runtime-profiler.cc 15.4 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "runtime-profiler.h"

#include "assembler.h"
#include "code-stubs.h"
#include "compilation-cache.h"
#include "deoptimizer.h"
#include "execution.h"
#include "global-handles.h"
38
#include "mark-compact.h"
39
#include "platform.h"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include "scopeinfo.h"

namespace v8 {
namespace internal {


class PendingListNode : public Malloced {
 public:
  explicit PendingListNode(JSFunction* function);
  ~PendingListNode() { Destroy(); }

  PendingListNode* next() const { return next_; }
  void set_next(PendingListNode* node) { next_ = node; }
  Handle<JSFunction> function() { return Handle<JSFunction>::cast(function_); }

  // If the function is garbage collected before we've had the chance
  // to optimize it the weak handle will be null.
  bool IsValid() { return !function_.is_null(); }

  // Returns the number of microseconds this node has been pending.
  int Delay() const { return static_cast<int>(OS::Ticks() - start_); }

 private:
  void Destroy();
  static void WeakCallback(v8::Persistent<v8::Value> object, void* data);

  PendingListNode* next_;
  Handle<Object> function_;  // Weak handle.
  int64_t start_;
};


// Optimization sampler constants.
static const int kSamplerFrameCount = 2;
static const int kSamplerFrameWeight[kSamplerFrameCount] = { 2, 1 };

76
static const int kSamplerTicksBetweenThresholdAdjustment = 32;
77 78 79 80 81 82 83 84 85 86 87 88 89

static const int kSamplerThresholdInit = 3;
static const int kSamplerThresholdMin = 1;
static const int kSamplerThresholdDelta = 1;

static const int kSamplerThresholdSizeFactorInit = 3;
static const int kSamplerThresholdSizeFactorMin = 1;
static const int kSamplerThresholdSizeFactorDelta = 1;

static const int kSizeLimit = 1500;


PendingListNode::PendingListNode(JSFunction* function) : next_(NULL) {
90 91
  GlobalHandles* global_handles = Isolate::Current()->global_handles();
  function_ = global_handles->Create(function);
92
  start_ = OS::Ticks();
93
  global_handles->MakeWeak(function_.location(), this, &WeakCallback);
94 95 96 97 98
}


void PendingListNode::Destroy() {
  if (!IsValid()) return;
99 100
  GlobalHandles* global_handles = Isolate::Current()->global_handles();
  global_handles->Destroy(function_.location());
101 102 103 104 105 106 107 108 109
  function_= Handle<Object>::null();
}


void PendingListNode::WeakCallback(v8::Persistent<v8::Value>, void* data) {
  reinterpret_cast<PendingListNode*>(data)->Destroy();
}


110 111 112 113 114 115 116
Atomic32 RuntimeProfiler::state_ = 0;
// TODO(isolates): Create the semaphore lazily and clean it up when no
// longer required.
#ifdef ENABLE_LOGGING_AND_PROFILING
Semaphore* RuntimeProfiler::semaphore_ = OS::CreateSemaphore(0);
#endif

117 118 119 120 121
#ifdef DEBUG
bool RuntimeProfiler::has_been_globally_setup_ = false;
#endif
bool RuntimeProfiler::enabled_ = false;

122 123 124 125 126 127 128 129 130 131

RuntimeProfiler::RuntimeProfiler(Isolate* isolate)
    : isolate_(isolate),
      sampler_threshold_(kSamplerThresholdInit),
      sampler_threshold_size_factor_(kSamplerThresholdSizeFactorInit),
      sampler_ticks_until_threshold_adjustment_(
        kSamplerTicksBetweenThresholdAdjustment),
      js_ratio_(0),
      sampler_window_position_(0),
      optimize_soon_list_(NULL),
132 133 134 135 136
      state_window_position_(0),
      state_window_ticks_(0) {
  state_counts_[IN_NON_JS_STATE] = kStateWindowSize;
  state_counts_[IN_JS_STATE] = 0;
  STATIC_ASSERT(IN_NON_JS_STATE == 0);
137 138 139 140 141
  memset(state_window_, 0, sizeof(state_window_));
  ClearSampleBuffer();
}


