builtins-x64.cc 65.3 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28
#include "v8.h"
29 30 31

#if defined(V8_TARGET_ARCH_X64)

32
#include "codegen.h"
33 34
#include "deoptimizer.h"
#include "full-codegen.h"
35

36 37
namespace v8 {
namespace internal {
38

39

40 41
#define __ ACCESS_MASM(masm)

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

void Builtins::Generate_Adaptor(MacroAssembler* masm,
                                CFunctionId id,
                                BuiltinExtraArguments extra_args) {
  // ----------- S t a t e -------------
  //  -- rax                : number of arguments excluding receiver
  //  -- rdi                : called function (only guaranteed when
  //                          extra_args requires it)
  //  -- rsi                : context
  //  -- rsp[0]             : return address
  //  -- rsp[8]             : last argument
  //  -- ...
  //  -- rsp[8 * argc]      : first argument (argc == rax)
  //  -- rsp[8 * (argc +1)] : receiver
  // -----------------------------------

  // Insert extra arguments.
  int num_extra_args = 0;
  if (extra_args == NEEDS_CALLED_FUNCTION) {
    num_extra_args = 1;
    __ pop(kScratchRegister);  // Save return address.
    __ push(rdi);
    __ push(kScratchRegister);  // Restore return address.
  } else {
    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
  }

serya@chromium.org's avatar
serya@chromium.org committed
69
  // JumpToExternalReference expects rax to contain the number of arguments
70 71
  // including the receiver and the extra arguments.
  __ addq(rax, Immediate(num_extra_args + 1));
72
  __ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
73 74
}

75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
  __ movq(kScratchRegister,
          FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  __ movq(kScratchRegister,
          FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
  __ lea(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
  __ jmp(kScratchRegister);
}


void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
  GenerateTailCallToSharedCode(masm);
}


void Builtins::Generate_ParallelRecompile(MacroAssembler* masm) {
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Push a copy of the function onto the stack.
    __ push(rdi);
    // Push call kind information.
    __ push(rcx);

    __ push(rdi);  // Function is also the parameter to the runtime call.
    __ CallRuntime(Runtime::kParallelRecompile, 1);

    // Restore call kind information.
    __ pop(rcx);
    // Restore receiver.
    __ pop(rdi);

    // Tear down internal frame.
  }

  GenerateTailCallToSharedCode(masm);
}


115 116 117
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
                                           bool is_api_function,
                                           bool count_constructions) {
118 119 120 121
  // ----------- S t a t e -------------
  //  -- rax: number of arguments
  //  -- rdi: constructor function
  // -----------------------------------
122

123 124
  // Should never count constructions for api objects.
  ASSERT(!is_api_function || !count_constructions);
125

126 127 128
  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);
129

130 131 132
    // Store a smi-tagged arguments count on the stack.
    __ Integer32ToSmi(rax, rax);
    __ push(rax);
133

134 135
    // Push the function to invoke on the stack.
    __ push(rdi);
136

137 138 139 140 141
    // Try to allocate the object without transitioning into C code. If any of
    // the preconditions is not met, the code bails out to the runtime call.
    Label rt_call, allocated;
    if (FLAG_inline_new) {
      Label undo_allocation;
142

143
#ifdef ENABLE_DEBUGGER_SUPPORT
144 145 146 147 148
      ExternalReference debug_step_in_fp =
          ExternalReference::debug_step_in_fp_address(masm->isolate());
      __ movq(kScratchRegister, debug_step_in_fp);
      __ cmpq(Operand(kScratchRegister, 0), Immediate(0));
      __ j(not_equal, &rt_call);
149
#endif
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      // Verified that the constructor is a JSFunction.
      // Load the initial map and verify that it is in fact a map.
      // rdi: constructor
      __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
      // Will both indicate a NULL and a Smi
      ASSERT(kSmiTag == 0);
      __ JumpIfSmi(rax, &rt_call);
      // rdi: constructor
      // rax: initial map (if proven valid below)
      __ CmpObjectType(rax, MAP_TYPE, rbx);
      __ j(not_equal, &rt_call);

      // Check that the constructor is not constructing a JSFunction (see
      // comments in Runtime_NewObject in runtime.cc). In which case the
      // initial map's instance type would be JS_FUNCTION_TYPE.
      // rdi: constructor
      // rax: initial map
      __ CmpInstanceType(rax, JS_FUNCTION_TYPE);
      __ j(equal, &rt_call);
170

171 172 173 174 175 176 177
      if (count_constructions) {
        Label allocate;
        // Decrease generous allocation count.
        __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
        __ decb(FieldOperand(rcx,
                             SharedFunctionInfo::kConstructionCountOffset));
        __ j(not_zero, &allocate);
178

179 180
        __ push(rax);
        __ push(rdi);
181

182 183 184
        __ push(rdi);  // constructor
        // The call will replace the stub, so the countdown is only done once.
        __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
185

186 187
        __ pop(rdi);
        __ pop(rax);
188

189
        __ bind(&allocate);
190
      }
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
      // Now allocate the JSObject on the heap.
      __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
      __ shl(rdi, Immediate(kPointerSizeLog2));
      // rdi: size of new object
      __ AllocateInNewSpace(rdi,
                            rbx,
                            rdi,
                            no_reg,
                            &rt_call,
                            NO_ALLOCATION_FLAGS);
      // Allocated the JSObject, now initialize the fields.
      // rax: initial map
      // rbx: JSObject (not HeapObject tagged - the actual address).
      // rdi: start of next object
      __ movq(Operand(rbx, JSObject::kMapOffset), rax);
      __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
      __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
      __ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
      // Set extra fields in the newly allocated object.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
214 215 216 217 218 219 220 221 222 223 224 225
      __ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
      __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
      if (count_constructions) {
        __ movzxbq(rsi,
                   FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
        __ lea(rsi,
               Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
        // rsi: offset of first field after pre-allocated fields
        if (FLAG_debug_code) {
          __ cmpq(rsi, rdi);
          __ Assert(less_equal,
                    "Unexpected number of pre-allocated property fields.");
226
        }
227 228
        __ InitializeFieldsWithFiller(rcx, rsi, rdx);
        __ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
229
      }
230
      __ InitializeFieldsWithFiller(rcx, rdi, rdx);
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
      // Add the object tag to make the JSObject real, so that we can continue
      // and jump into the continuation code at any time from now on. Any
      // failures need to undo the allocation, so that the heap is in a
      // consistent state and verifiable.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
      __ or_(rbx, Immediate(kHeapObjectTag));

      // Check if a non-empty properties array is needed.
      // Allocate and initialize a FixedArray if it is.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
      // Calculate total properties described map.
      __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
      __ movzxbq(rcx,
                 FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
      __ addq(rdx, rcx);
      // Calculate unused properties past the end of the in-object properties.
      __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
      __ subq(rdx, rcx);
      // Done if no extra properties are to be allocated.
      __ j(zero, &allocated);
      __ Assert(positive, "Property allocation count failed.");

