instructions-arm64.cc 8.87 KB
Newer Older
1
// Copyright 2013 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/v8.h"
6

7
#if V8_TARGET_ARCH_ARM64
8

9
#define ARM64_DEFINE_FP_STATICS
10

11
#include "src/arm64/assembler-arm64-inl.h"
12
#include "src/arm64/instructions-arm64.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

namespace v8 {
namespace internal {


bool Instruction::IsLoad() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) != 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
    switch (op) {
      case LDRB_w:
      case LDRH_w:
      case LDR_w:
      case LDR_x:
      case LDRSB_w:
      case LDRSB_x:
      case LDRSH_w:
      case LDRSH_x:
      case LDRSW_x:
      case LDR_s:
      case LDR_d: return true;
      default: return false;
    }
  }
}


bool Instruction::IsStore() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) == 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
    switch (op) {
      case STRB_w:
      case STRH_w:
      case STR_w:
      case STR_x:
      case STR_s:
      case STR_d: return true;
      default: return false;
    }
  }
}


static uint64_t RotateRight(uint64_t value,
                            unsigned int rotate,
                            unsigned int width) {
70
  DCHECK(width <= 64);
71 72 73 74 75 76 77 78 79
  rotate &= 63;
  return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
         (value >> rotate);
}


static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                    uint64_t value,
                                    unsigned width) {
80
  DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
81
         (width == 32));
82
  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
83 84 85 86 87 88 89 90 91 92 93 94
  uint64_t result = value & ((1UL << width) - 1UL);
  for (unsigned i = width; i < reg_size; i *= 2) {
    result |= (result << i);
  }
  return result;
}


// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are not
// met.
uint64_t Instruction::ImmLogical() {
95
  unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  int64_t n = BitN();
  int64_t imm_s = ImmSetBits();
  int64_t imm_r = ImmRotate();

  // An integer is constructed from the n, imm_s and imm_r bits according to
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //

  if (n == 1) {
    if (imm_s == 0x3F) {
      return 0;
    }
    uint64_t bits = (1UL << (imm_s + 1)) - 1;
    return RotateRight(bits, imm_r, 64);
  } else {
    if ((imm_s >> 1) == 0x1F) {
      return 0;
    }
    for (int width = 0x20; width >= 0x2; width >>= 1) {
      if ((imm_s & width) == 0) {
        int mask = width - 1;
        if ((imm_s & mask) == mask) {
          return 0;
        }
        uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
        return RepeatBitsAcrossReg(reg_size,
                                   RotateRight(bits, imm_r & mask, width),
                                   width);
      }
    }
  }
  UNREACHABLE();
  return 0;
}


float Instruction::ImmFP32() {
  //  ImmFP: abcdefgh (8 bits)
  // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
  // where B is b ^ 1
  uint32_t bits = ImmFP();
  uint32_t bit7 = (bits >> 7) & 0x1;
  uint32_t bit6 = (bits >> 6) & 0x1;
  uint32_t bit5_to_0 = bits & 0x3f;
  uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

  return rawbits_to_float(result);
}


double Instruction::ImmFP64() {
  //  ImmFP: abcdefgh (8 bits)
  // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
  // where B is b ^ 1
  uint32_t bits = ImmFP();
  uint64_t bit7 = (bits >> 7) & 0x1;
  uint64_t bit6 = (bits >> 6) & 0x1;
  uint64_t bit5_to_0 = bits & 0x3f;
  uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);

  return rawbits_to_double(result);
}


LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
  switch (op) {
    case STP_x:
    case LDP_x:
    case STP_d:
    case LDP_d: return LSDoubleWord;
    default: return LSWord;
  }
}


185 186
int64_t Instruction::ImmPCOffset() {
  int64_t offset;
187 188 189 190 191 192 193 194 195
  if (IsPCRelAddressing()) {
    // PC-relative addressing. Only ADR is supported.
    offset = ImmPCRel();
  } else if (BranchType() != UnknownBranchType) {
    // All PC-relative branches.
    // Relative branch offsets are instruction-size-aligned.
    offset = ImmBranch() << kInstructionSizeLog2;
  } else {
    // Load literal (offset from PC).
196
    DCHECK(IsLdrLiteral());
197 198 199 200 201 202 203 204 205
    // The offset is always shifted by 2 bits, even for loads to 64-bits
    // registers.
    offset = ImmLLiteral() << kInstructionSizeLog2;
  }
  return offset;
}


