platform-linux.cc 18.7 KB
Newer Older
1
// Copyright 2006-2008 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28 29
// Platform specific code for Linux goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
30 31 32 33 34 35

#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/resource.h>
36
#include <sys/types.h>
37 38 39 40 41 42
#include <stdlib.h>

// Ubuntu Dapper requires memory pages to be marked as
// executable. Otherwise, OS raises an exception when executing code
// in that page.
#include <sys/types.h>  // mmap & munmap
43 44
#include <sys/mman.h>   // mmap & munmap
#include <sys/stat.h>   // open
45 46
#include <fcntl.h>      // open
#include <unistd.h>     // sysconf
47
#ifdef __GLIBC__
48
#include <execinfo.h>   // backtrace, backtrace_symbols
49
#endif  // def __GLIBC__
50
#include <strings.h>    // index
51 52 53 54 55 56 57 58 59 60
#include <errno.h>
#include <stdarg.h>

#undef MAP_TYPE

#include "v8.h"

#include "platform.h"


61 62
namespace v8 {
namespace internal {
63 64 65 66 67 68 69 70 71 72 73 74 75

// 0 is never a valid thread id on Linux since tids and pids share a
// name space and pid 0 is reserved (see man 2 kill).
static const pthread_t kNoThread = (pthread_t) 0;


double ceiling(double x) {
  return ceil(x);
}


void OS::Setup() {
  // Seed the random number generator.
76 77 78 79 80 81
  // Convert the current time to a 64-bit integer first, before converting it
  // to an unsigned. Going directly can cause an overflow and the seed to be
  // set to all ones. The seed will be identical for different instances that
  // call this setup code within the same millisecond.
  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
  srandom(static_cast<unsigned int>(seed));
82 83 84
}


85 86 87 88 89 90
double OS::nan_value() {
  return NAN;
}


int OS::ActivationFrameAlignment() {
91
#ifdef V8_TARGET_ARCH_ARM
92 93
  // On EABI ARM targets this is required for fp correctness in the
  // runtime system.
94
  return 8;
95 96 97 98 99
#else
  // With gcc 4.4 the tree vectorization optimiser can generate code
  // that requires 16 byte alignment such as movdqa on x86.
  return 16;
#endif
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification).  The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap.  The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);


static void UpdateAllocatedSpaceLimits(void* address, int size) {
  lowest_ever_allocated = Min(lowest_ever_allocated, address);
  highest_ever_allocated =
      Max(highest_ever_allocated,
          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}


bool OS::IsOutsideAllocatedSpace(void* address) {
  return address < lowest_ever_allocated || address >= highest_ever_allocated;
}


size_t OS::AllocateAlignment() {
126
  return sysconf(_SC_PAGESIZE);
127 128 129
}


130 131
void* OS::Allocate(const size_t requested,
                   size_t* allocated,
132
                   bool is_executable) {
133
  const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
134
  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
135
  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
136 137 138 139 140 141 142 143 144 145
  if (mbase == MAP_FAILED) {
    LOG(StringEvent("OS::Allocate", "mmap failed"));
    return NULL;
  }
  *allocated = msize;
  UpdateAllocatedSpaceLimits(mbase, msize);
  return mbase;
}


146
void OS::Free(void* address, const size_t size) {
147
  // TODO(1240712): munmap has a return value which is ignored here.
148
  munmap(address, size);
149 150 151
}


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#ifdef ENABLE_HEAP_PROTECTION

void OS::Protect(void* address, size_t size) {
  // TODO(1240712): mprotect has a return value which is ignored here.
  mprotect(address, size, PROT_READ);
}


void OS::Unprotect(void* address, size_t size, bool is_executable) {
  // TODO(1240712): mprotect has a return value which is ignored here.
  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
  mprotect(address, size, prot);
}

#endif


169 170 171 172 173 174 175 176 177 178 179 180
void OS::Sleep(int milliseconds) {
  unsigned int ms = static_cast<unsigned int>(milliseconds);
  usleep(1000 * ms);
}


void OS::Abort() {
  // Redirect to std abort to signal abnormal program termination.
  abort();
}