      // Scale the number of elements by pointer size and add the header for
      // FixedArrays to the start of the next object calculation from above.
      // rbx: JSObject
      // rdi: start of next object (will be start of FixedArray)
      // rdx: number of elements in properties array
      __ AllocateInNewSpace(FixedArray::kHeaderSize,
                            times_pointer_size,
                            rdx,
                            rdi,
                            rax,
                            no_reg,
                            &undo_allocation,
                            RESULT_CONTAINS_TOP);

      // Initialize the FixedArray.
      // rbx: JSObject
      // rdi: FixedArray
      // rdx: number of elements
      // rax: start of next object
      __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
      __ movq(Operand(rdi, HeapObject::kMapOffset), rcx);  // setup the map
      __ Integer32ToSmi(rdx, rdx);
      __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx);  // and length

      // Initialize the fields to undefined.
      // rbx: JSObject
      // rdi: FixedArray
      // rax: start of next object
      // rdx: number of elements
      { Label loop, entry;
        __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
        __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
        __ jmp(&entry);
        __ bind(&loop);
        __ movq(Operand(rcx, 0), rdx);
        __ addq(rcx, Immediate(kPointerSize));
        __ bind(&entry);
        __ cmpq(rcx, rax);
        __ j(below, &loop);
      }
298

299 300 301 302 303 304
      // Store the initialized FixedArray into the properties field of
      // the JSObject
      // rbx: JSObject
      // rdi: FixedArray
      __ or_(rdi, Immediate(kHeapObjectTag));  // add the heap tag
      __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
305 306


307 308 309
      // Continue with JSObject being successfully allocated
      // rbx: JSObject
      __ jmp(&allocated);
310

311 312 313 314 315 316 317
      // Undo the setting of the new top so that the heap is verifiable. For
      // example, the map's unused properties potentially do not match the
      // allocated objects unused properties.
      // rbx: JSObject (previous new top)
      __ bind(&undo_allocation);
      __ UndoAllocationInNewSpace(rbx);
    }
318

319 320 321 322 323 324 325 326
    // Allocate the new receiver object using the runtime call.
    // rdi: function (constructor)
    __ bind(&rt_call);
    // Must restore rdi (constructor) before calling runtime.
    __ movq(rdi, Operand(rsp, 0));
    __ push(rdi);
    __ CallRuntime(Runtime::kNewObject, 1);
    __ movq(rbx, rax);  // store result in rbx
327

328 329 330 331 332
    // New object allocated.
    // rbx: newly allocated object
    __ bind(&allocated);
    // Retrieve the function from the stack.
    __ pop(rdi);
333

334 335 336
    // Retrieve smi-tagged arguments count from the stack.
    __ movq(rax, Operand(rsp, 0));
    __ SmiToInteger32(rax, rax);
337

338 339 340 341 342
    // Push the allocated receiver to the stack. We need two copies
    // because we may have to return the original one and the calling
    // conventions dictate that the called function pops the receiver.
    __ push(rbx);
    __ push(rbx);
343

344
    // Set up pointer to last argument.
345
    __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    // Copy arguments and receiver to the expression stack.
    Label loop, entry;
    __ movq(rcx, rax);
    __ jmp(&entry);
    __ bind(&loop);
    __ push(Operand(rbx, rcx, times_pointer_size, 0));
    __ bind(&entry);
    __ decq(rcx);
    __ j(greater_equal, &loop);

    // Call the function.
    if (is_api_function) {
      __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
      Handle<Code> code =
          masm->isolate()->builtins()->HandleApiCallConstruct();
      ParameterCount expected(0);
      __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
                    CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
    } else {
      ParameterCount actual(rax);
      __ InvokeFunction(rdi, actual, CALL_FUNCTION,
                        NullCallWrapper(), CALL_AS_METHOD);
    }
370

371
    // Store offset of return address for deoptimizer.
372
    if (!is_api_function && !count_constructions) {
373 374 375
      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    }

376 377
    // Restore context from the frame.
    __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
378

379 380 381 382 383 384
    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
    Label use_receiver, exit;
    // If the result is a smi, it is *not* an object in the ECMA sense.
    __ JumpIfSmi(rax, &use_receiver);
385

386 387 388 389 390
    // If the type of the result (stored in its map) is less than
    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
    __ j(above_equal, &exit);
391

392 393 394 395
    // Symbols are "objects".
    __ CmpInstanceType(rcx, SYMBOL_TYPE);
    __ j(equal, &exit);

396 397 398 399
    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
    __ movq(rax, Operand(rsp, 0));
400

401 402 403 404 405 406
    // Restore the arguments count and leave the construct frame.
    __ bind(&exit);
    __ movq(rbx, Operand(rsp, kPointerSize));  // Get arguments count.

    // Leave construct frame.
  }
407

408 409 410 411 412
  // Remove caller arguments from the stack and return.
  __ pop(rcx);
  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
  __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
  __ push(rcx);
413 414
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->constructed_objects(), 1);
415
  __ ret(0);
416 417
}

418

419 420 421
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, true);
}
422

423

424 425 426
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, false);
}
427 428


429 430 431
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, true, false);
}
432 433


434 435 436 437 438 439 440 441 442
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Expects five C++ function parameters.
  // - Address entry (ignored)
  // - JSFunction* function (
  // - Object* receiver
  // - int argc
  // - Object*** argv
  // (see Handle::Invoke in execution.cc).
443

444 445 446 447 448 449
  // Open a C++ scope for the FrameScope.
  {
    // Platform specific argument handling. After this, the stack contains
    // an internal frame and the pushed function and receiver, and
    // register rax and rbx holds the argument count and argument array,
    // while rdi holds the function pointer and rsi the context.
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
#ifdef _WIN64
    // MSVC parameters in:
    // rcx : entry (ignored)
    // rdx : function
    // r8 : receiver
    // r9 : argc
    // [rsp+0x20] : argv

    // Clear the context before we push it when entering the internal frame.
    __ Set(rsi, 0);
    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Load the function context into rsi.
    __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));

    // Push the function and the receiver onto the stack.
    __ push(rdx);
    __ push(r8);

    // Load the number of arguments and setup pointer to the arguments.
    __ movq(rax, r9);
    // Load the previous frame pointer to access C argument on stack
    __ movq(kScratchRegister, Operand(rbp, 0));
    __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
    // Load the function pointer into rdi.
    __ movq(rdi, rdx);
478
#else  // _WIN64
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    // GCC parameters in:
    // rdi : entry (ignored)
    // rsi : function
    // rdx : receiver
    // rcx : argc
    // r8  : argv

    __ movq(rdi, rsi);
    // rdi : function

    // Clear the context before we push it when entering the internal frame.
    __ Set(rsi, 0);
    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Push the function and receiver and setup the context.
    __ push(rdi);
    __ push(rdx);
    __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
498

499 500 501
    // Load the number of arguments and setup pointer to the arguments.
    __ movq(rax, rcx);
    __ movq(rbx, r8);
502 503
#endif  // _WIN64

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    // Current stack contents:
    // [rsp + 2 * kPointerSize ... ]: Internal frame
    // [rsp + kPointerSize]         : function
    // [rsp]                        : receiver
    // Current register contents:
    // rax : argc
    // rbx : argv
    // rsi : context
    // rdi : function

