simulator-ppc.h 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


// Declares a Simulator for PPC instructions if we are not generating a native
// PPC binary. This Simulator allows us to run and debug PPC code generation on
// regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a PPC HW platform.

#ifndef V8_PPC_SIMULATOR_PPC_H_
#define V8_PPC_SIMULATOR_PPC_H_

#include "src/allocation.h"

#if !defined(USE_SIMULATOR)
// Running without a simulator on a native ppc platform.

namespace v8 {
namespace internal {

// When running without a simulator we call the entry directly.
25
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
26 27 28
  (entry(p0, p1, p2, p3, p4))

typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
29
                                  int, Address, int, Isolate*);
30 31 32

// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type ppc_regexp_matcher.
33 34
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
                                   p7, p8)                                     \
35
  (FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, p8))
36 37 38 39 40 41 42 43 44 45 46 47

// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on ppc uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
                                            uintptr_t c_limit) {
    USE(isolate);
    return c_limit;
  }

48 49 50
  static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
                                            uintptr_t try_catch_address) {
    USE(isolate);
51 52 53
    return try_catch_address;
  }

54 55 56
  static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
    USE(isolate);
  }
57
};
58 59
}  // namespace internal
}  // namespace v8
60 61 62 63 64

#else  // !defined(USE_SIMULATOR)
// Running with a simulator.

#include "src/assembler.h"
lpy's avatar
lpy committed
65
#include "src/base/hashmap.h"
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#include "src/ppc/constants-ppc.h"

namespace v8 {
namespace internal {

class CachePage {
 public:
  static const int LINE_VALID = 0;
  static const int LINE_INVALID = 1;

  static const int kPageShift = 12;
  static const int kPageSize = 1 << kPageShift;
  static const int kPageMask = kPageSize - 1;
  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
  static const int kLineLength = 1 << kLineShift;
  static const int kLineMask = kLineLength - 1;

  CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }

  char* ValidityByte(int offset) {
    return &validity_map_[offset >> kLineShift];
  }

  char* CachedData(int offset) { return &data_[offset]; }

 private:
  char data_[kPageSize];  // The cached data.
  static const int kValidityMapSize = kPageSize >> kLineShift;
  char validity_map_[kValidityMapSize];  // One byte per line.
};


class Simulator {
 public:
  friend class PPCDebugger;
  enum Register {
    no_reg = -1,
    r0 = 0,
    sp,
    r2,
    r3,
    r4,
    r5,
    r6,
    r7,
    r8,
    r9,
    r10,
    r11,
    r12,
    r13,
    r14,
    r15,
    r16,
    r17,
    r18,
    r19,
    r20,
    r21,
    r22,
    r23,
    r24,
    r25,
    r26,
    r27,
    r28,
    r29,
    r30,
    fp,
    kNumGPRs = 32,
    d0 = 0,
    d1,
    d2,
    d3,
    d4,
    d5,
    d6,
    d7,
    d8,
    d9,
    d10,
    d11,
    d12,
    d13,
    d14,
    d15,
    d16,
    d17,
    d18,
    d19,
    d20,
    d21,
    d22,
    d23,
    d24,
    d25,
    d26,
    d27,
    d28,
    d29,
    d30,
    d31,
    kNumFPRs = 32
  };

  explicit Simulator(Isolate* isolate);
  ~Simulator();

  // The currently executing Simulator instance. Potentially there can be one
  // for each native thread.
  static Simulator* current(v8::internal::Isolate* isolate);

  // Accessors for register state.
  void set_register(int reg, intptr_t value);
  intptr_t get_register(int reg) const;
  double get_double_from_register_pair(int reg);
  void set_d_register_from_double(int dreg, const double dbl) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
184 185 186 187 188 189 190 191 192 193 194 195 196
    *bit_cast<double*>(&fp_registers_[dreg]) = dbl;
  }
  double get_double_from_d_register(int dreg) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    return *bit_cast<double*>(&fp_registers_[dreg]);
  }
  void set_d_register(int dreg, int64_t value) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    fp_registers_[dreg] = value;
  }
  int64_t get_d_register(int dreg) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    return fp_registers_[dreg];
197 198 199 200 201 202
  }

  // Special case of set_register and get_register to access the raw PC value.
  void set_pc(intptr_t value);
  intptr_t get_pc() const;

203
  Address get_sp() const {
204 205 206 207
    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
  }

  // Accessor to the internal simulator stack area.
208
  uintptr_t StackLimit(uintptr_t c_limit) const;
209 210 211 212 213 214 215

  // Executes PPC instructions until the PC reaches end_sim_pc.
  void Execute();

  // Call on program start.
  static void Initialize(Isolate* isolate);

216
  static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first);
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  // V8 generally calls into generated JS code with 5 parameters and into
  // generated RegExp code with 7 parameters. This is a convenience function,
  // which sets up the simulator state and grabs the result on return.
  intptr_t Call(byte* entry, int argument_count, ...);
  // Alternative: call a 2-argument double function.
  void CallFP(byte* entry, double d0, double d1);
  int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
  double CallFPReturnsDouble(byte* entry, double d0, double d1);

