loop-variable-optimizer.cc 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/loop-variable-optimizer.h"

#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/zone-containers.h"
#include "src/zone.h"

namespace v8 {
namespace internal {
namespace compiler {

// Macro for outputting trace information from representation inference.
#define TRACE(...)                                  \
  do {                                              \
    if (FLAG_trace_turbo_loop) PrintF(__VA_ARGS__); \
  } while (false)

LoopVariableOptimizer::LoopVariableOptimizer(Graph* graph,
                                             CommonOperatorBuilder* common,
                                             Zone* zone)
    : graph_(graph),
      common_(common),
      zone_(zone),
      limits_(zone),
      induction_vars_(zone) {}

void LoopVariableOptimizer::Run() {
  ZoneQueue<Node*> queue(zone());
  queue.push(graph()->start());
  NodeMarker<bool> queued(graph(), 2);
  while (!queue.empty()) {
    Node* node = queue.front();
    queue.pop();
    queued.Set(node, false);

    DCHECK(limits_.find(node->id()) == limits_.end());
    bool all_inputs_visited = true;
    int inputs_end = (node->opcode() == IrOpcode::kLoop)
                         ? kFirstBackedge
                         : node->op()->ControlInputCount();
    for (int i = 0; i < inputs_end; i++) {
      auto input = limits_.find(NodeProperties::GetControlInput(node, i)->id());
      if (input == limits_.end()) {
        all_inputs_visited = false;
        break;
      }
    }
    if (!all_inputs_visited) continue;

    VisitNode(node);
    DCHECK(limits_.find(node->id()) != limits_.end());

    // Queue control outputs.
    for (Edge edge : node->use_edges()) {
      if (NodeProperties::IsControlEdge(edge) &&
          edge.from()->op()->ControlOutputCount() > 0) {
        Node* use = edge.from();
        if (use->opcode() == IrOpcode::kLoop &&
            edge.index() != kAssumedLoopEntryIndex) {
          VisitBackedge(node, use);
        } else if (!queued.Get(use)) {
          queue.push(use);
          queued.Set(use, true);
        }
      }
    }
  }
}

class LoopVariableOptimizer::Constraint : public ZoneObject {
 public:
  InductionVariable::ConstraintKind kind() const { return kind_; }
  Node* left() const { return left_; }
  Node* right() const { return right_; }

  const Constraint* next() const { return next_; }

  Constraint(Node* left, InductionVariable::ConstraintKind kind, Node* right,
             const Constraint* next)
      : left_(left), right_(right), kind_(kind), next_(next) {}

 private:
  Node* left_;
  Node* right_;
  InductionVariable::ConstraintKind kind_;
  const Constraint* next_;
};

class LoopVariableOptimizer::VariableLimits : public ZoneObject {
 public:
  static VariableLimits* Empty(Zone* zone) {
    return new (zone) VariableLimits();
  }

  VariableLimits* Copy(Zone* zone) const {
    return new (zone) VariableLimits(this);
  }

  void Add(Node* left, InductionVariable::ConstraintKind kind, Node* right,
           Zone* zone) {
    head_ = new (zone) Constraint(left, kind, right, head_);
    limit_count_++;
  }

  void Merge(const VariableLimits* other) {
    // Change the current condition list to a longest common tail
    // of this condition list and the other list. (The common tail
    // should correspond to the list from the common dominator.)

    // First, we throw away the prefix of the longer list, so that
    // we have lists of the same length.
    size_t other_size = other->limit_count_;
    const Constraint* other_limit = other->head_;
    while (other_size > limit_count_) {
      other_limit = other_limit->next();
      other_size--;
    }
    while (limit_count_ > other_size) {
      head_ = head_->next();
      limit_count_--;
    }

    // Then we go through both lists in lock-step until we find
    // the common tail.
    while (head_ != other_limit) {
      DCHECK(limit_count_ > 0);
      limit_count_--;
      other_limit = other_limit->next();
      head_ = head_->next();
    }
  }

  const Constraint* head() const { return head_; }

 private:
  VariableLimits() {}
  explicit VariableLimits(const VariableLimits* other)
      : head_(other->head_), limit_count_(other->limit_count_) {}

  const Constraint* head_ = nullptr;
  size_t limit_count_ = 0;
};

void InductionVariable::AddUpperBound(Node* bound,
                                      InductionVariable::ConstraintKind kind,
                                      Zone* graph_zone) {
  if (FLAG_trace_turbo_loop) {
    OFStream os(stdout);
    os << "New upper bound for " << phi()->id() << " (loop "
       << NodeProperties::GetControlInput(phi())->id() << "): " << *bound
       << std::endl;
  }
  upper_bounds_.push_back(Bound(bound, kind));
}

