assembler-arm64.cc 86.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright 2013 the V8 project authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

31
#if V8_TARGET_ARCH_ARM64
32

33
#define ARM64_DEFINE_REG_STATICS
34

35
#include "arm64/assembler-arm64-inl.h"
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// CpuFeatures utilities (for V8 compatibility).

ExternalReference ExternalReference::cpu_features() {
  return ExternalReference(&CpuFeatures::supported_);
}


// -----------------------------------------------------------------------------
// CPURegList utilities.

CPURegister CPURegList::PopLowestIndex() {
  ASSERT(IsValid());
  if (IsEmpty()) {
    return NoCPUReg;
  }
  int index = CountTrailingZeros(list_, kRegListSizeInBits);
  ASSERT((1 << index) & list_);
  Remove(index);
  return CPURegister::Create(index, size_, type_);
}


CPURegister CPURegList::PopHighestIndex() {
  ASSERT(IsValid());
  if (IsEmpty()) {
    return NoCPUReg;
  }
  int index = CountLeadingZeros(list_, kRegListSizeInBits);
  index = kRegListSizeInBits - 1 - index;
  ASSERT((1 << index) & list_);
  Remove(index);
  return CPURegister::Create(index, size_, type_);
}


void CPURegList::RemoveCalleeSaved() {
  if (type() == CPURegister::kRegister) {
    Remove(GetCalleeSaved(RegisterSizeInBits()));
  } else if (type() == CPURegister::kFPRegister) {
    Remove(GetCalleeSavedFP(RegisterSizeInBits()));
  } else {
    ASSERT(type() == CPURegister::kNoRegister);
    ASSERT(IsEmpty());
    // The list must already be empty, so do nothing.
  }
}


CPURegList CPURegList::GetCalleeSaved(unsigned size) {
  return CPURegList(CPURegister::kRegister, size, 19, 29);
}


CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
  return CPURegList(CPURegister::kFPRegister, size, 8, 15);
}


CPURegList CPURegList::GetCallerSaved(unsigned size) {
  // Registers x0-x18 and lr (x30) are caller-saved.
  CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
  list.Combine(lr);
  return list;
}


CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
  // Registers d0-d7 and d16-d31 are caller-saved.
  CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
  list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
  return list;
}


// This function defines the list of registers which are associated with a
// safepoint slot. Safepoint register slots are saved contiguously on the stack.
// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
// code to index in the safepoint register slots. Any change here can affect
// this mapping.
CPURegList CPURegList::GetSafepointSavedRegisters() {
  CPURegList list = CPURegList::GetCalleeSaved();
123 124
  list.Combine(
      CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

  // Note that unfortunately we can't use symbolic names for registers and have
  // to directly use register codes. This is because this function is used to
  // initialize some static variables and we can't rely on register variables
  // to be initialized due to static initialization order issues in C++.

  // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
  // preserved outside of the macro assembler.
  list.Remove(16);
  list.Remove(17);

  // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
  // is a caller-saved register according to the procedure call standard.
  list.Combine(18);

  // Drop jssp as the stack pointer doesn't need to be included.
  list.Remove(28);

  // Add the link register (x30) to the safepoint list.
  list.Combine(30);

  return list;
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo

const int RelocInfo::kApplyMask = 0;


bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially coded. Being
158
  // specially coded on ARM64 means that it is a movz/movk sequence. We don't
159 160 161 162 163
  // generate those for relocatable pointers.
  return false;
}


164 165 166 167 168 169
bool RelocInfo::IsInConstantPool() {
  Instruction* instr = reinterpret_cast<Instruction*>(pc_);
  return instr->IsLdrLiteralX();
}


170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
  // Patch the code at the current address with the supplied instructions.
  Instr* pc = reinterpret_cast<Instr*>(pc_);
  Instr* instr = reinterpret_cast<Instr*>(instructions);
  for (int i = 0; i < instruction_count; i++) {
    *(pc + i) = *(instr + i);
  }

  // Indicate that code has changed.
  CPU::FlushICache(pc_, instruction_count * kInstructionSize);
}


// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
  UNIMPLEMENTED();
}


190 191 192 193 194 195 196 197 198 199 200 201 202
Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
                                              Register reg3, Register reg4) {
  CPURegList regs(reg1, reg2, reg3, reg4);
  for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
    Register candidate = Register::FromAllocationIndex(i);
    if (regs.IncludesAliasOf(candidate)) continue;
    return candidate;
  }
  UNREACHABLE();
  return NoReg;
}


203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
                const CPURegister& reg3, const CPURegister& reg4,
                const CPURegister& reg5, const CPURegister& reg6,
                const CPURegister& reg7, const CPURegister& reg8) {
  int number_of_valid_regs = 0;
  int number_of_valid_fpregs = 0;

  RegList unique_regs = 0;
  RegList unique_fpregs = 0;

  const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};

  for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
    if (regs[i].IsRegister()) {
      number_of_valid_regs++;
      unique_regs |= regs[i].Bit();
    } else if (regs[i].IsFPRegister()) {
      number_of_valid_fpregs++;
      unique_fpregs |= regs[i].Bit();
    } else {
      ASSERT(!regs[i].IsValid());
    }
  }

  int number_of_unique_regs =
    CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
  int number_of_unique_fpregs =
    CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);

  ASSERT(number_of_valid_regs >= number_of_unique_regs);
  ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);

  return (number_of_valid_regs != number_of_unique_regs) ||
         (number_of_valid_fpregs != number_of_unique_fpregs);
}


bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
                        const CPURegister& reg3, const CPURegister& reg4,
                        const CPURegister& reg5, const CPURegister& reg6,
                        const CPURegister& reg7, const CPURegister& reg8) {
  ASSERT(reg1.IsValid());
  bool match = true;
  match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
  match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
  match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
  match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
  match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
  match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
  match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
  return match;
}


257
void Operand::initialize_handle(Handle<Object> handle) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  AllowDeferredHandleDereference using_raw_address;

  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
  if (obj->IsHeapObject()) {
    ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    immediate_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
    immediate_ = reinterpret_cast<intptr_t>(obj);
    rmode_ = RelocInfo::NONE64;
  }
}


bool Operand::NeedsRelocation() const {
  if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
    if (!Serializer::enabled()) {
      Serializer::TooLateToEnableNow();
    }
#endif
    return Serializer::enabled();
  }

  return !RelocInfo::IsNone(rmode_);
}


// Assembler

Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    : AssemblerBase(isolate, buffer, buffer_size),
      recorded_ast_id_(TypeFeedbackId::None()),
293
      unresolved_branches_(),
294 295
      positions_recorder_(this) {
  const_pool_blocked_nesting_ = 0;
296
  veneer_pool_blocked_nesting_ = 0;
297 298 299 300 301 302 303
  Reset();
}


Assembler::~Assembler() {
  ASSERT(num_pending_reloc_info_ == 0);
  ASSERT(const_pool_blocked_nesting_ == 0);
304
  ASSERT(veneer_pool_blocked_nesting_ == 0);
305 306 307 308 309 310 311
}


void Assembler::Reset() {
#ifdef DEBUG
  ASSERT((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
  ASSERT(const_pool_blocked_nesting_ == 0);
312 313
  ASSERT(veneer_pool_blocked_nesting_ == 0);
  ASSERT(unresolved_branches_.empty());
314 315 316 317 318 319
  memset(buffer_, 0, pc_ - buffer_);
#endif
  pc_ = buffer_;
  reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
                               reinterpret_cast<byte*>(pc_));
  num_pending_reloc_info_ = 0;
320 321
  next_constant_pool_check_ = 0;
  next_veneer_pool_check_ = kMaxInt;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  no_const_pool_before_ = 0;
  first_const_pool_use_ = -1;
  ClearRecordedAstId();
}


void Assembler::GetCode(CodeDesc* desc) {
  // Emit constant pool if necessary.
  CheckConstPool(true, false);
  ASSERT(num_pending_reloc_info_ == 0);

  // Set up code descriptor.
  if (desc) {
    desc->buffer = reinterpret_cast<byte*>(buffer_);
    desc->buffer_size = buffer_size_;
    desc->instr_size = pc_offset();
    desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) -
                       reloc_info_writer.pos();
    desc->origin = this;
  }
}


void Assembler::Align(int m) {
  ASSERT(m >= 4 && IsPowerOf2(m));
  while ((pc_offset() & (m - 1)) != 0) {
    nop();
  }
}


void Assembler::CheckLabelLinkChain(Label const * label) {
#ifdef DEBUG
  if (label->is_linked()) {
    int linkoffset = label->pos();
357 358
    bool end_of_chain = false;
    while (!end_of_chain) {
359 360 361 362
      Instruction * link = InstructionAt(linkoffset);
      int linkpcoffset = link->ImmPCOffset();
      int prevlinkoffset = linkoffset + linkpcoffset;

363
      end_of_chain = (linkoffset == prevlinkoffset);
364 365 366 367 368 369 370
      linkoffset = linkoffset + linkpcoffset;
    }
  }
#endif
}


371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
                                               Label* label,
                                               Instruction* label_veneer) {
  ASSERT(label->is_linked());

  CheckLabelLinkChain(label);