142 143 144 145 146 147
void RuntimeProfiler::GlobalSetup() {
  ASSERT(!has_been_globally_setup_);
  enabled_ = V8::UseCrankshaft() && FLAG_opt;
#ifdef DEBUG
  has_been_globally_setup_ = true;
#endif
148 149 150 151
}


void RuntimeProfiler::Optimize(JSFunction* function, bool eager, int delay) {
152
  ASSERT(function->IsOptimizable());
153 154 155
  if (FLAG_trace_opt) {
    PrintF("[marking (%s) ", eager ? "eagerly" : "lazily");
    function->PrintName();
156
    PrintF(" 0x%" V8PRIxPTR, reinterpret_cast<intptr_t>(function->address()));
157 158 159 160 161 162 163 164 165 166 167 168
    PrintF(" for recompilation");
    if (delay > 0) {
      PrintF(" (delayed %0.3f ms)", static_cast<double>(delay) / 1000);
    }
    PrintF("]\n");
  }

  // The next call to the function will trigger optimization.
  function->MarkForLazyRecompilation();
}


169
void RuntimeProfiler::AttemptOnStackReplacement(JSFunction* function) {
170 171 172
  // See AlwaysFullCompiler (in compiler.cc) comment on why we need
  // Debug::has_break_points().
  ASSERT(function->IsMarkedForLazyRecompilation());
173
  if (!FLAG_use_osr ||
174
      isolate_->DebuggerHasBreakPoints() ||
175
      function->IsBuiltin()) {
176 177 178 179
    return;
  }

  SharedFunctionInfo* shared = function->shared();
180 181 182 183
  // If the code is not optimizable or references context slots, don't try OSR.
  if (!shared->code()->optimizable() || !shared->allows_lazy_compilation()) {
    return;
  }
184 185 186 187

  // We are not prepared to do OSR for a function that already has an
  // allocated arguments object.  The optimized code would bypass it for
  // arguments accesses, which is unsound.  Don't try OSR.
188
  if (shared->uses_arguments()) return;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

  // We're using on-stack replacement: patch the unoptimized code so that
  // any back edge in any unoptimized frame will trigger on-stack
  // replacement for that frame.
  if (FLAG_trace_osr) {
    PrintF("[patching stack checks in ");
    function->PrintName();
    PrintF(" for on-stack replacement]\n");
  }

  // Get the stack check stub code object to match against.  We aren't
  // prepared to generate it, but we don't expect to have to.
  StackCheckStub check_stub;
  Object* check_code;
  MaybeObject* maybe_check_code = check_stub.TryGetCode();
  if (maybe_check_code->ToObject(&check_code)) {
205
    Code* replacement_code =
206
        isolate_->builtins()->builtin(Builtins::kOnStackReplacement);
207
    Code* unoptimized_code = shared->code();
208 209 210
    Deoptimizer::PatchStackCheckCode(unoptimized_code,
                                     Code::cast(check_code),
                                     replacement_code);
211 212 213 214
  }
}


215 216 217
void RuntimeProfiler::ClearSampleBuffer() {
  memset(sampler_window_, 0, sizeof(sampler_window_));
  memset(sampler_window_weight_, 0, sizeof(sampler_window_weight_));
218 219 220
}


221
int RuntimeProfiler::LookupSample(JSFunction* function) {
222 223
  int weight = 0;
  for (int i = 0; i < kSamplerWindowSize; i++) {
224
    Object* sample = sampler_window_[i];
225 226
    if (sample != NULL) {
      if (function == sample) {
227
        weight += sampler_window_weight_[i];
228 229 230 231 232 233 234
      }
    }
  }
  return weight;
}


235
void RuntimeProfiler::AddSample(JSFunction* function, int weight) {
236
  ASSERT(IsPowerOf2(kSamplerWindowSize));
237 238 239
  sampler_window_[sampler_window_position_] = function;
  sampler_window_weight_[sampler_window_position_] = weight;
  sampler_window_position_ = (sampler_window_position_ + 1) &
240 241 242 243 244
      (kSamplerWindowSize - 1);
}


void RuntimeProfiler::OptimizeNow() {
245 246
  HandleScope scope(isolate_);
  PendingListNode* current = optimize_soon_list_;
247 248 249 250 251
  while (current != NULL) {
    PendingListNode* next = current->next();
    if (current->IsValid()) {
      Handle<JSFunction> function = current->function();
      int delay = current->Delay();
252
      if (function->IsOptimizable()) {
253 254 255 256 257 258
        Optimize(*function, true, delay);
      }
    }
    delete current;
    current = next;
  }
259
  optimize_soon_list_ = NULL;
260 261 262 263 264

