codegen-ia32.cc 31 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#include "src/ia32/codegen-ia32.h"

7
#if V8_TARGET_ARCH_IA32
8

9
#include "src/codegen.h"
10
#include "src/heap/heap.h"
11
#include "src/macro-assembler.h"
12

13 14
namespace v8 {
namespace internal {
15

16 17 18 19

// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

20
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
21
  masm->EnterFrame(StackFrame::INTERNAL);
22
  DCHECK(!masm->has_frame());
23
  masm->set_has_frame(true);
24 25 26
}


27
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
28
  masm->LeaveFrame(StackFrame::INTERNAL);
29
  DCHECK(masm->has_frame());
30
  masm->set_has_frame(false);
31 32 33
}


34 35
#define __ masm.

36

37
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
38 39
  size_t actual_size;
  // Allocate buffer in executable space.
40 41
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
42 43
  if (buffer == nullptr) return nullptr;
  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
44
                      CodeObjectRequired::kNo);
45 46 47 48
  // esp[1 * kPointerSize]: raw double input
  // esp[0 * kPointerSize]: return address
  // Move double input into registers.
  {
49
    __ movsd(xmm0, Operand(esp, 1 * kPointerSize));
50
    __ sqrtsd(xmm0, xmm0);
51
    __ movsd(Operand(esp, 1 * kPointerSize), xmm0);
52 53 54 55 56 57 58
    // Load result into floating point register as return value.
    __ fld_d(Operand(esp, 1 * kPointerSize));
    __ Ret();
  }

  CodeDesc desc;
  masm.GetCode(&desc);
59
  DCHECK(!RelocInfo::RequiresRelocation(desc));
60

61
  Assembler::FlushICache(isolate, buffer, actual_size);
62
  base::OS::ProtectCode(buffer, actual_size);
63
  return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
64 65 66
}


67 68 69 70 71
// Helper functions for CreateMemMoveFunction.
#undef __
#define __ ACCESS_MASM(masm)

enum Direction { FORWARD, BACKWARD };
72
enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

// Expects registers:
// esi - source, aligned if alignment == ALIGNED
// edi - destination, always aligned
// ecx - count (copy size in bytes)
// edx - loop count (number of 64 byte chunks)
void MemMoveEmitMainLoop(MacroAssembler* masm,
                         Label* move_last_15,
                         Direction direction,
                         Alignment alignment) {
  Register src = esi;
  Register dst = edi;
  Register count = ecx;
  Register loop_count = edx;
  Label loop, move_last_31, move_last_63;
  __ cmp(loop_count, 0);
  __ j(equal, &move_last_63);
  __ bind(&loop);
  // Main loop. Copy in 64 byte chunks.
  if (direction == BACKWARD) __ sub(src, Immediate(0x40));
93 94 95 96
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
  __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
  __ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20));
  __ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30));
97 98 99 100 101 102 103 104 105 106 107 108 109 110
  if (direction == FORWARD) __ add(src, Immediate(0x40));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x40));
  __ movdqa(Operand(dst, 0x00), xmm0);
  __ movdqa(Operand(dst, 0x10), xmm1);
  __ movdqa(Operand(dst, 0x20), xmm2);
  __ movdqa(Operand(dst, 0x30), xmm3);
  if (direction == FORWARD) __ add(dst, Immediate(0x40));
  __ dec(loop_count);
  __ j(not_zero, &loop);
  // At most 63 bytes left to copy.
  __ bind(&move_last_63);
  __ test(count, Immediate(0x20));
  __ j(zero, &move_last_31);
  if (direction == BACKWARD) __ sub(src, Immediate(0x20));
111 112
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
  __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
113 114 115 116 117 118 119 120 121 122
  if (direction == FORWARD) __ add(src, Immediate(0x20));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x20));
  __ movdqa(Operand(dst, 0x00), xmm0);
  __ movdqa(Operand(dst, 0x10), xmm1);
  if (direction == FORWARD) __ add(dst, Immediate(0x20));
  // At most 31 bytes left to copy.
  __ bind(&move_last_31);
  __ test(count, Immediate(0x10));
  __ j(zero, move_last_15);
  if (direction == BACKWARD) __ sub(src, Immediate(0x10));
123
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0));
124 125 126 127 128 129 130 131 132 133 134
  if (direction == FORWARD) __ add(src, Immediate(0x10));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x10));
  __ movdqa(Operand(dst, 0), xmm0);
  if (direction == FORWARD) __ add(dst, Immediate(0x10));
}


void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
  __ pop(esi);
  __ pop(edi);
  __ ret(0);
135 136 137
}


138 139 140 141
#undef __
#define __ masm.