  Instruction* link = InstructionAt(label->pos());
  Instruction* prev_link = link;
  Instruction* next_link;
  bool end_of_chain = false;

  while (link != branch && !end_of_chain) {
    next_link = link->ImmPCOffsetTarget();
    end_of_chain = (link == next_link);
    prev_link = link;
    link = next_link;
  }

  ASSERT(branch == link);
  next_link = branch->ImmPCOffsetTarget();

  if (branch == prev_link) {
    // The branch is the first instruction in the chain.
    if (branch == next_link) {
      // It is also the last instruction in the chain, so it is the only branch
      // currently referring to this label.
      label->Unuse();
    } else {
      label->link_to(reinterpret_cast<byte*>(next_link) - buffer_);
    }

  } else if (branch == next_link) {
    // The branch is the last (but not also the first) instruction in the chain.
    prev_link->SetImmPCOffsetTarget(prev_link);

  } else {
    // The branch is in the middle of the chain.
    if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
      prev_link->SetImmPCOffsetTarget(next_link);
    } else if (label_veneer != NULL) {
      // Use the veneer for all previous links in the chain.
      prev_link->SetImmPCOffsetTarget(prev_link);

      end_of_chain = false;
      link = next_link;
      while (!end_of_chain) {
        next_link = link->ImmPCOffsetTarget();
        end_of_chain = (link == next_link);
        link->SetImmPCOffsetTarget(label_veneer);
        link = next_link;
      }
    } else {
      // The assert below will fire.
      // Some other work could be attempted to fix up the chain, but it would be
      // rather complicated. If we crash here, we may want to consider using an
      // other mechanism than a chain of branches.
      //
      // Note that this situation currently should not happen, as we always call
      // this function with a veneer to the target label.
      // However this could happen with a MacroAssembler in the following state:
      //    [previous code]
      //    B(label);
      //    [20KB code]
      //    Tbz(label);   // First tbz. Pointing to unconditional branch.
      //    [20KB code]
      //    Tbz(label);   // Second tbz. Pointing to the first tbz.
      //    [more code]
      // and this function is called to remove the first tbz from the label link
      // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
      // the unconditional branch.
      CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
      UNREACHABLE();
    }
  }

  CheckLabelLinkChain(label);
}


451 452 453 454 455 456 457 458
void Assembler::bind(Label* label) {
  // Bind label to the address at pc_. All instructions (most likely branches)
  // that are linked to this label will be updated to point to the newly-bound
  // label.

  ASSERT(!label->is_near_linked());
  ASSERT(!label->is_bound());

459 460
  DeleteUnresolvedBranchInfoForLabel(label);

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
  // If the label is linked, the link chain looks something like this:
  //
  // |--I----I-------I-------L
  // |---------------------->| pc_offset
  // |-------------->|         linkoffset = label->pos()
  //         |<------|         link->ImmPCOffset()
  // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
  //
  // On each iteration, the last link is updated and then removed from the
  // chain until only one remains. At that point, the label is bound.
  //
  // If the label is not linked, no preparation is required before binding.
  while (label->is_linked()) {
    int linkoffset = label->pos();
    Instruction* link = InstructionAt(linkoffset);
    int prevlinkoffset = linkoffset + link->ImmPCOffset();

    CheckLabelLinkChain(label);

    ASSERT(linkoffset >= 0);
    ASSERT(linkoffset < pc_offset());
    ASSERT((linkoffset > prevlinkoffset) ||
           (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
    ASSERT(prevlinkoffset >= 0);

    // Update the link to point to the label.
    link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));

    // Link the label to the previous link in the chain.
    if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
      // We hit kStartOfLabelLinkChain, so the chain is fully processed.
      label->Unuse();
    } else {
      // Update the label for the next iteration.
      label->link_to(prevlinkoffset);
    }
  }
  label->bind_to(pc_offset());

  ASSERT(label->is_bound());
  ASSERT(!label->is_linked());
}


int Assembler::LinkAndGetByteOffsetTo(Label* label) {
  ASSERT(sizeof(*pc_) == 1);
  CheckLabelLinkChain(label);

  int offset;
  if (label->is_bound()) {
    // The label is bound, so it does not need to be updated. Referring
    // instructions must link directly to the label as they will not be
    // updated.
    //
    // In this case, label->pos() returns the offset of the label from the
    // start of the buffer.
    //
    // Note that offset can be zero for self-referential instructions. (This
    // could be useful for ADR, for example.)
    offset = label->pos() - pc_offset();
    ASSERT(offset <= 0);
  } else {
    if (label->is_linked()) {
      // The label is linked, so the referring instruction should be added onto
      // the end of the label's link chain.
      //
      // In this case, label->pos() returns the offset of the last linked
      // instruction from the start of the buffer.
      offset = label->pos() - pc_offset();
      ASSERT(offset != kStartOfLabelLinkChain);
      // Note that the offset here needs to be PC-relative only so that the
      // first instruction in a buffer can link to an unbound label. Otherwise,
      // the offset would be 0 for this case, and 0 is reserved for
      // kStartOfLabelLinkChain.
    } else {
      // The label is unused, so it now becomes linked and the referring
      // instruction is at the start of the new link chain.
      offset = kStartOfLabelLinkChain;
    }
    // The instruction at pc is now the last link in the label's chain.
    label->link_to(pc_offset());
  }

  return offset;
}


548
void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
549 550 551 552 553
  if (unresolved_branches_.empty()) {
    ASSERT(next_veneer_pool_check_ == kMaxInt);
    return;
  }

554 555 556 557 558 559 560 561 562 563
  if (label->is_linked()) {
    // Branches to this label will be resolved when the label is bound below.
    std::multimap<int, FarBranchInfo>::iterator it_tmp, it;
    it = unresolved_branches_.begin();
    while (it != unresolved_branches_.end()) {
      it_tmp = it++;
      if (it_tmp->second.label_ == label) {
        CHECK(it_tmp->first >= pc_offset());
        unresolved_branches_.erase(it_tmp);
      }
564 565
    }
  }
566 567 568 569 570 571
  if (unresolved_branches_.empty()) {
    next_veneer_pool_check_ = kMaxInt;
  } else {
    next_veneer_pool_check_ =
      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
  }
572 573 574
}


575 576 577 578
void Assembler::StartBlockConstPool() {
  if (const_pool_blocked_nesting_++ == 0) {
    // Prevent constant pool checks happening by setting the next check to
    // the biggest possible offset.
579
    next_constant_pool_check_ = kMaxInt;
580 581 582 583 584 585 586 587
  }
}


void Assembler::EndBlockConstPool() {
  if (--const_pool_blocked_nesting_ == 0) {
    // Check the constant pool hasn't been blocked for too long.
    ASSERT((num_pending_reloc_info_ == 0) ||
588
           (pc_offset() < (first_const_pool_use_ + kMaxDistToConstPool)));
589
    // Two cases:
590
    //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
591
    //    still blocked
592 593 594
    //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
    //    will trigger a check.
    next_constant_pool_check_ = no_const_pool_before_;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
  }
}


bool Assembler::is_const_pool_blocked() const {
  return (const_pool_blocked_nesting_ > 0) ||
         (pc_offset() < no_const_pool_before_);
}


bool Assembler::IsConstantPoolAt(Instruction* instr) {
  // The constant pool marker is made of two instructions. These instructions
  // will never be emitted by the JIT, so checking for the first one is enough:
  // 0: ldr xzr, #<size of pool>
  bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code());

  // It is still worth asserting the marker is complete.
  // 4: blr xzr
  ASSERT(!result || (instr->following()->IsBranchAndLinkToRegister() &&
                     instr->following()->Rn() == xzr.code()));

  return result;
}


int Assembler::ConstantPoolSizeAt(Instruction* instr) {
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
#ifdef USE_SIMULATOR
  // Assembler::debug() embeds constants directly into the instruction stream.
  // Although this is not a genuine constant pool, treat it like one to avoid
  // disassembling the constants.
  if ((instr->Mask(ExceptionMask) == HLT) &&
      (instr->ImmException() == kImmExceptionIsDebug)) {
    const char* message =
        reinterpret_cast<const char*>(
            instr->InstructionAtOffset(kDebugMessageOffset));
    int size = kDebugMessageOffset + strlen(message) + 1;
    return RoundUp(size, kInstructionSize) / kInstructionSize;
  }
  // Same for printf support, see MacroAssembler::CallPrintf().
  if ((instr->Mask(ExceptionMask) == HLT) &&
      (instr->ImmException() == kImmExceptionIsPrintf)) {
    return kPrintfLength / kInstructionSize;
  }
#endif
639 640 641 642 643 644 645 646 647 648 649
  if (IsConstantPoolAt(instr)) {
    return instr->ImmLLiteral();
  } else {
    return -1;
  }
}


void Assembler::ConstantPoolMarker(uint32_t size) {
  ASSERT(is_const_pool_blocked());
  // + 1 is for the crash guard.
650
  Emit(LDR_x_lit | ImmLLiteral(size + 1) | Rt(xzr));
651 652 653
}


654 655 656 657 658 659 660
void Assembler::EmitPoolGuard() {
  // We must generate only one instruction as this is used in scopes that
  // control the size of the code generated.
  Emit(BLR | Rn(xzr));
}