void InductionVariable::AddLowerBound(Node* bound,
                                      InductionVariable::ConstraintKind kind,
                                      Zone* graph_zone) {
  if (FLAG_trace_turbo_loop) {
    OFStream os(stdout);
    os << "New lower bound for " << phi()->id() << " (loop "
       << NodeProperties::GetControlInput(phi())->id() << "): " << *bound;
  }
  lower_bounds_.push_back(Bound(bound, kind));
}

void LoopVariableOptimizer::VisitBackedge(Node* from, Node* loop) {
  if (loop->op()->ControlInputCount() != 2) return;

  // Go through the constraints, and update the induction variables in
  // this loop if they are involved in the constraint.
  const VariableLimits* limits = limits_[from->id()];
  for (const Constraint* constraint = limits->head(); constraint != nullptr;
       constraint = constraint->next()) {
    if (constraint->left()->opcode() == IrOpcode::kPhi &&
        NodeProperties::GetControlInput(constraint->left()) == loop) {
      auto var = induction_vars_.find(constraint->left()->id());
      if (var != induction_vars_.end()) {
        var->second->AddUpperBound(constraint->right(), constraint->kind(),
                                   graph()->zone());
      }
    }
    if (constraint->right()->opcode() == IrOpcode::kPhi &&
        NodeProperties::GetControlInput(constraint->right()) == loop) {
      auto var = induction_vars_.find(constraint->right()->id());
      if (var != induction_vars_.end()) {
        var->second->AddUpperBound(constraint->left(), constraint->kind(),
                                   graph()->zone());
      }
    }
  }
}

void LoopVariableOptimizer::VisitNode(Node* node) {
  switch (node->opcode()) {
    case IrOpcode::kMerge:
      return VisitMerge(node);
    case IrOpcode::kLoop:
      return VisitLoop(node);
    case IrOpcode::kIfFalse:
      return VisitIf(node, false);
    case IrOpcode::kIfTrue:
      return VisitIf(node, true);
    case IrOpcode::kStart:
      return VisitStart(node);
    case IrOpcode::kLoopExit:
      return VisitLoopExit(node);
    default:
      return VisitOtherControl(node);
  }
}

void LoopVariableOptimizer::VisitMerge(Node* node) {
  // Merge the limits of all incoming edges.
  VariableLimits* merged = limits_[node->InputAt(0)->id()]->Copy(zone());
  for (int i = 1; i < node->InputCount(); i++) {
    merged->Merge(limits_[node->InputAt(0)->id()]);
  }
  limits_[node->id()] = merged;
}

void LoopVariableOptimizer::VisitLoop(Node* node) {
  DetectInductionVariables(node);
  // Conservatively take the limits from the loop entry here.
  return TakeConditionsFromFirstControl(node);
}

void LoopVariableOptimizer::VisitIf(Node* node, bool polarity) {
  Node* branch = node->InputAt(0);
  Node* cond = branch->InputAt(0);
  VariableLimits* limits = limits_[branch->id()]->Copy(zone());
  // Normalize to less than comparison.
  switch (cond->opcode()) {
    case IrOpcode::kJSLessThan:
      AddCmpToLimits(limits, cond, InductionVariable::kStrict, polarity);
      break;
    case IrOpcode::kJSGreaterThan:
      AddCmpToLimits(limits, cond, InductionVariable::kNonStrict, !polarity);
      break;
    case IrOpcode::kJSLessThanOrEqual:
      AddCmpToLimits(limits, cond, InductionVariable::kNonStrict, polarity);
      break;
    case IrOpcode::kJSGreaterThanOrEqual:
      AddCmpToLimits(limits, cond, InductionVariable::kStrict, !polarity);
      break;
    default:
      break;
  }
  limits_[node->id()] = limits;
}

void LoopVariableOptimizer::AddCmpToLimits(
    VariableLimits* limits, Node* node, InductionVariable::ConstraintKind kind,
    bool polarity) {
  Node* left = node->InputAt(0);
  Node* right = node->InputAt(1);
  if (FindInductionVariable(left) || FindInductionVariable(right)) {
    if (polarity) {
      limits->Add(left, kind, right, zone());
    } else {
      kind = (kind == InductionVariable::kStrict)
                 ? InductionVariable::kNonStrict
                 : InductionVariable::kStrict;
      limits->Add(right, kind, left, zone());
    }
  }
}