142 143 144 145 146 147 148 149 150 151 152
class LabelConverter {
 public:
  explicit LabelConverter(byte* buffer) : buffer_(buffer) {}
  int32_t address(Label* l) const {
    return reinterpret_cast<int32_t>(buffer_) + l->pos();
  }
 private:
  byte* buffer_;
};


153
MemMoveFunction CreateMemMoveFunction(Isolate* isolate) {
154 155
  size_t actual_size;
  // Allocate buffer in executable space.
156 157
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
158 159
  if (buffer == nullptr) return nullptr;
  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
160
                      CodeObjectRequired::kNo);
161
  LabelConverter conv(buffer);
162

163
  // Generated code is put into a fixed, unmovable buffer, and not into
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  // the V8 heap. We can't, and don't, refer to any relocatable addresses
  // (e.g. the JavaScript nan-object).

  // 32-bit C declaration function calls pass arguments on stack.

  // Stack layout:
  // esp[12]: Third argument, size.
  // esp[8]: Second argument, source pointer.
  // esp[4]: First argument, destination pointer.
  // esp[0]: return address

  const int kDestinationOffset = 1 * kPointerSize;
  const int kSourceOffset = 2 * kPointerSize;
  const int kSizeOffset = 3 * kPointerSize;

179 180 181 182 183 184 185 186 187 188
  // When copying up to this many bytes, use special "small" handlers.
  const size_t kSmallCopySize = 8;
  // When copying up to this many bytes, use special "medium" handlers.
  const size_t kMediumCopySize = 63;
  // When non-overlapping region of src and dst is less than this,
  // use a more careful implementation (slightly slower).
  const size_t kMinMoveDistance = 16;
  // Note that these values are dictated by the implementation below,
  // do not just change them and hope things will work!

189 190
  int stack_offset = 0;  // Update if we change the stack height.

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  Label backward, backward_much_overlap;
  Label forward_much_overlap, small_size, medium_size, pop_and_return;
  __ push(edi);
  __ push(esi);
  stack_offset += 2 * kPointerSize;
  Register dst = edi;
  Register src = esi;
  Register count = ecx;
  Register loop_count = edx;
  __ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
  __ mov(src, Operand(esp, stack_offset + kSourceOffset));
  __ mov(count, Operand(esp, stack_offset + kSizeOffset));

  __ cmp(dst, src);
  __ j(equal, &pop_and_return);

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  __ prefetch(Operand(src, 0), 1);
  __ cmp(count, kSmallCopySize);
  __ j(below_equal, &small_size);
  __ cmp(count, kMediumCopySize);
  __ j(below_equal, &medium_size);
  __ cmp(dst, src);
  __ j(above, &backward);

  {
    // |dst| is a lower address than |src|. Copy front-to-back.
    Label unaligned_source, move_last_15, skip_last_move;
    __ mov(eax, src);
    __ sub(eax, dst);
    __ cmp(eax, kMinMoveDistance);
    __ j(below, &forward_much_overlap);
    // Copy first 16 bytes.
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(Operand(dst, 0), xmm0);
    // Determine distance to alignment: 16 - (dst & 0xF).
    __ mov(edx, dst);
    __ and_(edx, 0xF);
    __ neg(edx);
    __ add(edx, Immediate(16));
    __ add(dst, edx);
    __ add(src, edx);
    __ sub(count, edx);
    // dst is now aligned. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    // Check if src is also aligned.
    __ test(src, Immediate(0xF));
    __ j(not_zero, &unaligned_source);
    // Copy loop for aligned source and destination.
    MemMoveEmitMainLoop(&masm, &move_last_15, FORWARD, MOVE_ALIGNED);
    // At most 15 bytes to copy. Copy 16 bytes at end of string.
    __ bind(&move_last_15);
    __ and_(count, 0xF);
    __ j(zero, &skip_last_move, Label::kNear);
    __ movdqu(xmm0, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm0);
    __ bind(&skip_last_move);
    MemMoveEmitPopAndReturn(&masm);