661 662 663 664 665 666 667 668
void Assembler::ConstantPoolGuard() {
#ifdef DEBUG
  // Currently this is only used after a constant pool marker.
  ASSERT(is_const_pool_blocked());
  Instruction* instr = reinterpret_cast<Instruction*>(pc_);
  ASSERT(instr->preceding()->IsLdrLiteralX() &&
         instr->preceding()->Rt() == xzr.code());
#endif
669
  EmitPoolGuard();
670 671 672
}


673 674 675 676 677 678 679 680 681 682 683 684 685 686
void Assembler::StartBlockVeneerPool() {
  ++veneer_pool_blocked_nesting_;
}


void Assembler::EndBlockVeneerPool() {
  if (--veneer_pool_blocked_nesting_ == 0) {
    // Check the veneer pool hasn't been blocked for too long.
    ASSERT(unresolved_branches_.empty() ||
           (pc_offset() < unresolved_branches_first_limit()));
  }
}


687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
void Assembler::br(const Register& xn) {
  positions_recorder()->WriteRecordedPositions();
  ASSERT(xn.Is64Bits());
  Emit(BR | Rn(xn));
}


void Assembler::blr(const Register& xn) {
  positions_recorder()->WriteRecordedPositions();
  ASSERT(xn.Is64Bits());
  // The pattern 'blr xzr' is used as a guard to detect when execution falls
  // through the constant pool. It should not be emitted.
  ASSERT(!xn.Is(xzr));
  Emit(BLR | Rn(xn));
}


void Assembler::ret(const Register& xn) {
  positions_recorder()->WriteRecordedPositions();
  ASSERT(xn.Is64Bits());
  Emit(RET | Rn(xn));
}


void Assembler::b(int imm26) {
  Emit(B | ImmUncondBranch(imm26));
}


void Assembler::b(Label* label) {
  positions_recorder()->WriteRecordedPositions();
  b(LinkAndGetInstructionOffsetTo(label));
}


void Assembler::b(int imm19, Condition cond) {
  Emit(B_cond | ImmCondBranch(imm19) | cond);
}


void Assembler::b(Label* label, Condition cond) {
  positions_recorder()->WriteRecordedPositions();
  b(LinkAndGetInstructionOffsetTo(label), cond);
}


void Assembler::bl(int imm26) {
  positions_recorder()->WriteRecordedPositions();
  Emit(BL | ImmUncondBranch(imm26));
}


void Assembler::bl(Label* label) {
  positions_recorder()->WriteRecordedPositions();
  bl(LinkAndGetInstructionOffsetTo(label));
}


void Assembler::cbz(const Register& rt,
                    int imm19) {
  positions_recorder()->WriteRecordedPositions();
  Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
}


void Assembler::cbz(const Register& rt,
                    Label* label) {
  positions_recorder()->WriteRecordedPositions();
  cbz(rt, LinkAndGetInstructionOffsetTo(label));
}


void Assembler::cbnz(const Register& rt,
                     int imm19) {
  positions_recorder()->WriteRecordedPositions();
  Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
}


void Assembler::cbnz(const Register& rt,
                     Label* label) {
  positions_recorder()->WriteRecordedPositions();
  cbnz(rt, LinkAndGetInstructionOffsetTo(label));
}


void Assembler::tbz(const Register& rt,
                    unsigned bit_pos,
                    int imm14) {
  positions_recorder()->WriteRecordedPositions();
777
  ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}


void Assembler::tbz(const Register& rt,
                    unsigned bit_pos,
                    Label* label) {
  positions_recorder()->WriteRecordedPositions();
  tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}


void Assembler::tbnz(const Register& rt,
                     unsigned bit_pos,
                     int imm14) {
  positions_recorder()->WriteRecordedPositions();
794
  ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}


void Assembler::tbnz(const Register& rt,
                     unsigned bit_pos,
                     Label* label) {
  positions_recorder()->WriteRecordedPositions();
  tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}


void Assembler::adr(const Register& rd, int imm21) {
  ASSERT(rd.Is64Bits());
  Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
}


void Assembler::adr(const Register& rd, Label* label) {
  adr(rd, LinkAndGetByteOffsetTo(label));
}


void Assembler::add(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  AddSub(rd, rn, operand, LeaveFlags, ADD);
}


void Assembler::adds(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  AddSub(rd, rn, operand, SetFlags, ADD);
}


void Assembler::cmn(const Register& rn,
                    const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rn);
  adds(zr, rn, operand);
}


void Assembler::sub(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  AddSub(rd, rn, operand, LeaveFlags, SUB);
}


void Assembler::subs(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  AddSub(rd, rn, operand, SetFlags, SUB);
}


void Assembler::cmp(const Register& rn, const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rn);
  subs(zr, rn, operand);
}


void Assembler::neg(const Register& rd, const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rd);
  sub(rd, zr, operand);
}


void Assembler::negs(const Register& rd, const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rd);
  subs(rd, zr, operand);
}


void Assembler::adc(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
}


void Assembler::adcs(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
}


void Assembler::sbc(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
}


void Assembler::sbcs(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
}


void Assembler::ngc(const Register& rd, const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rd);
  sbc(rd, zr, operand);
}


void Assembler::ngcs(const Register& rd, const Operand& operand) {
  Register zr = AppropriateZeroRegFor(rd);
  sbcs(rd, zr, operand);
}


// Logical instructions.
void Assembler::and_(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  Logical(rd, rn, operand, AND);
}


void Assembler::ands(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  Logical(rd, rn, operand, ANDS);
}


void Assembler::tst(const Register& rn,
                    const Operand& operand) {
  ands(AppropriateZeroRegFor(rn), rn, operand);
}


void Assembler::bic(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  Logical(rd, rn, operand, BIC);
}


void Assembler::bics(const Register& rd,
                     const Register& rn,
                     const Operand& operand) {
  Logical(rd, rn, operand, BICS);
}


void Assembler::orr(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  Logical(rd, rn, operand, ORR);
}


void Assembler::orn(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  Logical(rd, rn, operand, ORN);
}


void Assembler::eor(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  Logical(rd, rn, operand, EOR);
}


void Assembler::eon(const Register& rd,
                    const Register& rn,
                    const Operand& operand) {
  Logical(rd, rn, operand, EON);
}


void Assembler::lslv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
}


void Assembler::lsrv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
}


void Assembler::asrv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
}


void Assembler::rorv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
}


// Bitfield operations.
void Assembler::bfm(const Register& rd,
                     const Register& rn,
                     unsigned immr,
                     unsigned imms) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
  Emit(SF(rd) | BFM | N |
       ImmR(immr, rd.SizeInBits()) |
       ImmS(imms, rn.SizeInBits()) |
       Rn(rn) | Rd(rd));
}


void Assembler::sbfm(const Register& rd,
                     const Register& rn,
                     unsigned immr,
                     unsigned imms) {
  ASSERT(rd.Is64Bits() || rn.Is32Bits());
  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
  Emit(SF(rd) | SBFM | N |
       ImmR(immr, rd.SizeInBits()) |
       ImmS(imms, rn.SizeInBits()) |
       Rn(rn) | Rd(rd));
}


void Assembler::ubfm(const Register& rd,
                     const Register& rn,
                     unsigned immr,
                     unsigned imms) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
  Emit(SF(rd) | UBFM | N |
       ImmR(immr, rd.SizeInBits()) |
       ImmS(imms, rn.SizeInBits()) |
       Rn(rn) | Rd(rd));
}


void Assembler::extr(const Register& rd,
                     const Register& rn,
                     const Register& rm,
                     unsigned lsb) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
  Emit(SF(rd) | EXTR | N | Rm(rm) |
       ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
}


void Assembler::csel(const Register& rd,
                     const Register& rn,
                     const Register& rm,
                     Condition cond) {
  ConditionalSelect(rd, rn, rm, cond, CSEL);
}


void Assembler::csinc(const Register& rd,
                      const Register& rn,
                      const Register& rm,
                      Condition cond) {
  ConditionalSelect(rd, rn, rm, cond, CSINC);
}


void Assembler::csinv(const Register& rd,
                      const Register& rn,
                      const Register& rm,
                      Condition cond) {
  ConditionalSelect(rd, rn, rm, cond, CSINV);
}


void Assembler::csneg(const Register& rd,
                      const Register& rn,
                      const Register& rm,
                      Condition cond) {
  ConditionalSelect(rd, rn, rm, cond, CSNEG);
}


void Assembler::cset(const Register &rd, Condition cond) {
  ASSERT((cond != al) && (cond != nv));
  Register zr = AppropriateZeroRegFor(rd);
  csinc(rd, zr, zr, InvertCondition(cond));
}


void Assembler::csetm(const Register &rd, Condition cond) {
  ASSERT((cond != al) && (cond != nv));
  Register zr = AppropriateZeroRegFor(rd);
  csinv(rd, zr, zr, InvertCondition(cond));
}


void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
  ASSERT((cond != al) && (cond != nv));
  csinc(rd, rn, rn, InvertCondition(cond));
}


void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
  ASSERT((cond != al) && (cond != nv));
  csinv(rd, rn, rn, InvertCondition(cond));
}


void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
  ASSERT((cond != al) && (cond != nv));
  csneg(rd, rn, rn, InvertCondition(cond));
}


void Assembler::ConditionalSelect(const Register& rd,
                                  const Register& rn,
                                  const Register& rm,
                                  Condition cond,
                                  ConditionalSelectOp op) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
}