    // Copy arguments to the stack in a loop.
    // Register rbx points to array of pointers to handle locations.
    // Push the values of these handles.
    Label loop, entry;
    __ Set(rcx, 0);  // Set loop variable to 0.
    __ jmp(&entry);
    __ bind(&loop);
    __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
    __ push(Operand(kScratchRegister, 0));  // dereference handle
    __ addq(rcx, Immediate(1));
    __ bind(&entry);
    __ cmpq(rcx, rax);
    __ j(not_equal, &loop);

    // Invoke the code.
    if (is_construct) {
530 531 532 533
      // No type feedback cell is available
      Handle<Object> undefined_sentinel(
          masm->isolate()->factory()->undefined_value());
      __ Move(rbx, undefined_sentinel);
534
      // Expects rdi to hold function pointer.
535 536
      CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
      __ CallStub(&stub);
537 538 539 540 541 542 543 544 545
    } else {
      ParameterCount actual(rax);
      // Function must be in rdi.
      __ InvokeFunction(rdi, actual, CALL_FUNCTION,
                        NullCallWrapper(), CALL_AS_METHOD);
    }
    // Exit the internal frame. Notice that this also removes the empty
    // context and the function left on the stack by the code
    // invocation.
546
  }
547

548
  // TODO(X64): Is argument correct? Is there a receiver to remove?
549
  __ ret(1 * kPointerSize);  // Remove receiver.
550 551
}

552

553 554
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
555 556 557
}


558 559 560
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}
561 562


563 564
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
  // Enter an internal frame.
565 566
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
567

568 569 570 571
    // Push a copy of the function onto the stack.
    __ push(rdi);
    // Push call kind information.
    __ push(rcx);
572

573 574
    __ push(rdi);  // Function is also the parameter to the runtime call.
    __ CallRuntime(Runtime::kLazyCompile, 1);
575

576 577 578 579
    // Restore call kind information.
    __ pop(rcx);
    // Restore receiver.
    __ pop(rdi);
580

581 582
    // Tear down internal frame.
  }
583

584
  // Do a tail-call of the compiled function.
585 586
  __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
  __ jmp(rax);
587
}
588 589


590 591
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
  // Enter an internal frame.
592 593
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
594

595 596 597 598
    // Push a copy of the function onto the stack.
    __ push(rdi);
    // Push call kind information.
    __ push(rcx);
599

600 601
    __ push(rdi);  // Function is also the parameter to the runtime call.
    __ CallRuntime(Runtime::kLazyRecompile, 1);
602

603 604 605 606
    // Restore call kind information.
    __ pop(rcx);
    // Restore function.
    __ pop(rdi);
607

608 609
    // Tear down internal frame.
  }
610

611
  // Do a tail-call of the compiled function.
612 613
  __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
  __ jmp(rax);
614
}
615 616


617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
  // For now, we are relying on the fact that make_code_young doesn't do any
  // garbage collection which allows us to save/restore the registers without
  // worrying about which of them contain pointers. We also don't build an
  // internal frame to make the code faster, since we shouldn't have to do stack
  // crawls in MakeCodeYoung. This seems a bit fragile.

  // Re-execute the code that was patched back to the young age when
  // the stub returns.
  __ subq(Operand(rsp, 0), Immediate(5));
  __ Pushad();
#ifdef _WIN64
  __ movq(rcx, Operand(rsp, kNumSafepointRegisters * kPointerSize));
#else
  __ movq(rdi, Operand(rsp, kNumSafepointRegisters * kPointerSize));
#endif
  {  // NOLINT
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(1);
    __ CallCFunction(
        ExternalReference::get_make_code_young_function(masm->isolate()), 1);
  }
  __ Popad();
  __ ret(0);
}


#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
    MacroAssembler* masm) {                                  \
  GenerateMakeCodeYoungAgainCommon(masm);                    \
}                                                            \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
    MacroAssembler* masm) {                                  \
  GenerateMakeCodeYoungAgainCommon(masm);                    \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR


657
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
658 659 660 661 662 663 664 665
  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Preserve registers across notification, this is important for compiled
    // stubs that tail call the runtime on deopts passing their parameters in
    // registers.
    __ Pushad();
666
    __ CallRuntime(Runtime::kNotifyStubFailure, 0);
667 668 669 670 671 672 673 674 675
    __ Popad();
    // Tear down internal frame.
  }

  __ pop(MemOperand(rsp, 0));  // Ignore state offset
  __ ret(0);  // Return to IC Miss stub, continuation still on stack.
}


676 677
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
                                             Deoptimizer::BailoutType type) {
678
  // Enter an internal frame.
679 680
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
681

682 683
    // Pass the deoptimization type to the runtime system.
    __ Push(Smi::FromInt(static_cast<int>(type)));
684

685 686 687
    __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    // Tear down internal frame.
  }
688 689

  // Get the full codegen state from the stack and untag it.
690
  __ SmiToInteger32(r10, Operand(rsp, 1 * kPointerSize));
691 692

  // Switch on the state.
693
  Label not_no_registers, not_tos_rax;
694
  __ cmpq(r10, Immediate(FullCodeGenerator::NO_REGISTERS));
695
  __ j(not_equal, &not_no_registers, Label::kNear);
696 697 698 699
  __ ret(1 * kPointerSize);  // Remove state.

  __ bind(&not_no_registers);
  __ movq(rax, Operand(rsp, 2 * kPointerSize));
700
  __ cmpq(r10, Immediate(FullCodeGenerator::TOS_REG));
701
  __ j(not_equal, &not_tos_rax, Label::kNear);
702 703 704 705
  __ ret(2 * kPointerSize);  // Remove state, rax.

  __ bind(&not_tos_rax);
  __ Abort("no cases left");
706
}
707

708 709 710
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
711 712


713
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
714
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
715
}
716 717


718
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
719 720 721 722 723
  // For now, we are relying on the fact that Runtime::NotifyOSR
  // doesn't do any garbage collection which allows us to save/restore
  // the registers without worrying about which of them contain
  // pointers. This seems a bit fragile.
  __ Pushad();
724 725 726 727
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyOSR, 0);
  }
728 729
  __ Popad();
  __ ret(0);
730 731 732
}


733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
  // Stack Layout:
  // rsp[0]:   Return address
  // rsp[1]:   Argument n
  // rsp[2]:   Argument n-1
  //  ...
  // rsp[n]:   Argument 1
  // rsp[n+1]: Receiver (function to call)
  //
  // rax contains the number of arguments, n, not counting the receiver.
  //
  // 1. Make sure we have at least one argument.
  { Label done;
    __ testq(rax, rax);
    __ j(not_zero, &done);
    __ pop(rbx);
749
    __ Push(masm->isolate()->factory()->undefined_value());
750 751 752 753
    __ push(rbx);
    __ incq(rax);
    __ bind(&done);
  }
754

755 756
  // 2. Get the function to call (passed as receiver) from the stack, check
  //    if it is a function.
757
  Label slow, non_function;
758 759 760 761
  // The function to call is at position n+1 on the stack.
  __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
  __ JumpIfSmi(rdi, &non_function);
  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
762
  __ j(not_equal, &slow);
763

764 765
  // 3a. Patch the first argument if necessary when calling a function.
  Label shift_arguments;
766
  __ Set(rdx, 0);  // indicate regular JS_FUNCTION
767 768 769
  { Label convert_to_object, use_global_receiver, patch_receiver;
    // Change context eagerly in case we need the global receiver.
    __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
770