void LoopVariableOptimizer::VisitStart(Node* node) {
  limits_[node->id()] = VariableLimits::Empty(zone());
}

void LoopVariableOptimizer::VisitLoopExit(Node* node) {
  return TakeConditionsFromFirstControl(node);
}

void LoopVariableOptimizer::VisitOtherControl(Node* node) {
  DCHECK_EQ(1, node->op()->ControlInputCount());
  return TakeConditionsFromFirstControl(node);
}

void LoopVariableOptimizer::TakeConditionsFromFirstControl(Node* node) {
  const VariableLimits* limits =
      limits_[NodeProperties::GetControlInput(node, 0)->id()];
  DCHECK_NOT_NULL(limits);
  limits_[node->id()] = limits;
}

const InductionVariable* LoopVariableOptimizer::FindInductionVariable(
    Node* node) {
  auto var = induction_vars_.find(node->id());
  if (var != induction_vars_.end()) {
    return var->second;
  }
  return nullptr;
}

InductionVariable* LoopVariableOptimizer::TryGetInductionVariable(Node* phi) {
  DCHECK_EQ(2, phi->op()->ValueInputCount());
  DCHECK_EQ(IrOpcode::kLoop, NodeProperties::GetControlInput(phi)->opcode());
  Node* initial = phi->InputAt(0);
  Node* arith = phi->InputAt(1);
  // TODO(jarin) Support subtraction.
  if (arith->opcode() != IrOpcode::kJSAdd) {
    return nullptr;
  }
  // TODO(jarin) Support both sides.
  if (arith->InputAt(0) != phi) {
    if (arith->InputAt(0)->opcode() != IrOpcode::kJSToNumber ||
        arith->InputAt(0)->InputAt(0) != phi) {
      return nullptr;
    }
  }
  Node* incr = arith->InputAt(1);
  return new (zone()) InductionVariable(phi, arith, incr, initial, zone());
}

void LoopVariableOptimizer::DetectInductionVariables(Node* loop) {
  if (loop->op()->ControlInputCount() != 2) return;
  TRACE("Loop variables for loop %i:", loop->id());
  for (Edge edge : loop->use_edges()) {
    if (NodeProperties::IsControlEdge(edge) &&
        edge.from()->opcode() == IrOpcode::kPhi) {
      Node* phi = edge.from();
      InductionVariable* induction_var = TryGetInductionVariable(phi);
      if (induction_var) {
        induction_vars_[phi->id()] = induction_var;
        TRACE(" %i", induction_var->phi()->id());
      }
    }
  }
  TRACE("\n");
}

void LoopVariableOptimizer::ChangeToInductionVariablePhis() {
  for (auto entry : induction_vars_) {
    // It only make sense to analyze the induction variables if
    // there is a bound.
    InductionVariable* induction_var = entry.second;
    DCHECK_EQ(MachineRepresentation::kTagged,
              PhiRepresentationOf(induction_var->phi()->op()));
    if (induction_var->upper_bounds().size() == 0 &&
        induction_var->lower_bounds().size() == 0) {
      continue;
    }
    // Insert the increment value to the value inputs.
    induction_var->phi()->InsertInput(graph()->zone(),
                                      induction_var->phi()->InputCount() - 1,
                                      induction_var->increment());
    // Insert the bound inputs to the value inputs.
    for (auto bound : induction_var->lower_bounds()) {
      induction_var->phi()->InsertInput(
          graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
    }
    for (auto bound : induction_var->upper_bounds()) {
      induction_var->phi()->InsertInput(
          graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
    }
    NodeProperties::ChangeOp(
        induction_var->phi(),
        common()->InductionVariablePhi(induction_var->phi()->InputCount() - 1));
  }
}

void LoopVariableOptimizer::ChangeFromInductionVariablePhis() {
  for (auto entry : induction_vars_) {
    InductionVariable* induction_var = entry.second;
    if (induction_var->phi()->opcode() == IrOpcode::kInductionVariablePhi) {
      int value_count = 2;
      Node* control = NodeProperties::GetControlInput(induction_var->phi());
      DCHECK_EQ(value_count, control->op()->ControlInputCount());
      induction_var->phi()->TrimInputCount(value_count + 1);
      induction_var->phi()->ReplaceInput(value_count, control);
      NodeProperties::ChangeOp(
          induction_var->phi(),
          common()->Phi(MachineRepresentation::kTagged, value_count));
    }
  }
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8