void Assembler::ccmn(const Register& rn,
                     const Operand& operand,
                     StatusFlags nzcv,
                     Condition cond) {
  ConditionalCompare(rn, operand, nzcv, cond, CCMN);
}


void Assembler::ccmp(const Register& rn,
                     const Operand& operand,
                     StatusFlags nzcv,
                     Condition cond) {
  ConditionalCompare(rn, operand, nzcv, cond, CCMP);
}


void Assembler::DataProcessing3Source(const Register& rd,
                                      const Register& rn,
                                      const Register& rm,
                                      const Register& ra,
                                      DataProcessing3SourceOp op) {
  Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
}


void Assembler::mul(const Register& rd,
                    const Register& rn,
                    const Register& rm) {
  ASSERT(AreSameSizeAndType(rd, rn, rm));
  Register zr = AppropriateZeroRegFor(rn);
  DataProcessing3Source(rd, rn, rm, zr, MADD);
}


void Assembler::madd(const Register& rd,
                     const Register& rn,
                     const Register& rm,
                     const Register& ra) {
  ASSERT(AreSameSizeAndType(rd, rn, rm, ra));
  DataProcessing3Source(rd, rn, rm, ra, MADD);
}


void Assembler::mneg(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(AreSameSizeAndType(rd, rn, rm));
  Register zr = AppropriateZeroRegFor(rn);
  DataProcessing3Source(rd, rn, rm, zr, MSUB);
}


void Assembler::msub(const Register& rd,
                     const Register& rn,
                     const Register& rm,
                     const Register& ra) {
  ASSERT(AreSameSizeAndType(rd, rn, rm, ra));
  DataProcessing3Source(rd, rn, rm, ra, MSUB);
}


void Assembler::smaddl(const Register& rd,
                       const Register& rn,
                       const Register& rm,
                       const Register& ra) {
  ASSERT(rd.Is64Bits() && ra.Is64Bits());
  ASSERT(rn.Is32Bits() && rm.Is32Bits());
  DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
}


void Assembler::smsubl(const Register& rd,
                       const Register& rn,
                       const Register& rm,
                       const Register& ra) {
  ASSERT(rd.Is64Bits() && ra.Is64Bits());
  ASSERT(rn.Is32Bits() && rm.Is32Bits());
  DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
}


void Assembler::umaddl(const Register& rd,
                       const Register& rn,
                       const Register& rm,
                       const Register& ra) {
  ASSERT(rd.Is64Bits() && ra.Is64Bits());
  ASSERT(rn.Is32Bits() && rm.Is32Bits());
  DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
}


void Assembler::umsubl(const Register& rd,
                       const Register& rn,
                       const Register& rm,
                       const Register& ra) {
  ASSERT(rd.Is64Bits() && ra.Is64Bits());
  ASSERT(rn.Is32Bits() && rm.Is32Bits());
  DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
}


void Assembler::smull(const Register& rd,
                      const Register& rn,
                      const Register& rm) {
  ASSERT(rd.Is64Bits());
  ASSERT(rn.Is32Bits() && rm.Is32Bits());
  DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
}


void Assembler::smulh(const Register& rd,
                      const Register& rn,
                      const Register& rm) {
  ASSERT(AreSameSizeAndType(rd, rn, rm));
  DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
}


void Assembler::sdiv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
}


void Assembler::udiv(const Register& rd,
                     const Register& rn,
                     const Register& rm) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == rm.SizeInBits());
  Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
}


void Assembler::rbit(const Register& rd,
                     const Register& rn) {
  DataProcessing1Source(rd, rn, RBIT);
}


void Assembler::rev16(const Register& rd,
                      const Register& rn) {
  DataProcessing1Source(rd, rn, REV16);
}


void Assembler::rev32(const Register& rd,
                      const Register& rn) {
  ASSERT(rd.Is64Bits());
  DataProcessing1Source(rd, rn, REV);
}


void Assembler::rev(const Register& rd,
                    const Register& rn) {
  DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
}


void Assembler::clz(const Register& rd,
                    const Register& rn) {
  DataProcessing1Source(rd, rn, CLZ);
}


void Assembler::cls(const Register& rd,
                    const Register& rn) {
  DataProcessing1Source(rd, rn, CLS);
}


void Assembler::ldp(const CPURegister& rt,
                    const CPURegister& rt2,
                    const MemOperand& src) {
  LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
}


void Assembler::stp(const CPURegister& rt,
                    const CPURegister& rt2,
                    const MemOperand& dst) {
  LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
}


void Assembler::ldpsw(const Register& rt,
                      const Register& rt2,
                      const MemOperand& src) {
  ASSERT(rt.Is64Bits());
  LoadStorePair(rt, rt2, src, LDPSW_x);
}


void Assembler::LoadStorePair(const CPURegister& rt,
                              const CPURegister& rt2,
                              const MemOperand& addr,
                              LoadStorePairOp op) {
  // 'rt' and 'rt2' can only be aliased for stores.
  ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
  ASSERT(AreSameSizeAndType(rt, rt2));

  Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
                ImmLSPair(addr.offset(), CalcLSPairDataSize(op));

  Instr addrmodeop;
  if (addr.IsImmediateOffset()) {
    addrmodeop = LoadStorePairOffsetFixed;
  } else {
    // Pre-index and post-index modes.
    ASSERT(!rt.Is(addr.base()));
    ASSERT(!rt2.Is(addr.base()));
    ASSERT(addr.offset() != 0);
    if (addr.IsPreIndex()) {
      addrmodeop = LoadStorePairPreIndexFixed;
    } else {
      ASSERT(addr.IsPostIndex());
      addrmodeop = LoadStorePairPostIndexFixed;
    }
  }
  Emit(addrmodeop | memop);
}


void Assembler::ldnp(const CPURegister& rt,
                     const CPURegister& rt2,
                     const MemOperand& src) {
  LoadStorePairNonTemporal(rt, rt2, src,
                           LoadPairNonTemporalOpFor(rt, rt2));
}


void Assembler::stnp(const CPURegister& rt,
                     const CPURegister& rt2,
                     const MemOperand& dst) {
  LoadStorePairNonTemporal(rt, rt2, dst,
                           StorePairNonTemporalOpFor(rt, rt2));
}


void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
                                         const CPURegister& rt2,
                                         const MemOperand& addr,
                                         LoadStorePairNonTemporalOp op) {
  ASSERT(!rt.Is(rt2));
  ASSERT(AreSameSizeAndType(rt, rt2));
  ASSERT(addr.IsImmediateOffset());

  LSDataSize size = CalcLSPairDataSize(
    static_cast<LoadStorePairOp>(op & LoadStorePairMask));
  Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
       ImmLSPair(addr.offset(), size));
}


// Memory instructions.
void Assembler::ldrb(const Register& rt, const MemOperand& src) {
  LoadStore(rt, src, LDRB_w);
}


void Assembler::strb(const Register& rt, const MemOperand& dst) {
  LoadStore(rt, dst, STRB_w);
}


void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
  LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
}


void Assembler::ldrh(const Register& rt, const MemOperand& src) {
  LoadStore(rt, src, LDRH_w);
}


void Assembler::strh(const Register& rt, const MemOperand& dst) {
  LoadStore(rt, dst, STRH_w);
}


void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
  LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
}


void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
  LoadStore(rt, src, LoadOpFor(rt));
}


void Assembler::str(const CPURegister& rt, const MemOperand& src) {
  LoadStore(rt, src, StoreOpFor(rt));
}


void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
  ASSERT(rt.Is64Bits());
  LoadStore(rt, src, LDRSW_x);
}


void Assembler::ldr(const Register& rt, uint64_t imm) {
  // TODO(all): Constant pool may be garbage collected. Hence we cannot store
1442 1443
  // arbitrary values in them. Manually move it for now. Fix
  // MacroAssembler::Fmov when this is implemented.
1444 1445 1446 1447 1448 1449
  UNIMPLEMENTED();
}


void Assembler::ldr(const FPRegister& ft, double imm) {
  // TODO(all): Constant pool may be garbage collected. Hence we cannot store
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
  // arbitrary values in them. Manually move it for now. Fix
  // MacroAssembler::Fmov when this is implemented.
  UNIMPLEMENTED();
}


void Assembler::ldr(const FPRegister& ft, float imm) {
  // TODO(all): Constant pool may be garbage collected. Hence we cannot store
  // arbitrary values in them. Manually move it for now. Fix
  // MacroAssembler::Fmov when this is implemented.
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
  UNIMPLEMENTED();
}


void Assembler::mov(const Register& rd, const Register& rm) {
  // Moves involving the stack pointer are encoded as add immediate with
  // second operand of zero. Otherwise, orr with first operand zr is
  // used.
  if (rd.IsSP() || rm.IsSP()) {
    add(rd, rm, 0);
  } else {
    orr(rd, AppropriateZeroRegFor(rd), rm);
  }
}


void Assembler::mvn(const Register& rd, const Operand& operand) {
  orn(rd, AppropriateZeroRegFor(rd), operand);
}


void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
  ASSERT(rt.Is64Bits());
  Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
}


void Assembler::msr(SystemRegister sysreg, const Register& rt) {
  ASSERT(rt.Is64Bits());
  Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
}


void Assembler::hint(SystemHint code) {
  Emit(HINT | ImmHint(code) | Rt(xzr));
}


