string-builder.h 12.7 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6 7
#ifndef V8_STRING_BUILDER_H_
#define V8_STRING_BUILDER_H_

8 9 10 11 12
#include "src/assert-scope.h"
#include "src/factory.h"
#include "src/handles.h"
#include "src/isolate.h"
#include "src/objects.h"
13
#include "src/utils.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

namespace v8 {
namespace internal {

const int kStringBuilderConcatHelperLengthBits = 11;
const int kStringBuilderConcatHelperPositionBits = 19;

typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
    StringBuilderSubstringLength;
typedef BitField<int, kStringBuilderConcatHelperLengthBits,
                 kStringBuilderConcatHelperPositionBits>
    StringBuilderSubstringPosition;


template <typename sinkchar>
static inline void StringBuilderConcatHelper(String* special, sinkchar* sink,
                                             FixedArray* fixed_array,
                                             int array_length) {
  DisallowHeapAllocation no_gc;
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    Object* element = fixed_array->get(i);
    if (element->IsSmi()) {
      // Smi encoding of position and length.
      int encoded_slice = Smi::cast(element)->value();
      int pos;
      int len;
      if (encoded_slice > 0) {
        // Position and length encoded in one smi.
        pos = StringBuilderSubstringPosition::decode(encoded_slice);
        len = StringBuilderSubstringLength::decode(encoded_slice);
      } else {
        // Position and length encoded in two smis.
        Object* obj = fixed_array->get(++i);
        DCHECK(obj->IsSmi());
        pos = Smi::cast(obj)->value();
        len = -encoded_slice;
      }
      String::WriteToFlat(special, sink + position, pos, pos + len);
      position += len;
    } else {
      String* string = String::cast(element);
      int element_length = string->length();
      String::WriteToFlat(string, sink + position, 0, element_length);
      position += element_length;
    }
  }
}


// Returns the result length of the concatenation.
// On illegal argument, -1 is returned.
static inline int StringBuilderConcatLength(int special_length,
                                            FixedArray* fixed_array,
                                            int array_length, bool* one_byte) {
  DisallowHeapAllocation no_gc;
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    int increment = 0;
    Object* elt = fixed_array->get(i);
    if (elt->IsSmi()) {
      // Smi encoding of position and length.
      int smi_value = Smi::cast(elt)->value();
      int pos;
      int len;
      if (smi_value > 0) {
        // Position and length encoded in one smi.
        pos = StringBuilderSubstringPosition::decode(smi_value);
        len = StringBuilderSubstringLength::decode(smi_value);
      } else {
        // Position and length encoded in two smis.
        len = -smi_value;
        // Get the position and check that it is a positive smi.
        i++;
        if (i >= array_length) return -1;
        Object* next_smi = fixed_array->get(i);
        if (!next_smi->IsSmi()) return -1;
        pos = Smi::cast(next_smi)->value();
        if (pos < 0) return -1;
      }
      DCHECK(pos >= 0);
      DCHECK(len >= 0);
      if (pos > special_length || len > special_length - pos) return -1;
      increment = len;
    } else if (elt->IsString()) {
      String* element = String::cast(elt);
      int element_length = element->length();
      increment = element_length;
      if (*one_byte && !element->HasOnlyOneByteChars()) {
        *one_byte = false;
      }
    } else {
      return -1;
    }
    if (increment > String::kMaxLength - position) {
      return kMaxInt;  // Provoke throw on allocation.
    }
    position += increment;
  }
  return position;
}


class FixedArrayBuilder {
 public:
  explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
      : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
        length_(0),
        has_non_smi_elements_(false) {
    // Require a non-zero initial size. Ensures that doubling the size to
    // extend the array will work.
    DCHECK(initial_capacity > 0);
  }

  explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
      : array_(backing_store), length_(0), has_non_smi_elements_(false) {
    // Require a non-zero initial size. Ensures that doubling the size to
    // extend the array will work.
    DCHECK(backing_store->length() > 0);
  }

  bool HasCapacity(int elements) {
    int length = array_->length();
    int required_length = length_ + elements;
    return (length >= required_length);
  }

  void EnsureCapacity(int elements) {
    int length = array_->length();
    int required_length = length_ + elements;
    if (length < required_length) {
      int new_length = length;
      do {
        new_length *= 2;
      } while (new_length < required_length);
      Handle<FixedArray> extended_array =
          array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
      array_->CopyTo(0, *extended_array, 0, length_);
      array_ = extended_array;
    }
  }

  void Add(Object* value) {
    DCHECK(!value->IsSmi());
    DCHECK(length_ < capacity());
    array_->set(length_, value);
    length_++;
    has_non_smi_elements_ = true;
  }

  void Add(Smi* value) {
    DCHECK(value->IsSmi());
    DCHECK(length_ < capacity());
    array_->set(length_, value);
    length_++;
  }