771 772 773 774 775 776
    // Do not transform the receiver for strict mode functions.
    __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    __ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
             Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    __ j(not_equal, &shift_arguments);

777 778
    // Do not transform the receiver for natives.
    // SharedFunctionInfo is already loaded into rbx.
779 780
    __ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset),
             Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
781
    __ j(not_zero, &shift_arguments);
782

783
    // Compute the receiver in non-strict mode.
784
    __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0));
785
    __ JumpIfSmi(rbx, &convert_to_object, Label::kNear);
786

787 788 789 790
    __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    __ j(equal, &use_global_receiver);
    __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    __ j(equal, &use_global_receiver);
791

792 793
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
794
    __ j(above_equal, &shift_arguments);
795

796
    __ bind(&convert_to_object);
797 798 799 800 801
    {
      // Enter an internal frame in order to preserve argument count.
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Integer32ToSmi(rax, rax);
      __ push(rax);
802

803 804 805
      __ push(rbx);
      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
      __ movq(rbx, rax);
806
      __ Set(rdx, 0);  // indicate regular JS_FUNCTION
807

808 809 810 811
      __ pop(rax);
      __ SmiToInteger32(rax, rax);
    }

812 813
    // Restore the function to rdi.
    __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
814
    __ jmp(&patch_receiver, Label::kNear);
815

816 817 818 819
    // Use the global receiver object from the called function as the
    // receiver.
    __ bind(&use_global_receiver);
    const int kGlobalIndex =
820
        Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
821
    __ movq(rbx, FieldOperand(rsi, kGlobalIndex));
822
    __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
823 824
    __ movq(rbx, FieldOperand(rbx, kGlobalIndex));
    __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
825

826 827
    __ bind(&patch_receiver);
    __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx);
828

829 830
    __ jmp(&shift_arguments);
  }
831

832 833 834 835 836 837 838
  // 3b. Check for function proxy.
  __ bind(&slow);
  __ Set(rdx, 1);  // indicate function proxy
  __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
  __ j(equal, &shift_arguments);
  __ bind(&non_function);
  __ Set(rdx, 2);  // indicate non-function
839

840
  // 3c. Patch the first argument when calling a non-function.  The
841 842 843 844
  //     CALL_NON_FUNCTION builtin expects the non-function callee as
  //     receiver, so overwrite the first argument which will ultimately
  //     become the receiver.
  __ movq(Operand(rsp, rax, times_pointer_size, 0), rdi);
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859
  // 4. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  __ bind(&shift_arguments);
  { Label loop;
    __ movq(rcx, rax);
    __ bind(&loop);
    __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
    __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
    __ decq(rcx);
    __ j(not_sign, &loop);  // While non-negative (to copy return address).
    __ pop(rbx);  // Discard copy of return address.
    __ decq(rax);  // One fewer argument (first argument is new receiver).
  }
860

861 862 863 864 865
  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
  //     or a function proxy via CALL_FUNCTION_PROXY.
  { Label function, non_proxy;
    __ testq(rdx, rdx);
    __ j(zero, &function);
866
    __ Set(rbx, 0);
867
    __ SetCallKind(rcx, CALL_AS_METHOD);
868 869 870 871 872 873 874 875 876 877 878 879 880
    __ cmpq(rdx, Immediate(1));
    __ j(not_equal, &non_proxy);

    __ pop(rdx);   // return address
    __ push(rdi);  // re-add proxy object as additional argument
    __ push(rdx);
    __ incq(rax);
    __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
    __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
           RelocInfo::CODE_TARGET);

    __ bind(&non_proxy);
    __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
881 882
    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);
883
    __ bind(&function);
884 885
  }

886 887 888 889 890 891 892 893
  // 5b. Get the code to call from the function and check that the number of
  //     expected arguments matches what we're providing.  If so, jump
  //     (tail-call) to the code in register edx without checking arguments.
  __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  __ movsxlq(rbx,
             FieldOperand(rdx,
                          SharedFunctionInfo::kFormalParameterCountOffset));
  __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
894
  __ SetCallKind(rcx, CALL_AS_METHOD);
895 896
  __ cmpq(rax, rbx);
  __ j(not_equal,
897 898
       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
       RelocInfo::CODE_TARGET);
899

900
  ParameterCount expected(0);
901 902
  __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION,
                NullCallWrapper(), CALL_AS_METHOD);
903 904 905
}


906 907 908 909 910 911
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
  // Stack at entry:
  //    rsp: return address
  //  rsp+8: arguments
  // rsp+16: receiver ("this")
  // rsp+24: function
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
  {
    FrameScope frame_scope(masm, StackFrame::INTERNAL);
    // Stack frame:
    //    rbp: Old base pointer
    // rbp[1]: return address
    // rbp[2]: function arguments
    // rbp[3]: receiver
    // rbp[4]: function
    static const int kArgumentsOffset = 2 * kPointerSize;
    static const int kReceiverOffset = 3 * kPointerSize;
    static const int kFunctionOffset = 4 * kPointerSize;

    __ push(Operand(rbp, kFunctionOffset));
    __ push(Operand(rbp, kArgumentsOffset));
    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);

    // Check the stack for overflow. We are not trying to catch
    // interruptions (e.g. debug break and preemption) here, so the "real stack
    // limit" is checked.
    Label okay;
    __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
    __ movq(rcx, rsp);
    // Make rcx the space we have left. The stack might already be overflowed
    // here which will cause rcx to become negative.
    __ subq(rcx, kScratchRegister);
    // Make rdx the space we need for the array when it is unrolled onto the
    // stack.
    __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
    // Check if the arguments will overflow the stack.
    __ cmpq(rcx, rdx);
    __ j(greater, &okay);  // Signed comparison.

    // Out of stack space.
    __ push(Operand(rbp, kFunctionOffset));
    __ push(rax);
    __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    __ bind(&okay);
    // End of stack check.

    // Push current index and limit.
    const int kLimitOffset =
        StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
    const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
    __ push(rax);  // limit
    __ push(Immediate(0));  // index

    // Get the receiver.
    __ movq(rbx, Operand(rbp, kReceiverOffset));

    // Check that the function is a JS function (otherwise it must be a proxy).
    Label push_receiver;
    __ movq(rdi, Operand(rbp, kFunctionOffset));
    __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    __ j(not_equal, &push_receiver);

    // Change context eagerly to get the right global object if necessary.
    __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
969

970 971 972 973 974 975
    // Do not transform the receiver for strict mode functions.
    Label call_to_object, use_global_receiver;
    __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    __ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
             Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    __ j(not_equal, &push_receiver);
976

977 978 979 980
    // Do not transform the receiver for natives.
    __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
             Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
    __ j(not_equal, &push_receiver);
981

982 983 984 985 986 987
    // Compute the receiver in non-strict mode.
    __ JumpIfSmi(rbx, &call_to_object, Label::kNear);
    __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    __ j(equal, &use_global_receiver);
    __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    __ j(equal, &use_global_receiver);
988

989 990 991 992 993
    // If given receiver is already a JavaScript object then there's no
    // reason for converting it.
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
    __ j(above_equal, &push_receiver);
994