void Assembler::dmb(BarrierDomain domain, BarrierType type) {
  Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}


void Assembler::dsb(BarrierDomain domain, BarrierType type) {
  Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}


void Assembler::isb() {
  Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
}


void Assembler::fmov(FPRegister fd, double imm) {
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
  ASSERT(fd.Is64Bits());
  ASSERT(IsImmFP64(imm));
  Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
}


void Assembler::fmov(FPRegister fd, float imm) {
  ASSERT(fd.Is32Bits());
  ASSERT(IsImmFP32(imm));
  Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}


void Assembler::fmov(Register rd, FPRegister fn) {
  ASSERT(rd.SizeInBits() == fn.SizeInBits());
  FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
  Emit(op | Rd(rd) | Rn(fn));
}


void Assembler::fmov(FPRegister fd, Register rn) {
  ASSERT(fd.SizeInBits() == rn.SizeInBits());
  FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
  Emit(op | Rd(fd) | Rn(rn));
}


void Assembler::fmov(FPRegister fd, FPRegister fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
}


void Assembler::fadd(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FADD);
}


void Assembler::fsub(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FSUB);
}


void Assembler::fmul(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FMUL);
}


void Assembler::fmadd(const FPRegister& fd,
                      const FPRegister& fn,
                      const FPRegister& fm,
                      const FPRegister& fa) {
  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
}


void Assembler::fmsub(const FPRegister& fd,
                      const FPRegister& fn,
                      const FPRegister& fm,
                      const FPRegister& fa) {
  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
}


void Assembler::fnmadd(const FPRegister& fd,
                       const FPRegister& fn,
                       const FPRegister& fm,
                       const FPRegister& fa) {
  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
}


void Assembler::fnmsub(const FPRegister& fd,
                       const FPRegister& fn,
                       const FPRegister& fm,
                       const FPRegister& fa) {
  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
}


void Assembler::fdiv(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FDIV);
}


void Assembler::fmax(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FMAX);
}


void Assembler::fmaxnm(const FPRegister& fd,
                       const FPRegister& fn,
                       const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FMAXNM);
}


void Assembler::fmin(const FPRegister& fd,
                     const FPRegister& fn,
                     const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FMIN);
}


void Assembler::fminnm(const FPRegister& fd,
                       const FPRegister& fn,
                       const FPRegister& fm) {
  FPDataProcessing2Source(fd, fn, fm, FMINNM);
}


void Assembler::fabs(const FPRegister& fd,
                     const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FABS);
}


void Assembler::fneg(const FPRegister& fd,
                     const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FNEG);
}


void Assembler::fsqrt(const FPRegister& fd,
                      const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FSQRT);
}


void Assembler::frinta(const FPRegister& fd,
                       const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FRINTA);
}


1663 1664 1665 1666 1667 1668 1669
void Assembler::frintm(const FPRegister& fd,
                       const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FRINTM);
}


1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
void Assembler::frintn(const FPRegister& fd,
                       const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FRINTN);
}


void Assembler::frintz(const FPRegister& fd,
                       const FPRegister& fn) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  FPDataProcessing1Source(fd, fn, FRINTZ);
}


void Assembler::fcmp(const FPRegister& fn,
                     const FPRegister& fm) {
  ASSERT(fn.SizeInBits() == fm.SizeInBits());
  Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
}


void Assembler::fcmp(const FPRegister& fn,
                     double value) {
  USE(value);
  // Although the fcmp instruction can strictly only take an immediate value of
  // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
  // affect the result of the comparison.
  ASSERT(value == 0.0);
  Emit(FPType(fn) | FCMP_zero | Rn(fn));
}


void Assembler::fccmp(const FPRegister& fn,
                      const FPRegister& fm,
                      StatusFlags nzcv,
                      Condition cond) {
  ASSERT(fn.SizeInBits() == fm.SizeInBits());
  Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
}


void Assembler::fcsel(const FPRegister& fd,
                      const FPRegister& fn,
                      const FPRegister& fm,
                      Condition cond) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  ASSERT(fd.SizeInBits() == fm.SizeInBits());
  Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
}


void Assembler::FPConvertToInt(const Register& rd,
                               const FPRegister& fn,
                               FPIntegerConvertOp op) {
  Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
}


void Assembler::fcvt(const FPRegister& fd,
                     const FPRegister& fn) {
  if (fd.Is64Bits()) {
    // Convert float to double.
    ASSERT(fn.Is32Bits());
    FPDataProcessing1Source(fd, fn, FCVT_ds);
  } else {
    // Convert double to float.
    ASSERT(fn.Is64Bits());
    FPDataProcessing1Source(fd, fn, FCVT_sd);
  }
}


void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTAU);
}


void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTAS);
}


void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTMU);
}


void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTMS);
}


void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTNU);
}


void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTNS);
}


void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTZU);
}


void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
  FPConvertToInt(rd, fn, FCVTZS);
}


void Assembler::scvtf(const FPRegister& fd,
                      const Register& rn,
                      unsigned fbits) {
  if (fbits == 0) {
    Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
  } else {
    Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
         Rd(fd));
  }
}


void Assembler::ucvtf(const FPRegister& fd,
                      const Register& rn,
                      unsigned fbits) {
  if (fbits == 0) {
    Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
  } else {
    Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
         Rd(fd));
  }
}


// Note:
// Below, a difference in case for the same letter indicates a
// negated bit.
// If b is 1, then B is 0.
Instr Assembler::ImmFP32(float imm) {
  ASSERT(IsImmFP32(imm));
  // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
  uint32_t bits = float_to_rawbits(imm);
  // bit7: a000.0000
  uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
  // bit6: 0b00.0000
  uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
  // bit5_to_0: 00cd.efgh
  uint32_t bit5_to_0 = (bits >> 19) & 0x3f;

  return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}


Instr Assembler::ImmFP64(double imm) {
  ASSERT(IsImmFP64(imm));
  // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  //       0000.0000.0000.0000.0000.0000.0000.0000
  uint64_t bits = double_to_rawbits(imm);
  // bit7: a000.0000
  uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
  // bit6: 0b00.0000
  uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
  // bit5_to_0: 00cd.efgh
  uint32_t bit5_to_0 = (bits >> 48) & 0x3f;

  return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}


// Code generation helpers.
void Assembler::MoveWide(const Register& rd,
                         uint64_t imm,
                         int shift,
                         MoveWideImmediateOp mov_op) {
  if (shift >= 0) {
    // Explicit shift specified.
    ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
    ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
    shift /= 16;
  } else {
    // Calculate a new immediate and shift combination to encode the immediate
    // argument.
    shift = 0;
    if ((imm & ~0xffffUL) == 0) {
      // Nothing to do.
    } else if ((imm & ~(0xffffUL << 16)) == 0) {
      imm >>= 16;
      shift = 1;
    } else if ((imm & ~(0xffffUL << 32)) == 0) {
      ASSERT(rd.Is64Bits());
      imm >>= 32;
      shift = 2;
    } else if ((imm & ~(0xffffUL << 48)) == 0) {
      ASSERT(rd.Is64Bits());
      imm >>= 48;
      shift = 3;
    }
  }

  ASSERT(is_uint16(imm));

  Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
       Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
}


void Assembler::AddSub(const Register& rd,
                       const Register& rn,
                       const Operand& operand,
                       FlagsUpdate S,
                       AddSubOp op) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(!operand.NeedsRelocation());
  if (operand.IsImmediate()) {
    int64_t immediate = operand.immediate();
    ASSERT(IsImmAddSub(immediate));
    Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
    Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
         ImmAddSub(immediate) | dest_reg | RnSP(rn));
  } else if (operand.IsShiftedRegister()) {
    ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
    ASSERT(operand.shift() != ROR);

    // For instructions of the form:
    //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
    //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
    //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
    //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
    // or their 64-bit register equivalents, convert the operand from shifted to
    // extended register mode, and emit an add/sub extended instruction.
    if (rn.IsSP() || rd.IsSP()) {
      ASSERT(!(rd.IsSP() && (S == SetFlags)));
      DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
                               AddSubExtendedFixed | op);
    } else {
      DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
    }
  } else {
    ASSERT(operand.IsExtendedRegister());
    DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
  }
}


void Assembler::AddSubWithCarry(const Register& rd,
                                const Register& rn,
                                const Operand& operand,
                                FlagsUpdate S,
                                AddSubWithCarryOp op) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(rd.SizeInBits() == operand.reg().SizeInBits());
  ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
  ASSERT(!operand.NeedsRelocation());
  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
}


void Assembler::hlt(int code) {
  ASSERT(is_uint16(code));
  Emit(HLT | ImmException(code));
}


void Assembler::brk(int code) {
  ASSERT(is_uint16(code));
  Emit(BRK | ImmException(code));
}


void Assembler::debug(const char* message, uint32_t code, Instr params) {
#ifdef USE_SIMULATOR
  // Don't generate simulator specific code if we are building a snapshot, which
  // might be run on real hardware.
  if (!Serializer::enabled()) {
#ifdef DEBUG
    Serializer::TooLateToEnableNow();
#endif
    // The arguments to the debug marker need to be contiguous in memory, so
1950 1951
    // make sure we don't try to emit pools.
    BlockPoolsScope scope(this);
1952 1953 1954 1955

    Label start;
    bind(&start);