  Handle<FixedArray> array() { return array_; }

  int length() { return length_; }

  int capacity() { return array_->length(); }

  Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
    JSArray::SetContent(target_array, array_);
    target_array->set_length(Smi::FromInt(length_));
    return target_array;
  }


 private:
  Handle<FixedArray> array_;
  int length_;
  bool has_non_smi_elements_;
};


class ReplacementStringBuilder {
 public:
  ReplacementStringBuilder(Heap* heap, Handle<String> subject,
                           int estimated_part_count)
      : heap_(heap),
        array_builder_(heap->isolate(), estimated_part_count),
        subject_(subject),
        character_count_(0),
        is_one_byte_(subject->IsOneByteRepresentation()) {
    // Require a non-zero initial size. Ensures that doubling the size to
    // extend the array will work.
    DCHECK(estimated_part_count > 0);
  }

  static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from,
                                     int to) {
    DCHECK(from >= 0);
    int length = to - from;
    DCHECK(length > 0);
    if (StringBuilderSubstringLength::is_valid(length) &&
        StringBuilderSubstringPosition::is_valid(from)) {
      int encoded_slice = StringBuilderSubstringLength::encode(length) |
                          StringBuilderSubstringPosition::encode(from);
      builder->Add(Smi::FromInt(encoded_slice));
    } else {
      // Otherwise encode as two smis.
      builder->Add(Smi::FromInt(-length));
      builder->Add(Smi::FromInt(from));
    }
  }


  void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); }


  void AddSubjectSlice(int from, int to) {
    AddSubjectSlice(&array_builder_, from, to);
    IncrementCharacterCount(to - from);
  }


  void AddString(Handle<String> string) {
    int length = string->length();
    DCHECK(length > 0);
    AddElement(*string);
    if (!string->IsOneByteRepresentation()) {
      is_one_byte_ = false;
    }
    IncrementCharacterCount(length);
  }


243
  MaybeHandle<String> ToString();
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267


  void IncrementCharacterCount(int by) {
    if (character_count_ > String::kMaxLength - by) {
      STATIC_ASSERT(String::kMaxLength < kMaxInt);
      character_count_ = kMaxInt;
    } else {
      character_count_ += by;
    }
  }

 private:
  void AddElement(Object* element) {
    DCHECK(element->IsSmi() || element->IsString());
    DCHECK(array_builder_.capacity() > array_builder_.length());
    array_builder_.Add(element);
  }

  Heap* heap_;
  FixedArrayBuilder array_builder_;
  Handle<String> subject_;
  int character_count_;
  bool is_one_byte_;
};
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332


class IncrementalStringBuilder {
 public:
  explicit IncrementalStringBuilder(Isolate* isolate);

  INLINE(String::Encoding CurrentEncoding()) { return encoding_; }

  template <typename SrcChar, typename DestChar>
  INLINE(void Append(SrcChar c));

  INLINE(void AppendCharacter(uint8_t c)) {
    if (encoding_ == String::ONE_BYTE_ENCODING) {
      Append<uint8_t, uint8_t>(c);
    } else {
      Append<uint8_t, uc16>(c);
    }
  }

  INLINE(void AppendCString(const char* s)) {
    const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
    if (encoding_ == String::ONE_BYTE_ENCODING) {
      while (*u != '\0') Append<uint8_t, uint8_t>(*(u++));
    } else {
      while (*u != '\0') Append<uint8_t, uc16>(*(u++));
    }
  }

  INLINE(bool CurrentPartCanFit(int length)) {
    return part_length_ - current_index_ > length;
  }

  void AppendString(Handle<String> string);

  MaybeHandle<String> Finish();