995 996 997 998 999 1000
    // Convert the receiver to an object.
    __ bind(&call_to_object);
    __ push(rbx);
    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    __ movq(rbx, rax);
    __ jmp(&push_receiver, Label::kNear);
1001

1002 1003 1004
    // Use the current global receiver object as the receiver.
    __ bind(&use_global_receiver);
    const int kGlobalOffset =
1005
        Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1006
    __ movq(rbx, FieldOperand(rsi, kGlobalOffset));
1007
    __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
1008 1009
    __ movq(rbx, FieldOperand(rbx, kGlobalOffset));
    __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    // Push the receiver.
    __ bind(&push_receiver);
    __ push(rbx);

    // Copy all arguments from the array to the stack.
    Label entry, loop;
    __ movq(rax, Operand(rbp, kIndexOffset));
    __ jmp(&entry);
    __ bind(&loop);
    __ movq(rdx, Operand(rbp, kArgumentsOffset));  // load arguments

    // Use inline caching to speed up access to arguments.
    Handle<Code> ic =
        masm->isolate()->builtins()->KeyedLoadIC_Initialize();
    __ Call(ic, RelocInfo::CODE_TARGET);
    // It is important that we do not have a test instruction after the
    // call.  A test instruction after the call is used to indicate that
    // we have generated an inline version of the keyed load.  In this
    // case, we know that we are not generating a test instruction next.

    // Push the nth argument.
    __ push(rax);

    // Update the index on the stack and in register rax.
    __ movq(rax, Operand(rbp, kIndexOffset));
    __ SmiAddConstant(rax, rax, Smi::FromInt(1));
    __ movq(Operand(rbp, kIndexOffset), rax);

    __ bind(&entry);
    __ cmpq(rax, Operand(rbp, kLimitOffset));
    __ j(not_equal, &loop);

    // Invoke the function.
    Label call_proxy;
    ParameterCount actual(rax);
    __ SmiToInteger32(rax, rax);
    __ movq(rdi, Operand(rbp, kFunctionOffset));
    __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    __ j(not_equal, &call_proxy);
    __ InvokeFunction(rdi, actual, CALL_FUNCTION,
                      NullCallWrapper(), CALL_AS_METHOD);

    frame_scope.GenerateLeaveFrame();
    __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    // Invoke the function proxy.
    __ bind(&call_proxy);
    __ push(rdi);  // add function proxy as last argument
    __ incq(rax);
    __ Set(rbx, 0);
    __ SetCallKind(rcx, CALL_AS_METHOD);
    __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
    __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);

    // Leave internal frame.
  }
1068
  __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1069
}
1070 1071


1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
                                 Register array_function,
                                 Register result,
                                 Register scratch1,
                                 Register scratch2,
                                 Register scratch3,
                                 Label* gc_required) {
1083 1084
  const int initial_capacity = JSArray::kPreallocatedArrayElements;
  STATIC_ASSERT(initial_capacity >= 0);
1085

1086
  __ LoadInitialArrayMap(array_function, scratch2, scratch1, false);
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  // Allocate the JSArray object together with space for a fixed array with the
  // requested elements.
  int size = JSArray::kSize;
  if (initial_capacity > 0) {
    size += FixedArray::SizeFor(initial_capacity);
  }
  __ AllocateInNewSpace(size,
                        result,
                        scratch2,
                        scratch3,
                        gc_required,
                        TAG_OBJECT);
1100

1101 1102 1103 1104 1105
  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // scratch1: initial map
  // scratch2: start of next object
1106
  Factory* factory = masm->isolate()->factory();
1107 1108
  __ movq(FieldOperand(result, JSObject::kMapOffset), scratch1);
  __ Move(FieldOperand(result, JSArray::kPropertiesOffset),
1109
          factory->empty_fixed_array());
1110 1111
  // Field JSArray::kElementsOffset is initialized later.
  __ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0));
1112

1113 1114 1115 1116
  // If no storage is requested for the elements array just set the empty
  // fixed array.
  if (initial_capacity == 0) {
    __ Move(FieldOperand(result, JSArray::kElementsOffset),
1117
            factory->empty_fixed_array());
1118 1119
    return;
  }
1120

1121 1122 1123 1124 1125 1126
  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // scratch2: start of next object
  __ lea(scratch1, Operand(result, JSArray::kSize));
  __ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1);
1127

1128 1129 1130 1131 1132 1133
  // Initialize the FixedArray and fill it with holes. FixedArray length is
  // stored as a smi.
  // result: JSObject
  // scratch1: elements array
  // scratch2: start of next object
  __ Move(FieldOperand(scratch1, HeapObject::kMapOffset),
1134
          factory->fixed_array_map());
1135 1136
  __ Move(FieldOperand(scratch1, FixedArray::kLengthOffset),
          Smi::FromInt(initial_capacity));
1137

1138 1139 1140
  // Fill the FixedArray with the hole value. Inline the code if short.
  // Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
  static const int kLoopUnfoldLimit = 4;
1141
  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
1142 1143 1144 1145 1146 1147 1148
  if (initial_capacity <= kLoopUnfoldLimit) {
    // Use a scratch register here to have only one reloc info when unfolding
    // the loop.
    for (int i = 0; i < initial_capacity; i++) {
      __ movq(FieldOperand(scratch1,
                           FixedArray::kHeaderSize + i * kPointerSize),
              scratch3);
1149
    }
1150
  } else {
1151
    Label loop, entry;
1152
    __ movq(scratch2, Immediate(initial_capacity));
1153 1154
    __ jmp(&entry);
    __ bind(&loop);
1155 1156 1157 1158 1159
    __ movq(FieldOperand(scratch1,
                         scratch2,
                         times_pointer_size,
                         FixedArray::kHeaderSize),
            scratch3);
1160
    __ bind(&entry);
1161 1162
    __ decq(scratch2);
    __ j(not_sign, &loop);
1163
  }
1164
}
1165 1166


1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end  (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
                            Register array_function,  // Array function.
1178
                            Register array_size,  // As a smi, cannot be 0.
1179 1180 1181 1182 1183 1184
                            Register result,
                            Register elements_array,
                            Register elements_array_end,
                            Register scratch,
                            bool fill_with_hole,
                            Label* gc_required) {
1185 1186
  __ LoadInitialArrayMap(array_function, scratch,
                         elements_array, fill_with_hole);
1187

1188 1189
  if (FLAG_debug_code) {  // Assert that array size is not zero.
    __ testq(array_size, array_size);
1190
    __ Assert(not_zero, "array size is unexpectedly 0");
1191
  }
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  // Allocate the JSArray object together with space for a FixedArray with the
  // requested elements.
  SmiIndex index =
      masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2);
  __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
                        index.scale,
                        index.reg,
                        result,
                        elements_array_end,
                        scratch,
                        gc_required,
                        TAG_OBJECT);
1205

1206 1207 1208 1209 1210 1211
  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // elements_array: initial map
  // elements_array_end: start of next object
  // array_size: size of array (smi)
1212
  Factory* factory = masm->isolate()->factory();
1213
  __ movq(FieldOperand(result, JSObject::kMapOffset), elements_array);
1214
  __ Move(elements_array, factory->empty_fixed_array());
1215 1216 1217
  __ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
  // Field JSArray::kElementsOffset is initialized later.
  __ movq(FieldOperand(result, JSArray::kLengthOffset), array_size);
1218