1956
    // Refer to instructions-arm64.h for a description of the marker and its
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    // arguments.
    hlt(kImmExceptionIsDebug);
    ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
    dc32(code);
    ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
    dc32(params);
    ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
    EmitStringData(message);
    hlt(kImmExceptionIsUnreachable);

    return;
  }
  // Fall through if Serializer is enabled.
#endif

  if (params & BREAK) {
    hlt(kImmExceptionIsDebug);
  }
}


void Assembler::Logical(const Register& rd,
                        const Register& rn,
                        const Operand& operand,
                        LogicalOp op) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  ASSERT(!operand.NeedsRelocation());
  if (operand.IsImmediate()) {
    int64_t immediate = operand.immediate();
    unsigned reg_size = rd.SizeInBits();

    ASSERT(immediate != 0);
    ASSERT(immediate != -1);
    ASSERT(rd.Is64Bits() || is_uint32(immediate));

    // If the operation is NOT, invert the operation and immediate.
    if ((op & NOT) == NOT) {
      op = static_cast<LogicalOp>(op & ~NOT);
      immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
    }

    unsigned n, imm_s, imm_r;
    if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
      // Immediate can be encoded in the instruction.
      LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
    } else {
      // This case is handled in the macro assembler.
      UNREACHABLE();
    }
  } else {
    ASSERT(operand.IsShiftedRegister());
    ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
    Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
    DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
  }
}


void Assembler::LogicalImmediate(const Register& rd,
                                 const Register& rn,
                                 unsigned n,
                                 unsigned imm_s,
                                 unsigned imm_r,
                                 LogicalOp op) {
  unsigned reg_size = rd.SizeInBits();
  Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
  Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
       ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
       Rn(rn));
}


void Assembler::ConditionalCompare(const Register& rn,
                                   const Operand& operand,
                                   StatusFlags nzcv,
                                   Condition cond,
                                   ConditionalCompareOp op) {
  Instr ccmpop;
  ASSERT(!operand.NeedsRelocation());
  if (operand.IsImmediate()) {
    int64_t immediate = operand.immediate();
    ASSERT(IsImmConditionalCompare(immediate));
    ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
  } else {
    ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
    ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
  }
  Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
}


void Assembler::DataProcessing1Source(const Register& rd,
                                      const Register& rn,
                                      DataProcessing1SourceOp op) {
  ASSERT(rd.SizeInBits() == rn.SizeInBits());
  Emit(SF(rn) | op | Rn(rn) | Rd(rd));
}


void Assembler::FPDataProcessing1Source(const FPRegister& fd,
                                        const FPRegister& fn,
                                        FPDataProcessing1SourceOp op) {
  Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
}


void Assembler::FPDataProcessing2Source(const FPRegister& fd,
                                        const FPRegister& fn,
                                        const FPRegister& fm,
                                        FPDataProcessing2SourceOp op) {
  ASSERT(fd.SizeInBits() == fn.SizeInBits());
  ASSERT(fd.SizeInBits() == fm.SizeInBits());
  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
}


void Assembler::FPDataProcessing3Source(const FPRegister& fd,
                                        const FPRegister& fn,
                                        const FPRegister& fm,
                                        const FPRegister& fa,
                                        FPDataProcessing3SourceOp op) {
  ASSERT(AreSameSizeAndType(fd, fn, fm, fa));
  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
}


void Assembler::EmitShift(const Register& rd,
                          const Register& rn,
                          Shift shift,
                          unsigned shift_amount) {
  switch (shift) {
    case LSL:
      lsl(rd, rn, shift_amount);
      break;
    case LSR:
      lsr(rd, rn, shift_amount);
      break;
    case ASR:
      asr(rd, rn, shift_amount);
      break;
    case ROR:
      ror(rd, rn, shift_amount);
      break;
    default:
      UNREACHABLE();
  }
}


void Assembler::EmitExtendShift(const Register& rd,
                                const Register& rn,
                                Extend extend,
                                unsigned left_shift) {
  ASSERT(rd.SizeInBits() >= rn.SizeInBits());
  unsigned reg_size = rd.SizeInBits();
  // Use the correct size of register.
  Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
  // Bits extracted are high_bit:0.
  unsigned high_bit = (8 << (extend & 0x3)) - 1;
  // Number of bits left in the result that are not introduced by the shift.
  unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);

  if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
    switch (extend) {
      case UXTB:
      case UXTH:
      case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
      case SXTB:
      case SXTH:
      case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
      case UXTX:
      case SXTX: {
2129
        ASSERT(rn.SizeInBits() == kXRegSizeInBits);
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
        // Nothing to extend. Just shift.
        lsl(rd, rn_, left_shift);
        break;
      }
      default: UNREACHABLE();
    }
  } else {
    // No need to extend as the extended bits would be shifted away.
    lsl(rd, rn_, left_shift);
  }
}


void Assembler::DataProcShiftedRegister(const Register& rd,
                                        const Register& rn,
                                        const Operand& operand,
                                        FlagsUpdate S,
                                        Instr op) {
  ASSERT(operand.IsShiftedRegister());
  ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
  ASSERT(!operand.NeedsRelocation());
  Emit(SF(rd) | op | Flags(S) |
       ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
       Rm(operand.reg()) | Rn(rn) | Rd(rd));
}


void Assembler::DataProcExtendedRegister(const Register& rd,
                                         const Register& rn,
                                         const Operand& operand,
                                         FlagsUpdate S,
                                         Instr op) {
  ASSERT(!operand.NeedsRelocation());
  Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
       ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
       dest_reg | RnSP(rn));
}


bool Assembler::IsImmAddSub(int64_t immediate) {
  return is_uint12(immediate) ||
         (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
}

void Assembler::LoadStore(const CPURegister& rt,
                          const MemOperand& addr,
                          LoadStoreOp op) {
  Instr memop = op | Rt(rt) | RnSP(addr.base());
  ptrdiff_t offset = addr.offset();

  if (addr.IsImmediateOffset()) {
    LSDataSize size = CalcLSDataSize(op);
    if (IsImmLSScaled(offset, size)) {
      // Use the scaled addressing mode.
      Emit(LoadStoreUnsignedOffsetFixed | memop |
           ImmLSUnsigned(offset >> size));
    } else if (IsImmLSUnscaled(offset)) {
      // Use the unscaled addressing mode.
      Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
    } else {
      // This case is handled in the macro assembler.
      UNREACHABLE();
    }
  } else if (addr.IsRegisterOffset()) {
    Extend ext = addr.extend();
    Shift shift = addr.shift();
    unsigned shift_amount = addr.shift_amount();

    // LSL is encoded in the option field as UXTX.
    if (shift == LSL) {
      ext = UXTX;
    }

    // Shifts are encoded in one bit, indicating a left shift by the memory
    // access size.
    ASSERT((shift_amount == 0) ||
           (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
    Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
         ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
  } else {
    // Pre-index and post-index modes.
    ASSERT(!rt.Is(addr.base()));
    if (IsImmLSUnscaled(offset)) {
      if (addr.IsPreIndex()) {
        Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
      } else {
        ASSERT(addr.IsPostIndex());
        Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
      }
    } else {
      // This case is handled in the macro assembler.
      UNREACHABLE();
    }
  }
}


bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) {
  return is_int9(offset);
}


bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) {
  bool offset_is_size_multiple = (((offset >> size) << size) == offset);
  return offset_is_size_multiple && is_uint12(offset >> size);
}


void Assembler::LoadLiteral(const CPURegister& rt, int offset_from_pc) {
  ASSERT((offset_from_pc & ((1 << kLiteralEntrySizeLog2) - 1)) == 0);
  // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
  // constant pool. It should not be emitted.
  ASSERT(!rt.Is(xzr));
  Emit(LDR_x_lit |
       ImmLLiteral(offset_from_pc >> kLiteralEntrySizeLog2) |
       Rt(rt));
}


void Assembler::LoadRelocatedValue(const CPURegister& rt,
                                   const Operand& operand,
                                   LoadLiteralOp op) {
  int64_t imm = operand.immediate();
  ASSERT(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits()));
  RecordRelocInfo(operand.rmode(), imm);
  BlockConstPoolFor(1);
  Emit(op | ImmLLiteral(0) | Rt(rt));
}


// Test if a given value can be encoded in the immediate field of a logical
// instruction.
// If it can be encoded, the function returns true, and values pointed to by n,
// imm_s and imm_r are updated with immediates encoded in the format required
// by the corresponding fields in the logical instruction.
// If it can not be encoded, the function returns false, and the values pointed
// to by n, imm_s and imm_r are undefined.
bool Assembler::IsImmLogical(uint64_t value,
                             unsigned width,
                             unsigned* n,
                             unsigned* imm_s,
                             unsigned* imm_r) {
  ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2274
  ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

  // Logical immediates are encoded using parameters n, imm_s and imm_r using
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //
  // To test if an arbitary immediate can be encoded using this scheme, an
  // iterative algorithm is used.
  //
  // TODO(mcapewel) This code does not consider using X/W register overlap to
  // support 64-bit immediates where the top 32-bits are zero, and the bottom
  // 32-bits are an encodable logical immediate.