    // Copy loop for unaligned source and aligned destination.
    __ bind(&unaligned_source);
    MemMoveEmitMainLoop(&masm, &move_last_15, FORWARD, MOVE_UNALIGNED);
    __ jmp(&move_last_15);

    // Less than kMinMoveDistance offset between dst and src.
    Label loop_until_aligned, last_15_much_overlap;
    __ bind(&loop_until_aligned);
    __ mov_b(eax, Operand(src, 0));
    __ inc(src);
    __ mov_b(Operand(dst, 0), eax);
    __ inc(dst);
    __ dec(count);
    __ bind(&forward_much_overlap);  // Entry point into this block.
    __ test(dst, Immediate(0xF));
    __ j(not_zero, &loop_until_aligned);
    // dst is now aligned, src can't be. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    MemMoveEmitMainLoop(&masm, &last_15_much_overlap,
                        FORWARD, MOVE_UNALIGNED);
    __ bind(&last_15_much_overlap);
    __ and_(count, 0xF);
    __ j(zero, &pop_and_return);
274 275
    __ cmp(count, kSmallCopySize);
    __ j(below_equal, &small_size);
276 277
    __ jmp(&medium_size);
  }
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  {
    // |dst| is a higher address than |src|. Copy backwards.
    Label unaligned_source, move_first_15, skip_last_move;
    __ bind(&backward);
    // |dst| and |src| always point to the end of what's left to copy.
    __ add(dst, count);
    __ add(src, count);
    __ mov(eax, dst);
    __ sub(eax, src);
    __ cmp(eax, kMinMoveDistance);
    __ j(below, &backward_much_overlap);
    // Copy last 16 bytes.
    __ movdqu(xmm0, Operand(src, -0x10));
    __ movdqu(Operand(dst, -0x10), xmm0);
    // Find distance to alignment: dst & 0xF
    __ mov(edx, dst);
    __ and_(edx, 0xF);
    __ sub(dst, edx);
    __ sub(src, edx);
    __ sub(count, edx);
    // dst is now aligned. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    // Check if src is also aligned.
    __ test(src, Immediate(0xF));
    __ j(not_zero, &unaligned_source);
    // Copy loop for aligned source and destination.
    MemMoveEmitMainLoop(&masm, &move_first_15, BACKWARD, MOVE_ALIGNED);
    // At most 15 bytes to copy. Copy 16 bytes at beginning of string.
    __ bind(&move_first_15);
    __ and_(count, 0xF);
    __ j(zero, &skip_last_move, Label::kNear);
    __ sub(src, count);
    __ sub(dst, count);
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(Operand(dst, 0), xmm0);
    __ bind(&skip_last_move);
    MemMoveEmitPopAndReturn(&masm);

    // Copy loop for unaligned source and aligned destination.
    __ bind(&unaligned_source);
    MemMoveEmitMainLoop(&masm, &move_first_15, BACKWARD, MOVE_UNALIGNED);
    __ jmp(&move_first_15);

    // Less than kMinMoveDistance offset between dst and src.
    Label loop_until_aligned, first_15_much_overlap;
    __ bind(&loop_until_aligned);
    __ dec(src);
    __ dec(dst);
    __ mov_b(eax, Operand(src, 0));
    __ mov_b(Operand(dst, 0), eax);
    __ dec(count);
    __ bind(&backward_much_overlap);  // Entry point into this block.
    __ test(dst, Immediate(0xF));
    __ j(not_zero, &loop_until_aligned);
    // dst is now aligned, src can't be. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    MemMoveEmitMainLoop(&masm, &first_15_much_overlap,
                        BACKWARD, MOVE_UNALIGNED);
    __ bind(&first_15_much_overlap);
    __ and_(count, 0xF);
    __ j(zero, &pop_and_return);
    // Small/medium handlers expect dst/src to point to the beginning.
    __ sub(dst, count);
    __ sub(src, count);
    __ cmp(count, kSmallCopySize);
    __ j(below_equal, &small_size);
    __ jmp(&medium_size);
  }
  {
    // Special handlers for 9 <= copy_size < 64. No assumptions about
    // alignment or move distance, so all reads must be unaligned and
    // must happen before any writes.
    Label medium_handlers, f9_16, f17_32, f33_48, f49_63;