Instruction* Instruction::ImmPCOffsetTarget() {
206
  return InstructionAtOffset(ImmPCOffset());
207 208 209
}


210 211 212 213 214 215 216
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
                                     int32_t offset) {
  return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
}


bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
217
  return IsValidImmPCOffset(BranchType(), DistanceTo(target));
218 219 220
}


221 222 223 224 225 226 227 228 229 230 231 232 233
void Instruction::SetImmPCOffsetTarget(Instruction* target) {
  if (IsPCRelAddressing()) {
    SetPCRelImmTarget(target);
  } else if (BranchType() != UnknownBranchType) {
    SetBranchImmTarget(target);
  } else {
    SetImmLLiteral(target);
  }
}


void Instruction::SetPCRelImmTarget(Instruction* target) {
  // ADRP is not supported, so 'this' must point to an ADR instruction.
234
  DCHECK(IsAdr());
235

236
  ptrdiff_t target_offset = DistanceTo(target);
237 238 239 240 241 242 243
  Instr imm;
  if (Instruction::IsValidPCRelOffset(target_offset)) {
    imm = Assembler::ImmPCRelAddress(target_offset);
    SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
  } else {
    PatchingAssembler patcher(this,
                              PatchingAssembler::kAdrFarPatchableNInstrs);
244
    patcher.PatchAdrFar(target_offset);
245
  }
246 247 248 249
}


void Instruction::SetBranchImmTarget(Instruction* target) {
250
  DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
251 252
  Instr branch_imm = 0;
  uint32_t imm_mask = 0;
253
  ptrdiff_t offset = DistanceTo(target) >> kInstructionSizeLog2;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  switch (BranchType()) {
    case CondBranchType: {
      branch_imm = Assembler::ImmCondBranch(offset);
      imm_mask = ImmCondBranch_mask;
      break;
    }
    case UncondBranchType: {
      branch_imm = Assembler::ImmUncondBranch(offset);
      imm_mask = ImmUncondBranch_mask;
      break;
    }
    case CompareBranchType: {
      branch_imm = Assembler::ImmCmpBranch(offset);
      imm_mask = ImmCmpBranch_mask;
      break;
    }
    case TestBranchType: {
      branch_imm = Assembler::ImmTestBranch(offset);
      imm_mask = ImmTestBranch_mask;
      break;
    }
    default: UNREACHABLE();
  }
  SetInstructionBits(Mask(~imm_mask) | branch_imm);
}


void Instruction::SetImmLLiteral(Instruction* source) {
282
  DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
283
  ptrdiff_t offset = DistanceTo(source) >> kLoadLiteralScaleLog2;
284 285 286 287 288 289 290 291 292
  Instr imm = Assembler::ImmLLiteral(offset);
  Instr mask = ImmLLiteral_mask;

  SetInstructionBits(Mask(~mask) | imm);
}


// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
293
// instructions-arm64-inl.h to work around this.
294 295 296 297 298 299 300 301 302 303 304
bool InstructionSequence::IsInlineData() const {
  // Inline data is encoded as a single movz instruction which writes to xzr
  // (x31).
  return IsMovz() && SixtyFourBits() && (Rd() == xzr.code());
  // TODO(all): If we extend ::InlineData() to support bigger data, we need
  // to update this method too.
}


// TODO(jbramley): We can't put this inline in the class because things like
// xzr and Register are not defined in that header. Consider adding
305
// instructions-arm64-inl.h to work around this.
306
uint64_t InstructionSequence::InlineData() const {
307
  DCHECK(IsInlineData());
308 309 310 311 312 313 314 315 316
  uint64_t payload = ImmMoveWide();
  // TODO(all): If we extend ::InlineData() to support bigger data, we need
  // to update this method too.
  return payload;
}


} }  // namespace v8::internal

317
#endif  // V8_TARGET_ARCH_ARM64