INT64_MAX - 15, 0x1, 4, 0x8000000000000000},
                             {INT64_MAX - 31, 0x1, 5, 0x8000000000000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint64_t res = run_dlsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64
           ", %hhu)\n",
           tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

598
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
599 600 601
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
602 603 604
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

605
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
606 607
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
608
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
609
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
610 611
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
612 613 614
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

615
static const std::vector<uint64_t> cvt_trunc_uint64_test_values() {
616
  static const uint64_t kValues[] = {
617 618 619
      0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000,
      0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001,
      0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF};
620 621 622
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

623
static const std::vector<int64_t> cvt_trunc_int64_test_values() {
624 625
  static const int64_t kValues[] = {static_cast<int64_t>(0x0000000000000000),
                                    static_cast<int64_t>(0x0000000000000001),
626 627
                                    static_cast<int64_t>(0x0000FFFFFFFF0000),
                                    static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
628 629
                                    static_cast<int64_t>(0x8000000000000000),
                                    static_cast<int64_t>(0x8000000000000001),
630 631 632
                                    static_cast<int64_t>(0x8000FFFFFFFF0000),
                                    static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
                                    static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
633 634 635 636
  return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
637 638
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
639 640 641
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

642 643 644 645 646 647 648
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

649 650 651 652 653 654
#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
655 656
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)
657 658 659 660 661 662
#define FOR_INT64_INPUTS(var, test_vector) \
  FOR_INPUTS(int64_t, int64, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint64, var, test_vector)
663 664 665

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
666
  using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
667 668 669

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
670
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
671 672 673 674 675 676 677 678
  MacroAssembler* masm = &assm;

  GenerateConvertInstructionFunc(masm);
  __ dmfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
679
  assm.GetCode(isolate, &desc);
680 681
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
682

683
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
684

685
  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
686 687 688 689
}

TEST(Cvt_s_uw_Trunc_uw_s) {
  CcTest::InitializeVM();
690
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
691
    uint32_t input = *i;
692 693 694 695 696 697
    auto fn = [](MacroAssembler* masm) {
      __ Cvt_s_uw(f0, a0);
      __ mthc1(zero_reg, f2);
      __ Trunc_uw_s(f2, f0, f1);
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint64_t>(input, fn));
698 699 700 701 702
  }
}

TEST(Cvt_s_ul_Trunc_ul_s) {
  CcTest::InitializeVM();
703
  FOR_UINT64_INPUTS(i, cvt_trunc_uint64_test_values) {
704
    uint64_t input = *i;
705 706 707 708 709
    auto fn = [](MacroAssembler* masm) {
      __ Cvt_s_ul(f0, a0);
      __ Trunc_ul_s(f2, f0, f1, v0);
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint64_t>(input, fn));
710 711 712 713 714
  }
}

TEST(Cvt_d_ul_Trunc_ul_d) {
  CcTest::InitializeVM();
715
  FOR_UINT64_INPUTS(i, cvt_trunc_uint64_test_values) {
716
    uint64_t input = *i;
717 718 719 720 721
    auto fn = [](MacroAssembler* masm) {
      __ Cvt_d_ul(f0, a0);
      __ Trunc_ul_d(f2, f0, f1, v0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<uint64_t>(input, fn));
722 723 724 725 726
  }
}

TEST(cvt_d_l_Trunc_l_d) {
  CcTest::InitializeVM();
727
  FOR_INT64_INPUTS(i, cvt_trunc_int64_test_values) {
728
    int64_t input = *i;
729 730 731 732 733 734
    auto fn = [](MacroAssembler* masm) {
      __ dmtc1(a0, f4);
      __ cvt_d_l(f0, f4);
      __ Trunc_l_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int64_t>(input, fn));
735 736 737 738 739
  }
}

TEST(cvt_d_l_Trunc_l_ud) {
  CcTest::InitializeVM();
740
  FOR_INT64_INPUTS(i, cvt_trunc_int64_test_values) {
741 742
    int64_t input = *i;
    uint64_t abs_input = (input < 0) ? -input : input;
743 744 745 746 747 748
    auto fn = [](MacroAssembler* masm) {
      __ dmtc1(a0, f4);
      __ cvt_d_l(f0, f4);
      __ Trunc_l_ud(f2, f0, f6);
    };
    CHECK_EQ(static_cast<double>(abs_input), run_Cvt<uint64_t>(input, fn));
749 750 751 752 753
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
754
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
755
    int32_t input = *i;
756 757 758 759 760 761 762 763
    auto fn = [](MacroAssembler* masm) {
      __ mtc1(a0, f4);
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
      __ mfc1(v1, f2);
      __ dmtc1(v1, f2);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int64_t>(input, fn));
764 765 766
  }
}