    __ bind(&f9_16);
    __ movsd(xmm0, Operand(src, 0));
    __ movsd(xmm1, Operand(src, count, times_1, -8));
    __ movsd(Operand(dst, 0), xmm0);
    __ movsd(Operand(dst, count, times_1, -8), xmm1);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f17_32);
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(xmm1, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm1);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f33_48);
    __ movdqu(xmm0, Operand(src, 0x00));
    __ movdqu(xmm1, Operand(src, 0x10));
    __ movdqu(xmm2, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, 0x10), xmm1);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm2);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f49_63);
    __ movdqu(xmm0, Operand(src, 0x00));
    __ movdqu(xmm1, Operand(src, 0x10));
    __ movdqu(xmm2, Operand(src, 0x20));
    __ movdqu(xmm3, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, 0x10), xmm1);
    __ movdqu(Operand(dst, 0x20), xmm2);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm3);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&medium_handlers);
    __ dd(conv.address(&f9_16));
    __ dd(conv.address(&f17_32));
    __ dd(conv.address(&f33_48));
    __ dd(conv.address(&f49_63));

    __ bind(&medium_size);  // Entry point into this block.
    __ mov(eax, count);
    __ dec(eax);
    __ shr(eax, 4);
    if (FLAG_debug_code) {
      Label ok;
      __ cmp(eax, 3);
      __ j(below_equal, &ok);
      __ int3();
      __ bind(&ok);
405
    }
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    __ mov(eax, Operand(eax, times_4, conv.address(&medium_handlers)));
    __ jmp(eax);
  }
  {
    // Specialized copiers for copy_size <= 8 bytes.
    Label small_handlers, f0, f1, f2, f3, f4, f5_8;
    __ bind(&f0);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f1);
    __ mov_b(eax, Operand(src, 0));
    __ mov_b(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f2);
    __ mov_w(eax, Operand(src, 0));
    __ mov_w(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f3);
    __ mov_w(eax, Operand(src, 0));
    __ mov_b(edx, Operand(src, 2));
    __ mov_w(Operand(dst, 0), eax);
    __ mov_b(Operand(dst, 2), edx);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f4);
    __ mov(eax, Operand(src, 0));
    __ mov(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f5_8);
    __ mov(eax, Operand(src, 0));
    __ mov(edx, Operand(src, count, times_1, -4));
    __ mov(Operand(dst, 0), eax);
    __ mov(Operand(dst, count, times_1, -4), edx);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&small_handlers);
    __ dd(conv.address(&f0));
    __ dd(conv.address(&f1));
    __ dd(conv.address(&f2));
    __ dd(conv.address(&f3));
    __ dd(conv.address(&f4));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));

    __ bind(&small_size);  // Entry point into this block.
    if (FLAG_debug_code) {
      Label ok;
      __ cmp(count, 8);
      __ j(below_equal, &ok);
      __ int3();
      __ bind(&ok);
462
    }
463 464
    __ mov(eax, Operand(count, times_4, conv.address(&small_handlers)));
    __ jmp(eax);
465 466
  }

467 468 469
  __ bind(&pop_and_return);
  MemMoveEmitPopAndReturn(&masm);

470 471
  CodeDesc desc;
  masm.GetCode(&desc);
472
  DCHECK(!RelocInfo::RequiresRelocation(desc));
473
  Assembler::FlushICache(isolate, buffer, actual_size);
474
  base::OS::ProtectCode(buffer, actual_size);
475 476
  // TODO(jkummerow): It would be nice to register this code creation event
  // with the PROFILE / GDBJIT system.
477
  return FUNCTION_CAST<MemMoveFunction>(buffer);
478 479
}