  // Push an address onto the JS stack.
  uintptr_t PushAddress(uintptr_t address);

  // Pop an address from the JS stack.
  uintptr_t PopAddress();

  // Debugger input.
  void set_last_debugger_input(char* input);
  char* last_debugger_input() { return last_debugger_input_; }

  // ICache checking.
238 239
  static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
                          size_t size);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

  // Returns true if pc register contains one of the 'special_values' defined
  // below (bad_lr, end_sim_pc).
  bool has_bad_pc() const;

 private:
  enum special_values {
    // Known bad pc value to ensure that the simulator does not execute
    // without being properly setup.
    bad_lr = -1,
    // A pc value used to signal the simulator to stop execution.  Generally
    // the lr is set to this value on transition from native C code to
    // simulated execution, so that the simulator can "return" to the native
    // C code.
    end_sim_pc = -2
  };

257 258
  enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG };

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  // Unsupported instructions use Format to print an error and stop execution.
  void Format(Instruction* instr, const char* format);

  // Helper functions to set the conditional flags in the architecture state.
  bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
  bool BorrowFrom(int32_t left, int32_t right);
  bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
                    bool addition);

  // Helper functions to decode common "addressing" modes
  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
  int32_t GetImm(Instruction* instr, bool* carry_out);
  void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
                  intptr_t* start_address, intptr_t* end_address);
  void HandleRList(Instruction* instr, bool load);
  void HandleVList(Instruction* inst);
  void SoftwareInterrupt(Instruction* instr);

  // Stop helper functions.
  inline bool isStopInstruction(Instruction* instr);
  inline bool isWatchedStop(uint32_t bkpt_code);
  inline bool isEnabledStop(uint32_t bkpt_code);
  inline void EnableStop(uint32_t bkpt_code);
  inline void DisableStop(uint32_t bkpt_code);
  inline void IncreaseStopCounter(uint32_t bkpt_code);
  void PrintStopInfo(uint32_t code);

  // Read and write memory.
  inline uint8_t ReadBU(intptr_t addr);
288
  inline uint8_t ReadExBU(intptr_t addr);
289 290
  inline int8_t ReadB(intptr_t addr);
  inline void WriteB(intptr_t addr, uint8_t value);
291
  inline int WriteExB(intptr_t addr, uint8_t value);
292 293 294
  inline void WriteB(intptr_t addr, int8_t value);

  inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
295
  inline uint16_t ReadExHU(intptr_t addr, Instruction* instr);
296 297 298
  inline int16_t ReadH(intptr_t addr, Instruction* instr);
  // Note: Overloaded on the sign of the value.
  inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
299
  inline int WriteExH(intptr_t addr, uint16_t value, Instruction* instr);
300 301 302
  inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);

  inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
303
  inline uint32_t ReadExWU(intptr_t addr, Instruction* instr);
304 305
  inline int32_t ReadW(intptr_t addr, Instruction* instr);
  inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
306
  inline int WriteExW(intptr_t addr, uint32_t value, Instruction* instr);
307 308 309 310 311 312 313
  inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);

  intptr_t* ReadDW(intptr_t addr);
  void WriteDW(intptr_t addr, int64_t value);

  void Trace(Instruction* instr);
  void SetCR0(intptr_t result, bool setSO = false);
314
  void ExecuteBranchConditional(Instruction* instr, BCType type);
315
  void ExecuteExt1(Instruction* instr);
316 317
  bool ExecuteExt2_10bit_part1(Instruction* instr);
  bool ExecuteExt2_10bit_part2(Instruction* instr);
318
  bool ExecuteExt2_9bit_part1(Instruction* instr);
319 320
  bool ExecuteExt2_9bit_part2(Instruction* instr);
  void ExecuteExt2_5bit(Instruction* instr);
321
  void ExecuteExt2(Instruction* instr);
322
  void ExecuteExt3(Instruction* instr);
323 324 325 326
  void ExecuteExt4(Instruction* instr);
#if V8_TARGET_ARCH_PPC64
  void ExecuteExt5(Instruction* instr);
#endif
327
  void ExecuteExt6(Instruction* instr);
328 329
  void ExecuteGeneric(Instruction* instr);

330 331 332
  void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); }
  void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); }

333 334 335 336
  // Executes one instruction.
  void ExecuteInstruction(Instruction* instr);

  // ICache.
337 338 339 340 341 342
  static void CheckICache(base::CustomMatcherHashMap* i_cache,
                          Instruction* instr);
  static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
                           int size);
  static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
                                 void* page);
343

344
  // Runtime call support. Uses the isolate in a thread-safe way.
345
  static void* RedirectExternalReference(
346 347
      Isolate* isolate, void* external_function,
      v8::internal::ExternalReference::Type type);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

  // Handle arguments and return value for runtime FP functions.
  void GetFpArgs(double* x, double* y, intptr_t* z);
  void SetFpResult(const double& result);
  void TrashCallerSaveRegisters();

  void CallInternal(byte* entry);