  // 1. If the value has all set or all clear bits, it can't be encoded.
  if ((value == 0) || (value == 0xffffffffffffffffUL) ||
2301
      ((width == kWRegSizeInBits) && (value == 0xffffffff))) {
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
    return false;
  }

  unsigned lead_zero = CountLeadingZeros(value, width);
  unsigned lead_one = CountLeadingZeros(~value, width);
  unsigned trail_zero = CountTrailingZeros(value, width);
  unsigned trail_one = CountTrailingZeros(~value, width);
  unsigned set_bits = CountSetBits(value, width);

  // The fixed bits in the immediate s field.
  // If width == 64 (X reg), start at 0xFFFFFF80.
  // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
  // widths won't be executed.
2315
  int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
  int imm_s_mask = 0x3F;

  for (;;) {
    // 2. If the value is two bits wide, it can be encoded.
    if (width == 2) {
      *n = 0;
      *imm_s = 0x3C;
      *imm_r = (value & 3) - 1;
      return true;
    }

    *n = (width == 64) ? 1 : 0;
    *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
    if ((lead_zero + set_bits) == width) {
      *imm_r = 0;
    } else {
      *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
    }

    // 3. If the sum of leading zeros, trailing zeros and set bits is equal to
    //    the bit width of the value, it can be encoded.
    if (lead_zero + trail_zero + set_bits == width) {
      return true;
    }

    // 4. If the sum of leading ones, trailing ones and unset bits in the
    //    value is equal to the bit width of the value, it can be encoded.
    if (lead_one + trail_one + (width - set_bits) == width) {
      return true;
    }

    // 5. If the most-significant half of the bitwise value is equal to the
    //    least-significant half, return to step 2 using the least-significant
    //    half of the value.
    uint64_t mask = (1UL << (width >> 1)) - 1;
    if ((value & mask) == ((value >> (width >> 1)) & mask)) {
      width >>= 1;
      set_bits >>= 1;
      imm_s_fixed >>= 1;
      continue;
    }

    // 6. Otherwise, the value can't be encoded.
    return false;
  }
}


bool Assembler::IsImmConditionalCompare(int64_t immediate) {
  return is_uint5(immediate);
}


bool Assembler::IsImmFP32(float imm) {
  // Valid values will have the form:
  // aBbb.bbbc.defg.h000.0000.0000.0000.0000
  uint32_t bits = float_to_rawbits(imm);
  // bits[19..0] are cleared.
  if ((bits & 0x7ffff) != 0) {
    return false;
  }

  // bits[29..25] are all set or all cleared.
  uint32_t b_pattern = (bits >> 16) & 0x3e00;
  if (b_pattern != 0 && b_pattern != 0x3e00) {
    return false;
  }

  // bit[30] and bit[29] are opposite.
  if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
    return false;
  }

  return true;
}


bool Assembler::IsImmFP64(double imm) {
  // Valid values will have the form:
  // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  // 0000.0000.0000.0000.0000.0000.0000.0000
  uint64_t bits = double_to_rawbits(imm);
  // bits[47..0] are cleared.
  if ((bits & 0xffffffffffffL) != 0) {
    return false;
  }

  // bits[61..54] are all set or all cleared.
  uint32_t b_pattern = (bits >> 48) & 0x3fc0;
  if (b_pattern != 0 && b_pattern != 0x3fc0) {
    return false;
  }

  // bit[62] and bit[61] are opposite.
  if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
    return false;
  }

  return true;
}


void Assembler::GrowBuffer() {
  if (!own_buffer_) FATAL("external code buffer is too small");

  // Compute new buffer size.
  CodeDesc desc;  // the new buffer
  if (buffer_size_ < 4 * KB) {
    desc.buffer_size = 4 * KB;
  } else if (buffer_size_ < 1 * MB) {
    desc.buffer_size = 2 * buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1 * MB;
  }
  CHECK_GT(desc.buffer_size, 0);  // No overflow.

  byte* buffer = reinterpret_cast<byte*>(buffer_);

  // Set up new buffer.
  desc.buffer = NewArray<byte>(desc.buffer_size);

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos();

  // Copy the data.
  intptr_t pc_delta = desc.buffer - buffer;
  intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
                      (buffer + buffer_size_);
  memmove(desc.buffer, buffer, desc.instr_size);
  memmove(reloc_info_writer.pos() + rc_delta,
          reloc_info_writer.pos(), desc.reloc_size);

  // Switch buffers.
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

  // None of our relocation types are pc relative pointing outside the code
  // buffer nor pc absolute pointing inside the code buffer, so there is no need
  // to relocate any emitted relocation entries.

  // Relocate pending relocation entries.
  for (int i = 0; i < num_pending_reloc_info_; i++) {
    RelocInfo& rinfo = pending_reloc_info_[i];
    ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
           rinfo.rmode() != RelocInfo::POSITION);
    if (rinfo.rmode() != RelocInfo::JS_RETURN) {
      rinfo.set_pc(rinfo.pc() + pc_delta);
    }
  }
}


2472
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2473 2474 2475 2476
  // We do not try to reuse pool constants.
  RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL);
  if (((rmode >= RelocInfo::JS_RETURN) &&
       (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
2477 2478
      (rmode == RelocInfo::CONST_POOL) ||
      (rmode == RelocInfo::VENEER_POOL)) {
2479 2480 2481 2482 2483
    // Adjust code for new modes.
    ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
           || RelocInfo::IsJSReturn(rmode)
           || RelocInfo::IsComment(rmode)
           || RelocInfo::IsPosition(rmode)
2484 2485
           || RelocInfo::IsConstPool(rmode)
           || RelocInfo::IsVeneerPool(rmode));
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    // These modes do not need an entry in the constant pool.
  } else {
    ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo);
    if (num_pending_reloc_info_ == 0) {
      first_const_pool_use_ = pc_offset();
    }
    pending_reloc_info_[num_pending_reloc_info_++] = rinfo;
    // Make sure the constant pool is not emitted in place of the next
    // instruction for which we just recorded relocation info.
    BlockConstPoolFor(1);
  }

  if (!RelocInfo::IsNone(rmode)) {
    // Don't record external references unless the heap will be serialized.
    if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
      if (!Serializer::enabled()) {
        Serializer::TooLateToEnableNow();
      }
#endif
      if (!Serializer::enabled() && !emit_debug_code()) {
        return;
      }
    }
    ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
      RelocInfo reloc_info_with_ast_id(
          reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL);
      ClearRecordedAstId();
      reloc_info_writer.Write(&reloc_info_with_ast_id);
    } else {
      reloc_info_writer.Write(&rinfo);
    }
  }
}


void Assembler::BlockConstPoolFor(int instructions) {
  int pc_limit = pc_offset() + instructions * kInstructionSize;
  if (no_const_pool_before_ < pc_limit) {
    // If there are some pending entries, the constant pool cannot be blocked
2527
    // further than first_const_pool_use_ + kMaxDistToConstPool
2528
    ASSERT((num_pending_reloc_info_ == 0) ||
2529
           (pc_limit < (first_const_pool_use_ + kMaxDistToConstPool)));
2530 2531 2532
    no_const_pool_before_ = pc_limit;
  }

2533 2534
  if (next_constant_pool_check_ < no_const_pool_before_) {
    next_constant_pool_check_ = no_const_pool_before_;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
  }
}


void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
  // Some short sequence of instruction mustn't be broken up by constant pool
  // emission, such sequences are protected by calls to BlockConstPoolFor and
  // BlockConstPoolScope.
  if (is_const_pool_blocked()) {
    // Something is wrong if emission is forced and blocked at the same time.
    ASSERT(!force_emit);
    return;
  }

  // There is nothing to do if there are no pending constant pool entries.
  if (num_pending_reloc_info_ == 0)  {
    // Calculate the offset of the next check.
2552
    next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval;
2553 2554 2555 2556 2557 2558
    return;
  }

  // We emit a constant pool when:
  //  * requested to do so by parameter force_emit (e.g. after each function).
  //  * the distance to the first instruction accessing the constant pool is
2559
  //    kAvgDistToConstPool or more.
2560
  //  * no jump is required and the distance to the first instruction accessing
2561
  //    the constant pool is at least kMaxDistToPConstool / 2.
2562 2563
  ASSERT(first_const_pool_use_ >= 0);
  int dist = pc_offset() - first_const_pool_use_;
2564 2565
  if (!force_emit && dist < kAvgDistToConstPool &&
      (require_jump || (dist < (kMaxDistToConstPool / 2)))) {
2566 2567 2568 2569
    return;
  }

  int jump_instr = require_jump ? kInstructionSize : 0;
2570 2571 2572 2573 2574
  int size_pool_marker = kInstructionSize;
  int size_pool_guard = kInstructionSize;
  int pool_size = jump_instr + size_pool_marker + size_pool_guard +
    num_pending_reloc_info_ * kPointerSize;
  int needed_space = pool_size + kGap;
2575 2576 2577

  // Emit veneers for branches that would go out of range during emission of the
  // constant pool.
2578
  CheckVeneerPool(false, require_jump, kVeneerDistanceMargin + pool_size);
2579 2580 2581 2582 2583 2584 2585

  Label size_check;
  bind(&size_check);

  // Check that the code buffer is large enough before emitting the constant
  // pool (include the jump over the pool, the constant pool marker, the
  // constant pool guard, and the gap to the relocation information).
2586 2587 2588 2589 2590
  while (buffer_space() <= needed_space) {
    GrowBuffer();
  }