480

481 482
#undef __

483 484 485 486 487
// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

488

489
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
490 491 492 493 494 495
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
496
    Label* allocation_memento_found) {
497
  Register scratch = edi;
498
  DCHECK(!AreAliased(receiver, key, value, target_map, scratch));
499

500
  if (mode == TRACK_ALLOCATION_SITE) {
501
    DCHECK(allocation_memento_found != NULL);
502 503
    __ JumpIfJSArrayHasAllocationMemento(
        receiver, scratch, allocation_memento_found);
504 505
  }

506
  // Set transitioned map.
507 508
  __ mov(FieldOperand(receiver, HeapObject::kMapOffset), target_map);
  __ RecordWriteField(receiver,
509
                      HeapObject::kMapOffset,
510 511
                      target_map,
                      scratch,
512 513 514 515 516 517
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


518
void ElementsTransitionGenerator::GenerateSmiToDouble(
519 520 521 522 523 524 525 526
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
    Label* fail) {
  // Return address is on the stack.
527 528 529 530
  DCHECK(receiver.is(edx));
  DCHECK(key.is(ecx));
  DCHECK(value.is(eax));
  DCHECK(target_map.is(ebx));
531

532 533
  Label loop, entry, convert_hole, gc_required, only_change_map;

534
  if (mode == TRACK_ALLOCATION_SITE) {
535
    __ JumpIfJSArrayHasAllocationMemento(edx, edi, fail);
536 537
  }

538 539 540 541 542 543
  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
  __ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array()));
  __ j(equal, &only_change_map);

544 545
  __ push(eax);
  __ push(ebx);
546
  __ push(esi);
547 548 549 550 551 552

  __ mov(edi, FieldOperand(edi, FixedArray::kLengthOffset));

  // Allocate new FixedDoubleArray.
  // edx: receiver
  // edi: length of source FixedArray (smi-tagged)
553
  AllocationFlags flags = static_cast<AllocationFlags>(DOUBLE_ALIGNMENT);
554 555
  __ Allocate(FixedDoubleArray::kHeaderSize, times_8, edi,
              REGISTER_VALUE_IS_SMI, eax, ebx, no_reg, &gc_required, flags);
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  // eax: destination FixedDoubleArray
  // edi: number of elements
  // edx: receiver
  __ mov(FieldOperand(eax, HeapObject::kMapOffset),
         Immediate(masm->isolate()->factory()->fixed_double_array_map()));
  __ mov(FieldOperand(eax, FixedDoubleArray::kLengthOffset), edi);
  __ mov(esi, FieldOperand(edx, JSObject::kElementsOffset));
  // Replace receiver's backing store with newly created FixedDoubleArray.
  __ mov(FieldOperand(edx, JSObject::kElementsOffset), eax);
  __ mov(ebx, eax);
  __ RecordWriteField(edx,
                      JSObject::kElementsOffset,
                      ebx,
                      edi,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  __ mov(edi, FieldOperand(esi, FixedArray::kLengthOffset));

  // Prepare for conversion loop.
  ExternalReference canonical_the_hole_nan_reference =
      ExternalReference::address_of_the_hole_nan();
  XMMRegister the_hole_nan = xmm1;
581 582
  __ movsd(the_hole_nan,
           Operand::StaticVariable(canonical_the_hole_nan_reference));
583 584 585 586
  __ jmp(&entry);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
587

588
  // Restore registers before jumping into runtime.
589
  __ pop(esi);
590 591 592 593 594 595 596 597 598 599 600 601 602 603
  __ pop(ebx);
  __ pop(eax);
  __ jmp(fail);

  // Convert and copy elements
  // esi: source FixedArray
  __ bind(&loop);
  __ mov(ebx, FieldOperand(esi, edi, times_2, FixedArray::kHeaderSize));
  // ebx: current element from source
  // edi: index of current element
  __ JumpIfNotSmi(ebx, &convert_hole);