1219 1220 1221 1222 1223 1224 1225
  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // elements_array_end: start of next object
  // array_size: size of array (smi)
  __ lea(elements_array, Operand(result, JSArray::kSize));
  __ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array);
1226

1227 1228 1229 1230 1231 1232
  // Initialize the fixed array. FixedArray length is stored as a smi.
  // result: JSObject
  // elements_array: elements array
  // elements_array_end: start of next object
  // array_size: size of array (smi)
  __ Move(FieldOperand(elements_array, JSObject::kMapOffset),
1233
          factory->fixed_array_map());
1234 1235 1236
  // For non-empty JSArrays the length of the FixedArray and the JSArray is the
  // same.
  __ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
1237

1238 1239 1240 1241 1242 1243
  // Fill the allocated FixedArray with the hole value if requested.
  // result: JSObject
  // elements_array: elements array
  // elements_array_end: start of next object
  if (fill_with_hole) {
    Label loop, entry;
1244
    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    __ lea(elements_array, Operand(elements_array,
                                   FixedArray::kHeaderSize - kHeapObjectTag));
    __ jmp(&entry);
    __ bind(&loop);
    __ movq(Operand(elements_array, 0), scratch);
    __ addq(elements_array, Immediate(kPointerSize));
    __ bind(&entry);
    __ cmpq(elements_array, elements_array_end);
    __ j(below, &loop);
  }
1255 1256 1257
}


1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
//   rdi: constructor (built-in Array function)
//   rax: argc
//   rsp[0]: return address
//   rsp[8]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in rdi needs to be preserved for
// entering the generic code. In both cases argc in rax needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// a construct call and a normal call.
static void ArrayNativeCode(MacroAssembler* masm,
1273
                            Label* call_generic_code) {
1274
  Label argc_one_or_more, argc_two_or_more, empty_array, not_empty_array,
1275
      has_non_smi_element, finish, cant_transition_map, not_double;
1276

1277 1278 1279
  // Check for array construction with zero arguments.
  __ testq(rax, rax);
  __ j(not_zero, &argc_one_or_more);
1280

1281
  __ bind(&empty_array);
1282 1283 1284 1285 1286 1287 1288 1289
  // Handle construction of an empty array.
  AllocateEmptyJSArray(masm,
                       rdi,
                       rbx,
                       rcx,
                       rdx,
                       r8,
                       call_generic_code);
1290 1291
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->array_function_native(), 1);
1292 1293
  __ movq(rax, rbx);
  __ ret(kPointerSize);
1294

1295 1296 1297 1298 1299 1300
  // Check for one argument. Bail out if argument is not smi or if it is
  // negative.
  __ bind(&argc_one_or_more);
  __ cmpq(rax, Immediate(1));
  __ j(not_equal, &argc_two_or_more);
  __ movq(rdx, Operand(rsp, kPointerSize));  // Get the argument from the stack.
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

  __ SmiTest(rdx);
  __ j(not_zero, &not_empty_array);
  __ pop(r8);  // Adjust stack.
  __ Drop(1);
  __ push(r8);
  __ movq(rax, Immediate(0));  // Treat this as a call with argc of zero.
  __ jmp(&empty_array);

  __ bind(&not_empty_array);
1311
  __ JumpUnlessNonNegativeSmi(rdx, call_generic_code);
1312

1313 1314 1315 1316
  // Handle construction of an empty array of a certain size. Bail out if size
  // is to large to actually allocate an elements array.
  __ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray));
  __ j(greater_equal, call_generic_code);
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
  // rax: argc
  // rdx: array_size (smi)
  // rdi: constructor
  // esp[0]: return address
  // esp[8]: argument
  AllocateJSArray(masm,
                  rdi,
                  rdx,
                  rbx,
                  rcx,
                  r8,
                  r9,
                  true,
                  call_generic_code);
1332
  __ IncrementCounter(counters->array_function_native(), 1);
1333 1334
  __ movq(rax, rbx);
  __ ret(2 * kPointerSize);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
  // Handle construction of an array from a list of arguments.
  __ bind(&argc_two_or_more);
  __ movq(rdx, rax);
  __ Integer32ToSmi(rdx, rdx);  // Convet argc to a smi.
  // rax: argc
  // rdx: array_size (smi)
  // rdi: constructor
  // esp[0] : return address
  // esp[8] : last argument
  AllocateJSArray(masm,
                  rdi,
                  rdx,
                  rbx,
                  rcx,
                  r8,
                  r9,
                  false,
                  call_generic_code);
1354
  __ IncrementCounter(counters->array_function_native(), 1);
1355

1356 1357 1358 1359 1360 1361
  // rax: argc
  // rbx: JSArray
  // rcx: elements_array
  // r8: elements_array_end (untagged)
  // esp[0]: return address
  // esp[8]: last argument
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  // Location of the last argument
  __ lea(r9, Operand(rsp, kPointerSize));

  // Location of the first array element (Parameter fill_with_holes to
  // AllocateJSArrayis false, so the FixedArray is returned in rcx).
  __ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag));

  // rax: argc
  // rbx: JSArray
  // rdx: location of the first array element
  // r9: location of the last argument
  // esp[0]: return address
  // esp[8]: last argument
1376
  Label loop, entry;
1377
  __ movq(rcx, rax);
1378 1379
  __ jmp(&entry);
  __ bind(&loop);
1380
  __ movq(r8, Operand(r9, rcx, times_pointer_size, 0));
1381
  if (FLAG_smi_only_arrays) {
1382
    __ JumpIfNotSmi(r8, &has_non_smi_element);
1383
  }
1384
  __ movq(Operand(rdx, 0), r8);
1385
  __ addq(rdx, Immediate(kPointerSize));
1386
  __ bind(&entry);
1387 1388
  __ decq(rcx);
  __ j(greater_equal, &loop);
1389

1390 1391 1392 1393 1394
  // Remove caller arguments from the stack and return.
  // rax: argc
  // rbx: JSArray
  // esp[0]: return address
  // esp[8]: last argument
1395
  __ bind(&finish);
1396 1397 1398 1399 1400
  __ pop(rcx);
  __ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
  __ push(rcx);
  __ movq(rax, rbx);
  __ ret(0);
1401 1402

  __ bind(&has_non_smi_element);
1403 1404 1405 1406 1407 1408
  // Double values are handled by the runtime.
  __ CheckMap(r8,
              masm->isolate()->factory()->heap_number_map(),
              &not_double,
              DONT_DO_SMI_CHECK);
  __ bind(&cant_transition_map);
1409 1410
  __ UndoAllocationInNewSpace(rbx);
  __ jmp(call_generic_code);
1411 1412

  __ bind(&not_double);
1413
  // Transition FAST_SMI_ELEMENTS to FAST_ELEMENTS.
1414 1415
  // rbx: JSArray
  __ movq(r11, FieldOperand(rbx, HeapObject::kMapOffset));
1416
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
                                         FAST_ELEMENTS,
                                         r11,
                                         kScratchRegister,
                                         &cant_transition_map);