767
static const std::vector<int64_t> overflow_int64_test_values() {
768
  static const int64_t kValues[] = {static_cast<int64_t>(0xF000000000000000),
769
                                    static_cast<int64_t>(0x0000000000000001),
770 771 772 773 774 775 776
                                    static_cast<int64_t>(0xFF00000000000000),
                                    static_cast<int64_t>(0x0000F00111111110),
                                    static_cast<int64_t>(0x0F00001000000000),
                                    static_cast<int64_t>(0x991234AB12A96731),
                                    static_cast<int64_t>(0xB0FFFF0F0F0F0F01),
                                    static_cast<int64_t>(0x00006FFFFFFFFFFF),
                                    static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
777 778 779
  return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

780 781
TEST(OverflowInstructions) {
  CcTest::InitializeVM();
782
  Isolate* isolate = CcTest::i_isolate();
783
  HandleScope handles(isolate);
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
  struct T {
    int64_t lhs;
    int64_t rhs;
    int64_t output_add;
    int64_t output_add2;
    int64_t output_sub;
    int64_t output_sub2;
    int64_t output_mul;
    int64_t output_mul2;
    int64_t overflow_add;
    int64_t overflow_add2;
    int64_t overflow_sub;
    int64_t overflow_sub2;
    int64_t overflow_mul;
    int64_t overflow_mul2;
  };
  T t;
802 803 804

  FOR_INT64_INPUTS(i, overflow_int64_test_values) {
    FOR_INT64_INPUTS(j, overflow_int64_test_values) {
805 806 807 808 809 810 811
      int64_t ii = *i;
      int64_t jj = *j;
      int64_t expected_add, expected_sub;
      int32_t ii32 = static_cast<int32_t>(ii);
      int32_t jj32 = static_cast<int32_t>(jj);
      int32_t expected_mul;
      int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
812
      MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
      MacroAssembler* masm = &assembler;

      __ ld(t0, MemOperand(a0, offsetof(T, lhs)));
      __ ld(t1, MemOperand(a0, offsetof(T, rhs)));

      __ DaddOverflow(t2, t0, Operand(t1), t3);
      __ sd(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ DaddOverflow(t0, t0, Operand(t1), t3);
      __ sd(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ ld(t0, MemOperand(a0, offsetof(T, lhs)));
      __ ld(t1, MemOperand(a0, offsetof(T, rhs)));

      __ DsubOverflow(t2, t0, Operand(t1), t3);
      __ sd(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ DsubOverflow(t0, t0, Operand(t1), t3);
      __ sd(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ ld(t0, MemOperand(a0, offsetof(T, lhs)));
      __ ld(t1, MemOperand(a0, offsetof(T, rhs)));
      __ sll(t0, t0, 0);
      __ sll(t1, t1, 0);

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sd(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sd(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sd(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
856
          Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub);
      expected_mul_ovf =
          base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
882 883 884 885 886
      }
    }
  }
}

887 888 889 890
TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
891
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
935
    __ LoadRoot(t8, RootIndex::kNanValue);
936
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
937 938 939 940 941 942 943 944 945 946 947 948 949 950
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
951 952 953 954
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
  __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
955
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
956
  __ bind(&back_mind_nan);
957
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
958
  __ bind(&back_maxd_nan);
959
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
960
  __ bind(&back_mins_nan);
961
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
962
  __ bind(&back_maxs_nan);
963 964 965 966
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
  __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
967 968 969 970 971 972 973 974 975 976
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
977
  masm->GetCode(isolate, &desc);
978 979
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
980
  auto f = GeneratedCode<F3>::FromCode(*code);
981 982 983 984 985 986
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

987
    f.Call(&test, 0, 0, 0, 0);
988 989 990 991 992 993 994 995

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

996 997 998
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
999
  using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
1000 1001 1002

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1003
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1004 1005 1006 1007 1008 1009 1010 1011
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1012
  assm.GetCode(isolate, &desc);
1013 1014
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
1015

1016
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
1017 1018

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
1019
  f.Call(memory_buffer, 0, 0, 0, 0);
1020 1021 1022 1023 1024 1025 1026
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
1027 1028
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
1176
        CHECK_EQ(true,
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulwu(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulwu(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
1194
        CHECK_EQ(true,
1195 1196
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_4));
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
      }
    }
  }
}