  // Normal smi, convert it to double and store.
  __ SmiUntag(ebx);
604 605 606
  __ Cvtsi2sd(xmm0, ebx);
  __ movsd(FieldOperand(eax, edi, times_4, FixedDoubleArray::kHeaderSize),
           xmm0);
607 608 609 610
  __ jmp(&entry);

  // Found hole, store hole_nan_as_double instead.
  __ bind(&convert_hole);
611 612 613

  if (FLAG_debug_code) {
    __ cmp(ebx, masm->isolate()->factory()->the_hole_value());
614
    __ Assert(equal, kObjectFoundInSmiOnlyArray);
615 616
  }

617 618
  __ movsd(FieldOperand(eax, edi, times_4, FixedDoubleArray::kHeaderSize),
           the_hole_nan);
619 620

  __ bind(&entry);
621 622
  __ sub(edi, Immediate(Smi::FromInt(1)));
  __ j(not_sign, &loop);
623

624 625
  // Restore registers.
  __ pop(esi);
626 627
  __ pop(ebx);
  __ pop(eax);
628 629

  __ bind(&only_change_map);
630 631 632 633 634 635 636 637 638
  // eax: value
  // ebx: target map
  // Set transitioned map.
  __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx);
  __ RecordWriteField(edx,
                      HeapObject::kMapOffset,
                      ebx,
                      edi,
                      kDontSaveFPRegs,
639
                      OMIT_REMEMBERED_SET,
640 641 642 643 644
                      OMIT_SMI_CHECK);
}


void ElementsTransitionGenerator::GenerateDoubleToObject(
645 646 647 648 649 650 651 652
    MacroAssembler* masm,
    Register receiver,
    Register key,
    Register value,
    Register target_map,
    AllocationSiteMode mode,
    Label* fail) {
  // Return address is on the stack.
653 654 655 656
  DCHECK(receiver.is(edx));
  DCHECK(key.is(ecx));
  DCHECK(value.is(eax));
  DCHECK(target_map.is(ebx));
657

658
  Label loop, entry, convert_hole, gc_required, only_change_map, success;
659

660
  if (mode == TRACK_ALLOCATION_SITE) {
661
    __ JumpIfJSArrayHasAllocationMemento(edx, edi, fail);
662 663
  }

664 665 666 667 668 669
  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
  __ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array()));
  __ j(equal, &only_change_map);

670
  __ push(esi);
671 672 673 674 675 676 677 678 679
  __ push(eax);
  __ push(edx);
  __ push(ebx);

  __ mov(ebx, FieldOperand(edi, FixedDoubleArray::kLengthOffset));

  // Allocate new FixedArray.
  // ebx: length of source FixedDoubleArray (smi-tagged)
  __ lea(edi, Operand(ebx, times_2, FixedArray::kHeaderSize));
680
  __ Allocate(edi, eax, esi, no_reg, &gc_required, NO_ALLOCATION_FLAGS);
681 682 683 684 685 686 687 688

  // eax: destination FixedArray
  // ebx: number of elements
  __ mov(FieldOperand(eax, HeapObject::kMapOffset),
         Immediate(masm->isolate()->factory()->fixed_array_map()));
  __ mov(FieldOperand(eax, FixedArray::kLengthOffset), ebx);
  __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));

689 690 691 692 693 694 695 696 697 698 699 700 701
  // Allocating heap numbers in the loop below can fail and cause a jump to
  // gc_required. We can't leave a partly initialized FixedArray behind,
  // so pessimistically fill it with holes now.
  Label initialization_loop, initialization_loop_entry;
  __ jmp(&initialization_loop_entry, Label::kNear);
  __ bind(&initialization_loop);
  __ mov(FieldOperand(eax, ebx, times_2, FixedArray::kHeaderSize),
         masm->isolate()->factory()->the_hole_value());
  __ bind(&initialization_loop_entry);
  __ sub(ebx, Immediate(Smi::FromInt(1)));
  __ j(not_sign, &initialization_loop);