181
void OS::DebugBreak() {
182 183
// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
//  which is the architecture of generated code).
184
#if defined(__arm__) || defined(__thumb__)
185 186 187 188 189 190 191
  asm("bkpt 0");
#else
  asm("int $3");
#endif
}


192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
 public:
  PosixMemoryMappedFile(FILE* file, void* memory, int size)
    : file_(file), memory_(memory), size_(size) { }
  virtual ~PosixMemoryMappedFile();
  virtual void* memory() { return memory_; }
 private:
  FILE* file_;
  void* memory_;
  int size_;
};


OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    void* initial) {
  FILE* file = fopen(name, "w+");
  if (file == NULL) return NULL;
209 210 211 212 213
  int result = fwrite(initial, size, 1, file);
  if (result < 1) {
    fclose(file);
    return NULL;
  }
214 215 216 217 218 219 220 221 222 223 224
  void* memory =
      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
  return new PosixMemoryMappedFile(file, memory, size);
}


PosixMemoryMappedFile::~PosixMemoryMappedFile() {
  if (memory_) munmap(memory_, size_);
  fclose(file_);
}

225

226
#ifdef ENABLE_LOGGING_AND_PROFILING
227 228
static unsigned StringToLong(char* buffer) {
  return static_cast<unsigned>(strtol(buffer, NULL, 16));  // NOLINT
229 230 231
}
#endif

232

233 234 235 236 237 238 239 240 241 242
void OS::LogSharedLibraryAddresses() {
#ifdef ENABLE_LOGGING_AND_PROFILING
  static const int MAP_LENGTH = 1024;
  int fd = open("/proc/self/maps", O_RDONLY);
  if (fd < 0) return;
  while (true) {
    char addr_buffer[11];
    addr_buffer[0] = '0';
    addr_buffer[1] = 'x';
    addr_buffer[10] = 0;
243 244
    int result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
245
    unsigned start = StringToLong(addr_buffer);
246 247 248 249 250
    result = read(fd, addr_buffer + 2, 1);
    if (result < 1) break;
    if (addr_buffer[2] != '-') break;
    result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
251
    unsigned end = StringToLong(addr_buffer);
252 253 254 255
    char buffer[MAP_LENGTH];
    int bytes_read = -1;
    do {
      bytes_read++;
256
      if (bytes_read >= MAP_LENGTH - 1)
257
        break;
258 259
      result = read(fd, buffer + bytes_read, 1);
      if (result < 1) break;
260 261 262 263
    } while (buffer[bytes_read] != '\n');
    buffer[bytes_read] = 0;
    // Ignore mappings that are not executable.
    if (buffer[3] != 'x') continue;
264 265 266
    char* start_of_path = index(buffer, '/');
    // There may be no filename in this line.  Skip to next.
    if (start_of_path == NULL) continue;
267
    buffer[bytes_read] = 0;
268
    LOG(SharedLibraryEvent(start_of_path, start, end));
269
  }
270
  close(fd);
271 272 273 274
#endif
}


275
int OS::StackWalk(Vector<OS::StackFrame> frames) {
276 277
  // backtrace is a glibc extension.
#ifdef __GLIBC__
278
  int frames_size = frames.length();
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  void** addresses = NewArray<void*>(frames_size);

  int frames_count = backtrace(addresses, frames_size);

  char** symbols;
  symbols = backtrace_symbols(addresses, frames_count);
  if (symbols == NULL) {
    DeleteArray(addresses);
    return kStackWalkError;
  }

  for (int i = 0; i < frames_count; i++) {
    frames[i].address = addresses[i];
    // Format a text representation of the frame based on the information
    // available.
294 295 296
    SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
             "%s",
             symbols[i]);
297 298 299 300 301 302 303 304
    // Make sure line termination is in place.
    frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
  }

  DeleteArray(addresses);
  free(symbols);

  return frames_count;
305 306 307
#else  // ndef __GLIBC__
  return 0;
#endif  // ndef __GLIBC__
308 309 310 311 312 313 314 315
}


// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;