  // Run through the JavaScript frames and collect them. If we already
  // have a sample of the function, we mark it for optimizations
  // (eagerly or lazily).
  JSFunction* samples[kSamplerFrameCount];
265 266
  int sample_count = 0;
  int frame_count = 0;
267
  for (JavaScriptFrameIterator it(isolate_);
268
       frame_count++ < kSamplerFrameCount && !it.done();
269 270 271
       it.Advance()) {
    JavaScriptFrame* frame = it.frame();
    JSFunction* function = JSFunction::cast(frame->function());
272 273 274

    // Adjust threshold each time we have processed
    // a certain number of ticks.
275 276 277
    if (sampler_ticks_until_threshold_adjustment_ > 0) {
      sampler_ticks_until_threshold_adjustment_--;
      if (sampler_ticks_until_threshold_adjustment_ <= 0) {
278 279
        // If the threshold is not already at the minimum
        // modify and reset the ticks until next adjustment.
280 281 282
        if (sampler_threshold_ > kSamplerThresholdMin) {
          sampler_threshold_ -= kSamplerThresholdDelta;
          sampler_ticks_until_threshold_adjustment_ =
283 284 285
              kSamplerTicksBetweenThresholdAdjustment;
        }
      }
286 287 288 289 290 291 292 293
    }

    if (function->IsMarkedForLazyRecompilation()) {
      Code* unoptimized = function->shared()->code();
      int nesting = unoptimized->allow_osr_at_loop_nesting_level();
      if (nesting == 0) AttemptOnStackReplacement(function);
      int new_nesting = Min(nesting + 1, Code::kMaxLoopNestingMarker);
      unoptimized->set_allow_osr_at_loop_nesting_level(new_nesting);
294 295 296
    }

    // Do not record non-optimizable functions.
297
    if (!function->IsOptimizable()) continue;
298
    samples[sample_count++] = function;
299 300 301

    int function_size = function->shared()->SourceSize();
    int threshold_size_factor = (function_size > kSizeLimit)
302
        ? sampler_threshold_size_factor_
303 304
        : 1;

305 306
    int threshold = sampler_threshold_ * threshold_size_factor;
    int current_js_ratio = NoBarrier_Load(&js_ratio_);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    // Adjust threshold depending on the ratio of time spent
    // in JS code.
    if (current_js_ratio < 20) {
      // If we spend less than 20% of the time in JS code,
      // do not optimize.
      continue;
    } else if (current_js_ratio < 75) {
      // Below 75% of time spent in JS code, only optimize very
      // frequently used functions.
      threshold *= 3;
    }

    if (LookupSample(function) >= threshold) {
      Optimize(function, false, 0);
322 323
      isolate_->compilation_cache()->MarkForEagerOptimizing(
          Handle<JSFunction>(function));
324 325 326 327 328 329
    }
  }

  // Add the collected functions as samples. It's important not to do
  // this as part of collecting them because this will interfere with
  // the sample lookup in case of recursive functions.
330
  for (int i = 0; i < sample_count; i++) {
331 332 333 334 335 336
    AddSample(samples[i], kSamplerFrameWeight[i]);
  }
}


void RuntimeProfiler::OptimizeSoon(JSFunction* function) {
337
  if (!function->IsOptimizable()) return;
338
  PendingListNode* node = new PendingListNode(function);
339 340
  node->set_next(optimize_soon_list_);
  optimize_soon_list_ = node;
341 342 343
}


344
#ifdef ENABLE_LOGGING_AND_PROFILING
345 346 347 348 349
void RuntimeProfiler::UpdateStateRatio(SamplerState current_state) {
  SamplerState old_state = state_window_[state_window_position_];
  state_counts_[old_state]--;
  state_window_[state_window_position_] = current_state;
  state_counts_[current_state]++;
350
  ASSERT(IsPowerOf2(kStateWindowSize));
351
  state_window_position_ = (state_window_position_ + 1) &
352
      (kStateWindowSize - 1);
353 354 355 356
  // Note: to calculate correct ratio we have to track how many valid
  // ticks are actually in the state window, because on profiler
  // startup this number can be less than the window size.
  state_window_ticks_ = Min(kStateWindowSize, state_window_ticks_ + 1);
357
  NoBarrier_Store(&js_ratio_, state_counts_[IN_JS_STATE] * 100 /
358
                  state_window_ticks_);
359
}
360
#endif
361 362