  __ movq(FieldOperand(rbx, HeapObject::kMapOffset), r11);
  __ RecordWriteField(rbx, HeapObject::kMapOffset, r11, r8,
                      kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);

  // Finish the array initialization loop.
  Label loop2;
  __ bind(&loop2);
  __ movq(r8, Operand(r9, rcx, times_pointer_size, 0));
  __ movq(Operand(rdx, 0), r8);
  __ addq(rdx, Immediate(kPointerSize));
  __ decq(rcx);
  __ j(greater_equal, &loop2);
  __ jmp(&finish);
1435 1436 1437
}


1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : argc
  //  -- rsp[0] : return address
  //  -- rsp[8] : last argument
  // -----------------------------------
  Label generic_array_code;

  // Get the InternalArray function.
  __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
    __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    STATIC_ASSERT(kSmiTag == 0);
    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
    __ Check(not_smi, "Unexpected initial map for InternalArray function");
    __ CmpObjectType(rbx, MAP_TYPE, rcx);
    __ Check(equal, "Unexpected initial map for InternalArray function");
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
  ArrayNativeCode(masm, &generic_array_code);

  // Jump to the generic array code in case the specialized code cannot handle
  // the construction.
  __ bind(&generic_array_code);
  Handle<Code> array_code =
1468
      masm->isolate()->builtins()->InternalArrayCodeGeneric();
1469 1470 1471 1472
  __ Jump(array_code, RelocInfo::CODE_TARGET);
}


1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : argc
  //  -- rsp[0] : return address
  //  -- rsp[8] : last argument
  // -----------------------------------
  Label generic_array_code;

  // Get the Array function.
  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);

  if (FLAG_debug_code) {
1485
    // Initial map for the builtin Array functions should be maps.
1486 1487
    __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
1488
    STATIC_ASSERT(kSmiTag == 0);
1489 1490 1491 1492
    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
    __ Check(not_smi, "Unexpected initial map for Array function");
    __ CmpObjectType(rbx, MAP_TYPE, rcx);
    __ Check(equal, "Unexpected initial map for Array function");
1493 1494
  }

1495 1496 1497 1498 1499 1500
  // Run the native code for the Array function called as a normal function.
  ArrayNativeCode(masm, &generic_array_code);

  // Jump to the generic array code in case the specialized code cannot handle
  // the construction.
  __ bind(&generic_array_code);
1501 1502
  Handle<Code> array_code =
      masm->isolate()->builtins()->ArrayCodeGeneric();
1503
  __ Jump(array_code, RelocInfo::CODE_TARGET);
1504 1505
}

1506

1507 1508 1509 1510 1511 1512 1513 1514
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : argc
  //  -- rdi : constructor
  //  -- rsp[0] : return address
  //  -- rsp[8] : last argument
  // -----------------------------------
  if (FLAG_debug_code) {
1515 1516
    // The array construct code is only set for the builtin and internal
    // Array functions which always have a map.
1517

1518
    // Initial map for the builtin Array function should be a map.
1519
    __ movq(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1520
    // Will both indicate a NULL and a Smi.
1521
    STATIC_ASSERT(kSmiTag == 0);
1522
    Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
1523
    __ Check(not_smi, "Unexpected initial map for Array function");
1524
    __ CmpObjectType(rcx, MAP_TYPE, rcx);
1525 1526
    __ Check(equal, "Unexpected initial map for Array function");

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    if (FLAG_optimize_constructed_arrays) {
      // We should either have undefined in ebx or a valid jsglobalpropertycell
      Label okay_here;
      Handle<Object> undefined_sentinel(
          masm->isolate()->factory()->undefined_value());
      Handle<Map> global_property_cell_map(
          masm->isolate()->heap()->global_property_cell_map());
      __ Cmp(rbx, undefined_sentinel);
      __ j(equal, &okay_here);
      __ Cmp(FieldOperand(rbx, 0), global_property_cell_map);
      __ Assert(equal, "Expected property cell in register rbx");
      __ bind(&okay_here);
    }
1540
  }
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
  if (FLAG_optimize_constructed_arrays) {
    Label not_zero_case, not_one_case;
    __ testq(rax, rax);
    __ j(not_zero, &not_zero_case);
    ArrayNoArgumentConstructorStub no_argument_stub;
    __ TailCallStub(&no_argument_stub);

    __ bind(&not_zero_case);
    __ cmpq(rax, Immediate(1));
    __ j(greater, &not_one_case);
    ArraySingleArgumentConstructorStub single_argument_stub;
    __ TailCallStub(&single_argument_stub);

    __ bind(&not_one_case);
    ArrayNArgumentsConstructorStub n_argument_stub;
    __ TailCallStub(&n_argument_stub);
  } else {
    Label generic_constructor;
    // Run the native code for the Array function called as constructor.
    ArrayNativeCode(masm, &generic_constructor);

    // Jump to the generic construct code in case the specialized code cannot
    // handle the construction.
    __ bind(&generic_constructor);
    Handle<Code> generic_construct_stub =
        masm->isolate()->builtins()->JSConstructStubGeneric();
    __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
  }
1570 1571 1572
}


1573
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
  // ----------- S t a t e -------------
  //  -- rax                 : number of arguments
  //  -- rdi                 : constructor function
  //  -- rsp[0]              : return address
  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
  //  -- rsp[(argc + 1) * 8] : receiver
  // -----------------------------------
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->string_ctor_calls(), 1);

  if (FLAG_debug_code) {
    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx);
    __ cmpq(rdi, rcx);
    __ Assert(equal, "Unexpected String function");
  }

  // Load the first argument into rax and get rid of the rest
  // (including the receiver).
  Label no_arguments;
  __ testq(rax, rax);
  __ j(zero, &no_arguments);
  __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0));
  __ pop(rcx);
  __ lea(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
  __ push(rcx);
  __ movq(rax, rbx);

  // Lookup the argument in the number to string cache.
  Label not_cached, argument_is_string;
  NumberToStringStub::GenerateLookupNumberStringCache(
      masm,
      rax,  // Input.
      rbx,  // Result.
      rcx,  // Scratch 1.
      rdx,  // Scratch 2.
      false,  // Input is known to be smi?
      &not_cached);
  __ IncrementCounter(counters->string_ctor_cached_number(), 1);
  __ bind(&argument_is_string);

  // ----------- S t a t e -------------
  //  -- rbx    : argument converted to string
  //  -- rdi    : constructor function
  //  -- rsp[0] : return address
  // -----------------------------------

  // Allocate a JSValue and put the tagged pointer into rax.
  Label gc_required;
  __ AllocateInNewSpace(JSValue::kSize,
                        rax,  // Result.
                        rcx,  // New allocation top (we ignore it).
                        no_reg,
                        &gc_required,
                        TAG_OBJECT);

  // Set the map.
  __ LoadGlobalFunctionInitialMap(rdi, rcx);
  if (FLAG_debug_code) {
    __ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset),
            Immediate(JSValue::kSize >> kPointerSizeLog2));
    __ Assert(equal, "Unexpected string wrapper instance size");
    __ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0));
    __ Assert(equal, "Unexpected unused properties of string wrapper");
  }
  __ movq(FieldOperand(rax, HeapObject::kMapOffset), rcx);