316 317
VirtualMemory::VirtualMemory(size_t size) {
  address_ = mmap(NULL, size, PROT_NONE,
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
                  kMmapFd, kMmapFdOffset);
  size_ = size;
}


VirtualMemory::~VirtualMemory() {
  if (IsReserved()) {
    if (0 == munmap(address(), size())) address_ = MAP_FAILED;
  }
}


bool VirtualMemory::IsReserved() {
  return address_ != MAP_FAILED;
}


336 337
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
338
  if (MAP_FAILED == mmap(address, size, prot,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                         MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
                         kMmapFd, kMmapFdOffset)) {
    return false;
  }

  UpdateAllocatedSpaceLimits(address, size);
  return true;
}


bool VirtualMemory::Uncommit(void* address, size_t size) {
  return mmap(address, size, PROT_NONE,
              MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
              kMmapFd, kMmapFdOffset) != MAP_FAILED;
}


class ThreadHandle::PlatformData : public Malloced {
 public:
  explicit PlatformData(ThreadHandle::Kind kind) {
    Initialize(kind);
  }

  void Initialize(ThreadHandle::Kind kind) {
    switch (kind) {
      case ThreadHandle::SELF: thread_ = pthread_self(); break;
      case ThreadHandle::INVALID: thread_ = kNoThread; break;
    }
  }
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  pthread_t thread_;  // Thread handle for pthread.
};


ThreadHandle::ThreadHandle(Kind kind) {
  data_ = new PlatformData(kind);
}


void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
  data_->Initialize(kind);
}


ThreadHandle::~ThreadHandle() {
  delete data_;
}


bool ThreadHandle::IsSelf() const {
  return pthread_equal(data_->thread_, pthread_self());
}


bool ThreadHandle::IsValid() const {
  return data_->thread_ != kNoThread;
}


Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
}


Thread::~Thread() {
}


static void* ThreadEntry(void* arg) {
  Thread* thread = reinterpret_cast<Thread*>(arg);
  // This is also initialized by the first argument to pthread_create() but we
  // don't know which thread will run first (the original thread or the new
  // one) so we initialize it here too.
  thread->thread_handle_data()->thread_ = pthread_self();
  ASSERT(thread->IsValid());
  thread->Run();
  return NULL;
}


void Thread::Start() {
  pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
  ASSERT(IsValid());
}


void Thread::Join() {
  pthread_join(thread_handle_data()->thread_, NULL);
}


Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
  pthread_key_t key;
  int result = pthread_key_create(&key, NULL);
  USE(result);
  ASSERT(result == 0);
  return static_cast<LocalStorageKey>(key);
}


void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  int result = pthread_key_delete(pthread_key);
  USE(result);
  ASSERT(result == 0);
}


void* Thread::GetThreadLocal(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  return pthread_getspecific(pthread_key);
}


void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  pthread_setspecific(pthread_key, value);
}


void Thread::YieldCPU() {
  sched_yield();
}


class LinuxMutex : public Mutex {
 public:

  LinuxMutex() {
    pthread_mutexattr_t attrs;
    int result = pthread_mutexattr_init(&attrs);
    ASSERT(result == 0);
    result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
    ASSERT(result == 0);
    result = pthread_mutex_init(&mutex_, &attrs);
    ASSERT(result == 0);
  }

  virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }

  virtual int Lock() {
    int result = pthread_mutex_lock(&mutex_);
    return result;
  }

  virtual int Unlock() {
    int result = pthread_mutex_unlock(&mutex_);
    return result;
  }

 private:
  pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
};


Mutex* OS::CreateMutex() {
  return new LinuxMutex();
}


class LinuxSemaphore : public Semaphore {
 public:
  explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
  virtual ~LinuxSemaphore() { sem_destroy(&sem_); }

503
  virtual void Wait();
504
  virtual bool Wait(int timeout);
505 506 507 508 509
  virtual void Signal() { sem_post(&sem_); }
 private:
  sem_t sem_;
};

510

511 512 513 514 515 516 517
void LinuxSemaphore::Wait() {
  while (true) {
    int result = sem_wait(&sem_);
    if (result == 0) return;  // Successfully got semaphore.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}
518