  // Architecture state.
  // Saturating instructions require a Q flag to indicate saturation.
  // There is currently no way to read the CPSR directly, and thus read the Q
  // flag, so this is left unimplemented.
  intptr_t registers_[kNumGPRs];
  int32_t condition_reg_;
  int32_t fp_condition_reg_;
  intptr_t special_reg_lr_;
  intptr_t special_reg_pc_;
  intptr_t special_reg_ctr_;
  int32_t special_reg_xer_;

368
  int64_t fp_registers_[kNumFPRs];
369 370 371

  // Simulator support.
  char* stack_;
372
  static const size_t stack_protection_size_ = 256 * kPointerSize;
373 374 375 376 377 378 379
  bool pc_modified_;
  int icount_;

  // Debugger input.
  char* last_debugger_input_;

  // Icache simulation
380
  base::CustomMatcherHashMap* i_cache_;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

  // Registered breakpoints.
  Instruction* break_pc_;
  Instr break_instr_;

  v8::internal::Isolate* isolate_;

  // A stop is watched if its code is less than kNumOfWatchedStops.
  // Only watched stops support enabling/disabling and the counter feature.
  static const uint32_t kNumOfWatchedStops = 256;

  // Breakpoint is disabled if bit 31 is set.
  static const uint32_t kStopDisabledBit = 1 << 31;

  // A stop is enabled, meaning the simulator will stop when meeting the
  // instruction, if bit 31 of watched_stops_[code].count is unset.
  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
  // the breakpoint was hit or gone through.
  struct StopCountAndDesc {
    uint32_t count;
    char* desc;
  };
  StopCountAndDesc watched_stops_[kNumOfWatchedStops];
404

405
  // Synchronization primitives. See ARM DDI 0406C.b, A2.9.
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  enum class MonitorAccess {
    Open,
    Exclusive,
  };

  enum class TransactionSize {
    None = 0,
    Byte = 1,
    HalfWord = 2,
    Word = 4,
  };

  class LocalMonitor {
   public:
    LocalMonitor();

    // These functions manage the state machine for the local monitor, but do
    // not actually perform loads and stores. NotifyStoreExcl only returns
    // true if the exclusive store is allowed; the global monitor will still
    // have to be checked to see whether the memory should be updated.
    void NotifyLoad(int32_t addr);
    void NotifyLoadExcl(int32_t addr, TransactionSize size);
    void NotifyStore(int32_t addr);
    bool NotifyStoreExcl(int32_t addr, TransactionSize size);

   private:
    void Clear();

    MonitorAccess access_state_;
    int32_t tagged_addr_;
    TransactionSize size_;
  };

  class GlobalMonitor {
   public:
    GlobalMonitor();

    class Processor {
     public:
      Processor();

     private:
      friend class GlobalMonitor;
      // These functions manage the state machine for the global monitor, but do
      // not actually perform loads and stores.
      void Clear_Locked();
      void NotifyLoadExcl_Locked(int32_t addr);
      void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
      bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);

      MonitorAccess access_state_;
      int32_t tagged_addr_;
      Processor* next_;
      Processor* prev_;
    };

    // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
    base::Mutex mutex;

    void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
    void NotifyStore_Locked(int32_t addr, Processor* processor);
    bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);

    // Called when the simulator is destroyed.
    void RemoveProcessor(Processor* processor);

   private:
    bool IsProcessorInLinkedList_Locked(Processor* processor) const;
    void PrependProcessor_Locked(Processor* processor);

    Processor* head_;
  };

  LocalMonitor local_monitor_;
  GlobalMonitor::Processor global_monitor_processor_;
  static base::LazyInstance<GlobalMonitor>::type global_monitor_;
482 483 484 485 486
};


// When running with the simulator transition into simulated execution at this
// point.
487 488 489
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4)          \
  reinterpret_cast<Object*>(Simulator::current(isolate)->Call(           \
      FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \
490 491
      (intptr_t)p3, (intptr_t)p4))

492 493
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
                                   p7, p8)                                     \
494 495 496
  Simulator::current(isolate)->Call(                                           \
      entry, 9, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, (intptr_t)p3,        \
      (intptr_t)p4, (intptr_t)p5, (intptr_t)p6, (intptr_t)p7, (intptr_t)p8)
497 498

// The simulator has its own stack. Thus it has a different stack limit from
499 500 501
// the C-based native code.  The JS-based limit normally points near the end of
// the simulator stack.  When the C-based limit is exhausted we reflect that by
// lowering the JS-based limit as well, to make stack checks trigger.
502 503 504 505
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
                                            uintptr_t c_limit) {
506
    return Simulator::current(isolate)->StackLimit(c_limit);
507 508
  }

509 510 511
  static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
                                            uintptr_t try_catch_address) {
    Simulator* sim = Simulator::current(isolate);
512 513 514
    return sim->PushAddress(try_catch_address);
  }

515 516
  static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
    Simulator::current(isolate)->PopAddress();
517 518
  }
};
519 520
}  // namespace internal
}  // namespace v8
521 522 523

#endif  // !defined(USE_SIMULATOR)
#endif  // V8_PPC_SIMULATOR_PPC_H_