  __ mov(ebx, FieldOperand(edi, FixedDoubleArray::kLengthOffset));
702 703
  __ jmp(&entry);

704 705 706 707 708 709 710 711 712 713 714 715 716 717
  // ebx: target map
  // edx: receiver
  // Set transitioned map.
  __ bind(&only_change_map);
  __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx);
  __ RecordWriteField(edx,
                      HeapObject::kMapOffset,
                      ebx,
                      edi,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ jmp(&success);

718
  // Call into runtime if GC is required.
719
  __ bind(&gc_required);
720 721 722
  __ pop(ebx);
  __ pop(edx);
  __ pop(eax);
723
  __ pop(esi);
724 725 726 727 728 729 730 731 732 733 734 735
  __ jmp(fail);

  // Box doubles into heap numbers.
  // edi: source FixedDoubleArray
  // eax: destination FixedArray
  __ bind(&loop);
  // ebx: index of current element (smi-tagged)
  uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
  __ cmp(FieldOperand(edi, ebx, times_4, offset), Immediate(kHoleNanUpper32));
  __ j(equal, &convert_hole);

  // Non-hole double, copy value into a heap number.
736
  __ AllocateHeapNumber(edx, esi, no_reg, &gc_required);
737
  // edx: new heap number
738 739 740
  __ movsd(xmm0,
           FieldOperand(edi, ebx, times_4, FixedDoubleArray::kHeaderSize));
  __ movsd(FieldOperand(edx, HeapNumber::kValueOffset), xmm0);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  __ mov(FieldOperand(eax, ebx, times_2, FixedArray::kHeaderSize), edx);
  __ mov(esi, ebx);
  __ RecordWriteArray(eax,
                      edx,
                      esi,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ jmp(&entry, Label::kNear);

  // Replace the-hole NaN with the-hole pointer.
  __ bind(&convert_hole);
  __ mov(FieldOperand(eax, ebx, times_2, FixedArray::kHeaderSize),
         masm->isolate()->factory()->the_hole_value());

  __ bind(&entry);
757 758
  __ sub(ebx, Immediate(Smi::FromInt(1)));
  __ j(not_sign, &loop);
759 760 761 762 763 764 765 766 767 768 769 770

  __ pop(ebx);
  __ pop(edx);
  // ebx: target map
  // edx: receiver
  // Set transitioned map.
  __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx);
  __ RecordWriteField(edx,
                      HeapObject::kMapOffset,
                      ebx,
                      edi,
                      kDontSaveFPRegs,
771
                      OMIT_REMEMBERED_SET,
772 773 774 775 776 777 778 779 780 781 782 783 784
                      OMIT_SMI_CHECK);
  // Replace receiver's backing store with newly created and filled FixedArray.
  __ mov(FieldOperand(edx, JSObject::kElementsOffset), eax);
  __ RecordWriteField(edx,
                      JSObject::kElementsOffset,
                      eax,
                      edi,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  // Restore registers.
  __ pop(eax);
785
  __ pop(esi);
786 787

  __ bind(&success);
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803

void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Factory* factory,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  // Fetch the instance type of the receiver into result register.
  __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
  __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ test(result, Immediate(kIsIndirectStringMask));
804
  __ j(zero, &check_sequential, Label::kNear);
805 806 807 808

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string;
  __ test(result, Immediate(kSlicedNotConsMask));
809
  __ j(zero, &cons_string, Label::kNear);
810 811 812 813 814 815 816

  // Handle slices.
  Label indirect_string_loaded;
  __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset));
  __ SmiUntag(result);
  __ add(index, result);
  __ mov(string, FieldOperand(string, SlicedString::kParentOffset));
817
  __ jmp(&indirect_string_loaded, Label::kNear);
818

819
  // Handle cons strings.
820 821 822 823 824 825 826 827 828 829 830 831 832 833
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ cmp(FieldOperand(string, ConsString::kSecondOffset),
         Immediate(factory->empty_string()));
  __ j(not_equal, call_runtime);
  __ mov(string, FieldOperand(string, ConsString::kFirstOffset));

  __ bind(&indirect_string_loaded);
  __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
  __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));