TEST(Ulw_extension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulw(t0, MemOperand(a0, in_offset));
          __ Ulwu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ dsra(t0, t0, 31);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ dsra(t1, t1, 31);
          __ Branch(&fail, ne, t1, Operand(1));
          __ dsra(t0, t0, 31);
          __ daddiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulw(t0, MemOperand(a0, in_offset));
          __ Usw(t0, MemOperand(a0, out_offset));
          __ Branch(&end);
          __ bind(&fail);
          __ Usw(zero_reg, MemOperand(a0, out_offset));
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
      }
    }
  }
}

TEST(Uld) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint64_t value = *i;
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Uld(v0, MemOperand(a0, in_offset));
          __ Usd(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint64_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Uld(a0, MemOperand(a0, in_offset));
          __ Usd(a0, MemOperand(t0, out_offset));
        };
1282
        CHECK_EQ(true,
1283 1284
                 run_Unaligned<uint64_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1304 1305 1306 1307 1308 1309 1310
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

1330 1331 1332 1333 1334 1335 1336
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
1337 1338 1339 1340 1341
      }
    }
  }
}

1342 1343 1344 1345
static const std::vector<uint64_t> sltu_test_values() {
  static const uint64_t kValues[] = {
      0,
      1,
1346 1347
      0x7FFE,
      0x7FFF,
1348 1349
      0x8000,
      0x8001,
1350 1351 1352 1353 1354 1355 1356 1357
      0xFFFE,
      0xFFFF,
      0xFFFFFFFFFFFF7FFE,
      0xFFFFFFFFFFFF7FFF,
      0xFFFFFFFFFFFF8000,
      0xFFFFFFFFFFFF8001,
      0xFFFFFFFFFFFFFFFE,
      0xFFFFFFFFFFFFFFFF,
1358 1359 1360 1361 1362 1363
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint64_t rs, uint64_t rd, Func GenerateSltuInstructionFunc) {
1364
  using F_CVT = int64_t(uint64_t x0, uint64_t x1, int x2, int x3, int x4);
1365 1366 1367

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1368
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1369 1370 1371 1372 1373 1374 1375
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1376
  assm.GetCode(isolate, &desc);
1377 1378
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
1379

1380 1381
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int64_t res = reinterpret_cast<int64_t>(f.Call(rs, rd, 0, 0, 0));
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT64_INPUTS(i, sltu_test_values) {
    FOR_UINT64_INPUTS(j, sltu_test_values) {
      uint64_t rs = *i;
      uint64_t rd = *j;

1393 1394 1395 1396 1397 1398 1399 1400 1401
      auto fn_1 = [](MacroAssembler* masm, uint64_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint64_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
1402 1403 1404 1405
    }
  }
}

1406
template <typename T, typename Inputs, typename Results>
1407
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1419 1420
  __ Lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1421 1422
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1423
  __ Swc1(a, MemOperand(a1, offsetof(Results, res_field)))
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
1447
  __ Branch(&done_min_abc);
1448 1449 1450

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
1451
  __ Branch(&done_min_aab);
1452 1453 1454

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
1455
  __ Branch(&done_min_aba);
1456 1457 1458

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
1459
  __ Branch(&done_max_abc);
1460 1461 1462

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
1463
  __ Branch(&done_max_aab);
1464 1465 1466

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
1467
  __ Branch(&done_max_aba);
1468 1469

  CodeDesc desc;
1470
  masm->GetCode(masm->isolate(), &desc);
1471
  Handle<Code> code =
1472
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1473
          .Build();
1474
#ifdef DEBUG
1475
  StdoutStream os;
1476
  code->Print(os);
1477
#endif
1478
  return GeneratedCode<F4>::FromCode(*code);
1479 1480 1481 1482 1483 1484 1485 1486
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1487
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

1506 1507
  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
1508 1509 1510 1511 1512

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1513
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
1549
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1561 1562
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1563 1564
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1565
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
1589
  __ Branch(&done_min_abc);
1590 1591 1592

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
1593
  __ Branch(&done_min_aab);
1594 1595 1596

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
1597
  __ Branch(&done_min_aba);
1598 1599 1600

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
1601
  __ Branch(&done_max_abc);
1602 1603 1604

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
1605
  __ Branch(&done_max_aab);
1606 1607 1608

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
1609
  __ Branch(&done_max_aba);
1610 1611

  CodeDesc desc;
1612
  masm->GetCode(masm->isolate(), &desc);
1613
  Handle<Code> code =
1614
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1615
          .Build();
1616
#ifdef DEBUG
1617
  StdoutStream os;
1618
  code->Print(os);
1619
#endif
1620
  return GeneratedCode<F4>::FromCode(*code);
1621 1622 1623 1624 1625 1626 1627 1628
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1629
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

1648 1649
  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
1650 1651 1652 1653 1654

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1655
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

1690
#undef __
1691 1692 1693

}  // namespace internal
}  // namespace v8