  // Change encoding to two-byte.
  void ChangeEncoding() {
    DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
    ShrinkCurrentPart();
    encoding_ = String::TWO_BYTE_ENCODING;
    Extend();
  }

  template <typename DestChar>
  class NoExtend {
   public:
    explicit NoExtend(Handle<String> string, int offset) {
      DCHECK(string->IsSeqOneByteString() || string->IsSeqTwoByteString());
      if (sizeof(DestChar) == 1) {
        start_ = reinterpret_cast<DestChar*>(
            Handle<SeqOneByteString>::cast(string)->GetChars() + offset);
      } else {
        start_ = reinterpret_cast<DestChar*>(
            Handle<SeqTwoByteString>::cast(string)->GetChars() + offset);
      }
      cursor_ = start_;
    }

    INLINE(void Append(DestChar c)) { *(cursor_++) = c; }
    INLINE(void AppendCString(const char* s)) {
      const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
      while (*u != '\0') Append(*(u++));
    }

333
    int written() { return static_cast<int>(cursor_ - start_); }
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

   private:
    DestChar* start_;
    DestChar* cursor_;
    DisallowHeapAllocation no_gc_;
  };

  template <typename DestChar>
  class NoExtendString : public NoExtend<DestChar> {
   public:
    NoExtendString(Handle<String> string, int required_length)
        : NoExtend<DestChar>(string, 0), string_(string) {
      DCHECK(string->length() >= required_length);
    }

349
    Handle<String> Finalize() {
350 351
      Handle<SeqString> string = Handle<SeqString>::cast(string_);
      int length = NoExtend<DestChar>::written();
352 353 354
      Handle<String> result = SeqString::Truncate(string, length);
      string_ = Handle<String>();
      return result;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    }

   private:
    Handle<String> string_;
  };

  template <typename DestChar>
  class NoExtendBuilder : public NoExtend<DestChar> {
   public:
    NoExtendBuilder(IncrementalStringBuilder* builder, int required_length)
        : NoExtend<DestChar>(builder->current_part(), builder->current_index_),
          builder_(builder) {
      DCHECK(builder->CurrentPartCanFit(required_length));
    }

    ~NoExtendBuilder() {
      builder_->current_index_ += NoExtend<DestChar>::written();
    }

   private:
    IncrementalStringBuilder* builder_;
  };

 private:
  Factory* factory() { return isolate_->factory(); }

  INLINE(Handle<String> accumulator()) { return accumulator_; }

  INLINE(void set_accumulator(Handle<String> string)) {
    *accumulator_.location() = *string;
  }

  INLINE(Handle<String> current_part()) { return current_part_; }

  INLINE(void set_current_part(Handle<String> string)) {
    *current_part_.location() = *string;
  }

  // Add the current part to the accumulator.
394
  void Accumulate(Handle<String> new_part);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

  // Finish the current part and allocate a new part.
  void Extend();

  // Shrink current part to the right size.
  void ShrinkCurrentPart() {
    DCHECK(current_index_ < part_length_);
    set_current_part(SeqString::Truncate(
        Handle<SeqString>::cast(current_part()), current_index_));
  }

  static const int kInitialPartLength = 32;
  static const int kMaxPartLength = 16 * 1024;
  static const int kPartLengthGrowthFactor = 2;

  Isolate* isolate_;
  String::Encoding encoding_;
  bool overflowed_;
  int part_length_;
  int current_index_;
  Handle<String> accumulator_;
  Handle<String> current_part_;
};


template <typename SrcChar, typename DestChar>
void IncrementalStringBuilder::Append(SrcChar c) {
  DCHECK_EQ(encoding_ == String::ONE_BYTE_ENCODING, sizeof(DestChar) == 1);
  if (sizeof(DestChar) == 1) {
    DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
    SeqOneByteString::cast(*current_part_)
        ->SeqOneByteStringSet(current_index_++, c);
  } else {
    DCHECK_EQ(String::TWO_BYTE_ENCODING, encoding_);
    SeqTwoByteString::cast(*current_part_)
        ->SeqTwoByteStringSet(current_index_++, c);
  }
  if (current_index_ == part_length_) Extend();
}
434 435
}  // namespace internal
}  // namespace v8
436

437
#endif  // V8_STRING_BUILDER_H_