834 835 836
  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
837
  Label seq_string;
838 839 840
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ test(result, Immediate(kStringRepresentationMask));
841 842 843
  __ j(zero, &seq_string, Label::kNear);

  // Handle external strings.
844
  Label one_byte_external, done;
845 846 847 848
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ test(result, Immediate(kIsIndirectStringMask));
849
    __ Assert(zero, kExternalStringExpectedButNotFound);
850 851
  }
  // Rule out short external strings.
852
  STATIC_ASSERT(kShortExternalStringTag != 0);
853
  __ test_b(result, Immediate(kShortExternalStringMask));
854 855 856
  __ j(not_zero, call_runtime);
  // Check encoding.
  STATIC_ASSERT(kTwoByteStringTag == 0);
857
  __ test_b(result, Immediate(kStringEncodingMask));
858
  __ mov(result, FieldOperand(string, ExternalString::kResourceDataOffset));
859
  __ j(not_equal, &one_byte_external, Label::kNear);
860 861 862
  // Two-byte string.
  __ movzx_w(result, Operand(result, index, times_2, 0));
  __ jmp(&done, Label::kNear);
863 864
  __ bind(&one_byte_external);
  // One-byte string.
865 866
  __ movzx_b(result, Operand(result, index, times_1, 0));
  __ jmp(&done, Label::kNear);
867

868 869
  // Dispatch on the encoding: one-byte or two-byte.
  Label one_byte;
870
  __ bind(&seq_string);
871
  STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
872 873
  STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
  __ test(result, Immediate(kStringEncodingMask));
874
  __ j(not_zero, &one_byte, Label::kNear);
875 876 877 878 879 880 881 882 883

  // Two-byte string.
  // Load the two-byte character code into the result register.
  __ movzx_w(result, FieldOperand(string,
                                  index,
                                  times_2,
                                  SeqTwoByteString::kHeaderSize));
  __ jmp(&done, Label::kNear);

884
  // One-byte string.
885
  // Load the byte into the result register.
886
  __ bind(&one_byte);
887 888 889
  __ movzx_b(result, FieldOperand(string,
                                  index,
                                  times_1,
890
                                  SeqOneByteString::kHeaderSize));
891 892 893
  __ bind(&done);
}

894 895
#undef __

896

897 898
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
  USE(isolate);
899
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
900 901
  CodePatcher patcher(isolate, young_sequence_.start(),
                      young_sequence_.length());
902 903 904 905 906 907 908 909 910 911
  patcher.masm()->push(ebp);
  patcher.masm()->mov(ebp, esp);
  patcher.masm()->push(esi);
  patcher.masm()->push(edi);
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return *candidate == kCallOpcode;
912
}
913
#endif
914 915


916 917
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  bool result = isolate->code_aging_helper()->IsYoung(sequence);
918
  DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
919 920 921 922
  return result;
}


923
void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
924
                               MarkingParity* parity) {
925
  if (IsYoungSequence(isolate, sequence)) {
926
    *age = kNoAgeCodeAge;
927 928 929 930 931 932 933 934 935 936 937
    *parity = NO_MARKING_PARITY;
  } else {
    sequence++;  // Skip the kCallOpcode byte
    Address target_address = sequence + *reinterpret_cast<int*>(sequence) +
        Assembler::kCallTargetAddressOffset;
    Code* stub = GetCodeFromTargetAddress(target_address);
    GetCodeAgeAndParity(stub, age, parity);
  }
}


938 939
void Code::PatchPlatformCodeAge(Isolate* isolate,
                                byte* sequence,
940 941
                                Code::Age age,
                                MarkingParity parity) {
942
  uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
943
  if (age == kNoAgeCodeAge) {
944
    isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
945
    Assembler::FlushICache(isolate, sequence, young_length);
946
  } else {
947
    Code* stub = GetCodeAgeStub(isolate, age, parity);
948
    CodePatcher patcher(isolate, sequence, young_length);
949
    patcher.masm()->call(stub->instruction_start(), RelocInfo::NONE32);
950 951 952 953
  }
}


954 955
}  // namespace internal
}  // namespace v8
956 957

#endif  // V8_TARGET_ARCH_IA32