363
void RuntimeProfiler::NotifyTick() {
364
#ifdef ENABLE_LOGGING_AND_PROFILING
365
  // Record state sample.
366
  SamplerState state = IsSomeIsolateInJS()
367 368 369
      ? IN_JS_STATE
      : IN_NON_JS_STATE;
  UpdateStateRatio(state);
370
  isolate_->stack_guard()->RequestRuntimeProfilerTick();
371
#endif
372 373 374 375
}


void RuntimeProfiler::Setup() {
376
  ASSERT(has_been_globally_setup_);
377 378 379
  ClearSampleBuffer();
  // If the ticker hasn't already started, make sure to do so to get
  // the ticks for the runtime profiler.
380
  if (IsEnabled()) isolate_->logger()->EnsureTickerStarted();
381 382 383 384
}


void RuntimeProfiler::Reset() {
385 386 387
  sampler_threshold_ = kSamplerThresholdInit;
  sampler_threshold_size_factor_ = kSamplerThresholdSizeFactorInit;
  sampler_ticks_until_threshold_adjustment_ =
388
      kSamplerTicksBetweenThresholdAdjustment;
389 390 391 392 393 394 395 396
}


void RuntimeProfiler::TearDown() {
  // Nothing to do.
}


397 398
int RuntimeProfiler::SamplerWindowSize() {
  return kSamplerWindowSize;
399 400 401
}


402 403 404
// Update the pointers in the sampler window after a GC.
void RuntimeProfiler::UpdateSamplesAfterScavenge() {
  for (int i = 0; i < kSamplerWindowSize; i++) {
405 406
    Object* function = sampler_window_[i];
    if (function != NULL && isolate_->heap()->InNewSpace(function)) {
407 408
      MapWord map_word = HeapObject::cast(function)->map_word();
      if (map_word.IsForwardingAddress()) {
409
        sampler_window_[i] = map_word.ToForwardingAddress();
410
      } else {
411
        sampler_window_[i] = NULL;
412 413 414 415 416 417
      }
    }
  }
}


418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
void RuntimeProfiler::HandleWakeUp(Isolate* isolate) {
#ifdef ENABLE_LOGGING_AND_PROFILING
  // The profiler thread must still be waiting.
  ASSERT(NoBarrier_Load(&state_) >= 0);
  // In IsolateEnteredJS we have already incremented the counter and
  // undid the decrement done by the profiler thread. Increment again
  // to get the right count of active isolates.
  NoBarrier_AtomicIncrement(&state_, 1);
  semaphore_->Signal();
  isolate->ResetEagerOptimizingData();
#endif
}


bool RuntimeProfiler::IsSomeIsolateInJS() {
  return NoBarrier_Load(&state_) > 0;
}


bool RuntimeProfiler::WaitForSomeIsolateToEnterJS() {
#ifdef ENABLE_LOGGING_AND_PROFILING
  Atomic32 old_state = NoBarrier_CompareAndSwap(&state_, 0, -1);
  ASSERT(old_state >= -1);
  if (old_state != 0) return false;
  semaphore_->Wait();
#endif
  return true;
}


void RuntimeProfiler::WakeUpRuntimeProfilerThreadBeforeShutdown() {
#ifdef ENABLE_LOGGING_AND_PROFILING
  semaphore_->Signal();
#endif
}


455 456
void RuntimeProfiler::RemoveDeadSamples() {
  for (int i = 0; i < kSamplerWindowSize; i++) {
457
    Object* function = sampler_window_[i];
458
    if (function != NULL && !HeapObject::cast(function)->IsMarked()) {
459
      sampler_window_[i] = NULL;
460 461 462 463 464 465 466
    }
  }
}


void RuntimeProfiler::UpdateSamplesAfterCompact(ObjectVisitor* visitor) {
  for (int i = 0; i < kSamplerWindowSize; i++) {
467
    visitor->VisitPointer(&sampler_window_[i]);
468
  }
469 470 471 472
}


bool RuntimeProfilerRateLimiter::SuspendIfNecessary() {
473
#ifdef ENABLE_LOGGING_AND_PROFILING
474
  static const int kNonJSTicksThreshold = 100;
475 476 477 478 479
  if (RuntimeProfiler::IsSomeIsolateInJS()) {
    non_js_ticks_ = 0;
  } else {
    if (non_js_ticks_ < kNonJSTicksThreshold) {
      ++non_js_ticks_;
480
    } else {
481
      return RuntimeProfiler::WaitForSomeIsolateToEnterJS();
482 483
    }
  }
484
#endif
485 486 487 488 489
  return false;
}


} }  // namespace v8::internal