  // Set properties and elements.
  __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
  __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
  __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);

  // Set the value.
  __ movq(FieldOperand(rax, JSValue::kValueOffset), rbx);

  // Ensure the object is fully initialized.
  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);

  // We're done. Return.
  __ ret(0);

  // The argument was not found in the number to string cache. Check
  // if it's a string already before calling the conversion builtin.
  Label convert_argument;
  __ bind(&not_cached);
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfSmi(rax, &convert_argument);
  Condition is_string = masm->IsObjectStringType(rax, rbx, rcx);
  __ j(NegateCondition(is_string), &convert_argument);
  __ movq(rbx, rax);
  __ IncrementCounter(counters->string_ctor_string_value(), 1);
  __ jmp(&argument_is_string);

  // Invoke the conversion builtin and put the result into rbx.
  __ bind(&convert_argument);
  __ IncrementCounter(counters->string_ctor_conversions(), 1);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rdi);  // Preserve the function.
    __ push(rax);
    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
    __ pop(rdi);
  }
  __ movq(rbx, rax);
  __ jmp(&argument_is_string);

  // Load the empty string into rbx, remove the receiver from the
  // stack, and jump back to the case where the argument is a string.
  __ bind(&no_arguments);
1682
  __ LoadRoot(rbx, Heap::kempty_stringRootIndex);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
  __ pop(rcx);
  __ lea(rsp, Operand(rsp, kPointerSize));
  __ push(rcx);
  __ jmp(&argument_is_string);

  // At this point the argument is already a string. Call runtime to
  // create a string wrapper.
  __ bind(&gc_required);
  __ IncrementCounter(counters->string_ctor_gc_required(), 1);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rbx);
    __ CallRuntime(Runtime::kNewStringWrapper, 1);
  }
  __ ret(0);
1698 1699
}

1700

1701 1702 1703
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ push(rbp);
  __ movq(rbp, rsp);
1704

1705 1706 1707 1708
  // Store the arguments adaptor context sentinel.
  __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));

  // Push the function on the stack.
1709 1710
  __ push(rdi);

1711 1712
  // Preserve the number of arguments on the stack. Must preserve rax,
  // rbx and rcx because these registers are used when copying the
1713
  // arguments and the receiver.
1714 1715
  __ Integer32ToSmi(r8, rax);
  __ push(r8);
1716
}
1717 1718


1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // Retrieve the number of arguments from the stack. Number is a Smi.
  __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));

  // Leave the frame.
  __ movq(rsp, rbp);
  __ pop(rbp);

  // Remove caller arguments from the stack.
  __ pop(rcx);
  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
  __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
  __ push(rcx);
1732 1733
}

1734

1735 1736 1737 1738
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : actual number of arguments
  //  -- rbx : expected number of arguments
1739
  //  -- rcx : call kind information
1740 1741
  //  -- rdx : code entry to call
  // -----------------------------------
1742

1743
  Label invoke, dont_adapt_arguments;
1744 1745
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->arguments_adaptors(), 1);
1746

1747 1748 1749 1750 1751
  Label enough, too_few;
  __ cmpq(rax, rbx);
  __ j(less, &too_few);
  __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ j(equal, &dont_adapt_arguments);
1752

1753 1754 1755
  {  // Enough parameters: Actual >= expected.
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);
1756

1757 1758 1759
    // Copy receiver and all expected arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
1760
    __ Set(r8, -1);  // account for receiver
1761

1762 1763
    Label copy;
    __ bind(&copy);
1764
    __ incq(r8);
1765 1766
    __ push(Operand(rax, 0));
    __ subq(rax, Immediate(kPointerSize));
1767
    __ cmpq(r8, rbx);
1768 1769 1770
    __ j(less, &copy);
    __ jmp(&invoke);
  }
1771

1772 1773 1774
  {  // Too few parameters: Actual < expected.
    __ bind(&too_few);
    EnterArgumentsAdaptorFrame(masm);
1775

1776 1777 1778
    // Copy receiver and all actual arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
1779
    __ Set(r8, -1);  // account for receiver
1780

1781 1782
    Label copy;
    __ bind(&copy);
1783
    __ incq(r8);
1784 1785
    __ push(Operand(rdi, 0));
    __ subq(rdi, Immediate(kPointerSize));
1786
    __ cmpq(r8, rax);
1787
    __ j(less, &copy);
1788

1789 1790 1791 1792
    // Fill remaining expected arguments with undefined values.
    Label fill;
    __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
    __ bind(&fill);
1793
    __ incq(r8);
1794
    __ push(kScratchRegister);
1795
    __ cmpq(r8, rbx);
1796
    __ j(less, &fill);
1797

1798 1799 1800 1801 1802 1803 1804 1805
    // Restore function pointer.
    __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
  }

  // Call the entry point.
  __ bind(&invoke);
  __ call(rdx);

1806
  // Store offset of return address for deoptimizer.
1807
  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817
  // Leave frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ ret(0);

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
  __ jmp(rdx);
1818 1819 1820 1821
}


void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
  // Get the loop depth of the stack guard check. This is recorded in
  // a test(rax, depth) instruction right after the call.
  Label stack_check;
  __ movq(rbx, Operand(rsp, 0));  // return address
  __ movzxbq(rbx, Operand(rbx, 1));  // depth

  // Get the loop nesting level at which we allow OSR from the
  // unoptimized code and check if we want to do OSR yet. If not we
  // should perform a stack guard check so we can get interrupts while
  // waiting for on-stack replacement.
  __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
  __ movq(rcx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
  __ movq(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
  __ cmpb(rbx, FieldOperand(rcx, Code::kAllowOSRAtLoopNestingLevelOffset));
  __ j(greater, &stack_check);

  // Pass the function to optimize as the argument to the on-stack
  // replacement runtime function.
1840 1841 1842 1843 1844
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rax);
    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
  }
1845 1846 1847

  // If the result was -1 it means that we couldn't optimize the
  // function. Just return and continue in the unoptimized version.
1848
  Label skip;
1849
  __ SmiCompare(rax, Smi::FromInt(-1));
1850
  __ j(not_equal, &skip, Label::kNear);
1851 1852 1853 1854 1855
  __ ret(0);

  // If we decide not to perform on-stack replacement we perform a
  // stack guard check to enable interrupts.
  __ bind(&stack_check);
1856
  Label ok;
1857
  __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
1858
  __ j(above_equal, &ok, Label::kNear);
1859 1860 1861

  StackCheckStub stub;
  __ TailCallStub(&stub);
1862 1863 1864
  if (FLAG_debug_code) {
    __ Abort("Unreachable code: returned from tail call.");
  }
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
  __ bind(&ok);
  __ ret(0);

  __ bind(&skip);
  // Untag the AST id and push it on the stack.
  __ SmiToInteger32(rax, rax);
  __ push(rax);

  // Generate the code for doing the frame-to-frame translation using
  // the deoptimizer infrastructure.
  Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
  generator.Generate();
1877 1878 1879
}


1880 1881
#undef __

1882
} }  // namespace v8::internal
1883 1884

#endif  // V8_TARGET_ARCH_X64