  {
2591 2592
    // Block recursive calls to CheckConstPool and protect from veneer pools.
    BlockPoolsScope block_pools(this);
2593
    RecordConstPool(pool_size);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    // Emit jump over constant pool if necessary.
    Label after_pool;
    if (require_jump) {
      b(&after_pool);
    }

    // Emit a constant pool header. The header has two goals:
    //  1) Encode the size of the constant pool, for use by the disassembler.
    //  2) Terminate the program, to try to prevent execution from accidentally
    //     flowing into the constant pool.
2605
    // The header is therefore made of two arm64 instructions:
2606 2607 2608 2609 2610 2611
    //   ldr xzr, #<size of the constant pool in 32-bit words>
    //   blr xzr
    // If executed the code will likely segfault and lr will point to the
    // beginning of the constant pool.
    // TODO(all): currently each relocated constant is 64 bits, consider adding
    // support for 32-bit entries.
2612
    RecordComment("[ Constant Pool");
2613 2614 2615 2616 2617 2618 2619 2620 2621
    ConstantPoolMarker(2 * num_pending_reloc_info_);
    ConstantPoolGuard();

    // Emit constant pool entries.
    for (int i = 0; i < num_pending_reloc_info_; i++) {
      RelocInfo& rinfo = pending_reloc_info_[i];
      ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
             rinfo.rmode() != RelocInfo::POSITION &&
             rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
2622 2623
             rinfo.rmode() != RelocInfo::CONST_POOL &&
             rinfo.rmode() != RelocInfo::VENEER_POOL);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

      Instruction* instr = reinterpret_cast<Instruction*>(rinfo.pc());
      // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
      ASSERT(instr->IsLdrLiteral() &&
             instr->ImmLLiteral() == 0);

      instr->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));
      dc64(rinfo.data());
    }

    num_pending_reloc_info_ = 0;
    first_const_pool_use_ = -1;

    RecordComment("]");

    if (after_pool.is_linked()) {
      bind(&after_pool);
    }
  }

  // Since a constant pool was just emitted, move the check offset forward by
  // the standard interval.
2646
  next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval;
2647 2648 2649

  ASSERT(SizeOfCodeGeneratedSince(&size_check) ==
         static_cast<unsigned>(pool_size));
2650 2651 2652
}


2653 2654 2655 2656 2657 2658 2659 2660
bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
  // Account for the branch around the veneers and the guard.
  int protection_offset = 2 * kInstructionSize;
  return pc_offset() > max_reachable_pc - margin - protection_offset -
    static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
}


2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
void Assembler::RecordVeneerPool(int location_offset, int size) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  RelocInfo rinfo(buffer_ + location_offset,
                  RelocInfo::VENEER_POOL, static_cast<intptr_t>(size),
                  NULL);
  reloc_info_writer.Write(&rinfo);
#endif
}


2671
void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
2672 2673 2674
  BlockPoolsScope scope(this);
  RecordComment("[ Veneers");

2675 2676 2677 2678 2679 2680 2681 2682 2683
  // The exact size of the veneer pool must be recorded (see the comment at the
  // declaration site of RecordConstPool()), but computing the number of
  // veneers that will be generated is not obvious. So instead we remember the
  // current position and will record the size after the pool has been
  // generated.
  Label size_check;
  bind(&size_check);
  int veneer_pool_relocinfo_loc = pc_offset();

2684 2685 2686 2687 2688 2689 2690
  Label end;
  if (need_protection) {
    b(&end);
  }

  EmitVeneersGuard();

2691
  Label veneer_size_check;
2692 2693 2694 2695 2696

  std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;

  it = unresolved_branches_.begin();
  while (it != unresolved_branches_.end()) {
2697
    if (force_emit || ShouldEmitVeneer(it->first, margin)) {
2698 2699 2700 2701
      Instruction* branch = InstructionAt(it->second.pc_offset_);
      Label* label = it->second.label_;

#ifdef DEBUG
2702
      bind(&veneer_size_check);
2703 2704 2705 2706 2707 2708 2709 2710
#endif
      // Patch the branch to point to the current position, and emit a branch
      // to the label.
      Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
      RemoveBranchFromLabelLinkChain(branch, label, veneer);
      branch->SetImmPCOffsetTarget(veneer);
      b(label);
#ifdef DEBUG
2711
      ASSERT(SizeOfCodeGeneratedSince(&veneer_size_check) <=
2712
             static_cast<uint64_t>(kMaxVeneerCodeSize));
2713
      veneer_size_check.Unuse();
2714 2715 2716 2717 2718 2719 2720 2721 2722
#endif

      it_to_delete = it++;
      unresolved_branches_.erase(it_to_delete);
    } else {
      ++it;
    }
  }

2723 2724 2725 2726
  // Record the veneer pool size.
  int pool_size = SizeOfCodeGeneratedSince(&size_check);
  RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
  if (unresolved_branches_.empty()) {
    next_veneer_pool_check_ = kMaxInt;
  } else {
    next_veneer_pool_check_ =
      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
  }

  bind(&end);

  RecordComment("]");
}


2740
void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
                                int margin) {
  // There is nothing to do if there are no pending veneer pool entries.
  if (unresolved_branches_.empty())  {
    ASSERT(next_veneer_pool_check_ == kMaxInt);
    return;
  }

  ASSERT(pc_offset() < unresolved_branches_first_limit());

  // Some short sequence of instruction mustn't be broken up by veneer pool
  // emission, such sequences are protected by calls to BlockVeneerPoolFor and
  // BlockVeneerPoolScope.
  if (is_veneer_pool_blocked()) {
2754
    ASSERT(!force_emit);
2755 2756 2757 2758 2759 2760 2761
    return;
  }

  if (!require_jump) {
    // Prefer emitting veneers protected by an existing instruction.
    margin *= kVeneerNoProtectionFactor;
  }
2762 2763
  if (force_emit || ShouldEmitVeneers(margin)) {
    EmitVeneers(force_emit, require_jump, margin);
2764 2765 2766 2767 2768 2769 2770
  } else {
    next_veneer_pool_check_ =
      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
  }
}


2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
void Assembler::RecordComment(const char* msg) {
  if (FLAG_code_comments) {
    CheckBuffer();
    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
  }
}


int Assembler::buffer_space() const {
  return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_);
}


void Assembler::RecordJSReturn() {
  positions_recorder()->WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::JS_RETURN);
}


void Assembler::RecordDebugBreakSlot() {
  positions_recorder()->WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
}


void Assembler::RecordConstPool(int size) {
  // We only need this for debugger support, to correctly compute offsets in the
  // code.
#ifdef ENABLE_DEBUGGER_SUPPORT
  RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
#endif
}


2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
MaybeObject* Assembler::AllocateConstantPool(Heap* heap) {
  // No out-of-line constant pool support.
  UNREACHABLE();
  return NULL;
}


void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
  // No out-of-line constant pool support.
  UNREACHABLE();
}


2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
void PatchingAssembler::MovInt64(const Register& rd, int64_t imm) {
  Label start;
  bind(&start);

  ASSERT(rd.Is64Bits());
  ASSERT(!rd.IsSP());

  for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
    uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
    movk(rd, imm16, 16 * i);
  }

  ASSERT(SizeOfCodeGeneratedSince(&start) ==
         kMovInt64NInstrs * kInstructionSize);
}


void PatchingAssembler::PatchAdrFar(Instruction* target) {
  // The code at the current instruction should be:
  //   adr  rd, 0
  //   nop  (adr_far)
  //   nop  (adr_far)
  //   nop  (adr_far)
  //   movz scratch, 0
  //   add  rd, rd, scratch

  // Verify the expected code.
  Instruction* expected_adr = InstructionAt(0);
  CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
  int rd_code = expected_adr->Rd();
  for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
    CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
  }
  Instruction* expected_movz =
      InstructionAt((kAdrFarPatchableNInstrs - 2) * kInstructionSize);
  CHECK(expected_movz->IsMovz() &&
        (expected_movz->ImmMoveWide() == 0) &&
        (expected_movz->ShiftMoveWide() == 0));
  int scratch_code = expected_movz->Rd();
  Instruction* expected_add =
      InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
  CHECK(expected_add->IsAddSubShifted() &&
        (expected_add->Mask(AddSubOpMask) == ADD) &&
        expected_add->SixtyFourBits() &&
        (expected_add->Rd() == rd_code) && (expected_add->Rn() == rd_code) &&
        (expected_add->Rm() == scratch_code) &&
        (static_cast<Shift>(expected_add->ShiftDP()) == LSL) &&
        (expected_add->ImmDPShift() == 0));

  // Patch to load the correct address.
  Label start;
  bind(&start);
  Register rd = Register::XRegFromCode(rd_code);
  // If the target is in range, we only patch the adr. Otherwise we patch the
  // nops with fixup instructions.
  int target_offset = expected_adr->DistanceTo(target);
  if (Instruction::IsValidPCRelOffset(target_offset)) {
    adr(rd, target_offset);
    for (int i = 0; i < kAdrFarPatchableNInstrs - 2; ++i) {
      nop(ADR_FAR_NOP);
    }
  } else {
    Register scratch = Register::XRegFromCode(scratch_code);
    adr(rd, 0);
    MovInt64(scratch, target_offset);
    add(rd, rd, scratch);
  }
}


2890 2891
} }  // namespace v8::internal

2892
#endif  // V8_TARGET_ARCH_ARM64