519

520 521 522 523
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
    (ts)->tv_sec = (tv)->tv_sec;                                    \
    (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
erik.corry@gmail.com's avatar
erik.corry@gmail.com committed
524 525
} while (false)
#endif
526 527


528 529 530 531
bool LinuxSemaphore::Wait(int timeout) {
  const long kOneSecondMicros = 1000000;  // NOLINT

  // Split timeout into second and nanosecond parts.
532 533 534
  struct timeval delta;
  delta.tv_usec = timeout % kOneSecondMicros;
  delta.tv_sec = timeout / kOneSecondMicros;
535

536 537 538
  struct timeval current_time;
  // Get the current time.
  if (gettimeofday(&current_time, NULL) == -1) {
539 540 541
    return false;
  }

542 543 544
  // Calculate time for end of timeout.
  struct timeval end_time;
  timeradd(&current_time, &delta, &end_time);
545

546 547
  struct timespec ts;
  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
548 549 550 551
  // Wait for semaphore signalled or timeout.
  while (true) {
    int result = sem_timedwait(&sem_, &ts);
    if (result == 0) return true;  // Successfully got semaphore.
552 553 554 555 556
    if (result > 0) {
      // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
      errno = result;
      result = -1;
    }
557 558 559 560 561 562
    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}


563 564 565 566
Semaphore* OS::CreateSemaphore(int count) {
  return new LinuxSemaphore(count);
}

567

568 569
#ifdef ENABLE_LOGGING_AND_PROFILING

570
static Sampler* active_sampler_ = NULL;
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

#if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
// Android runs a fairly new Linux kernel, so signal info is there,
// but the C library doesn't have the structs defined.

struct sigcontext {
  uint32_t trap_no;
  uint32_t error_code;
  uint32_t oldmask;
  uint32_t gregs[16];
  uint32_t arm_cpsr;
  uint32_t fault_address;
};
typedef uint32_t __sigset_t;
typedef struct sigcontext mcontext_t;
typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext *uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  __sigset_t uc_sigmask;
} ucontext_t;
enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};

#endif


599 600 601
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
  USE(info);
  if (signal != SIGPROF) return;
602
  if (active_sampler_ == NULL) return;
603 604

  TickSample sample;
605 606 607 608 609 610

  // If profiling, we extract the current pc and sp.
  if (active_sampler_->IsProfiling()) {
    // Extracting the sample from the context is extremely machine dependent.
    ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
    mcontext_t& mcontext = ucontext->uc_mcontext;
611
#if V8_HOST_ARCH_IA32
612 613
    sample.pc = mcontext.gregs[REG_EIP];
    sample.sp = mcontext.gregs[REG_ESP];
614
    sample.fp = mcontext.gregs[REG_EBP];
615 616 617 618 619
#elif V8_HOST_ARCH_X64
    sample.pc = mcontext.gregs[REG_RIP];
    sample.sp = mcontext.gregs[REG_RSP];
    sample.fp = mcontext.gregs[REG_RBP];
#elif V8_HOST_ARCH_ARM
620 621
// An undefined macro evaluates to 0, so this applies to Android's Bionic also.
#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
622 623 624
    sample.pc = mcontext.gregs[R15];
    sample.sp = mcontext.gregs[R13];
    sample.fp = mcontext.gregs[R11];
625 626 627 628 629
#else
    sample.pc = mcontext.arm_pc;
    sample.sp = mcontext.arm_sp;
    sample.fp = mcontext.arm_fp;
#endif
630
#endif
631 632 633
  }

  // We always sample the VM state.
634 635 636 637 638 639
  sample.state = Logger::state();

  active_sampler_->Tick(&sample);
}


640
class Sampler::PlatformData : public Malloced {
641 642 643 644 645 646 647 648 649 650 651
 public:
  PlatformData() {
    signal_handler_installed_ = false;
  }

  bool signal_handler_installed_;
  struct sigaction old_signal_handler_;
  struct itimerval old_timer_value_;
};


652 653
Sampler::Sampler(int interval, bool profiling)
    : interval_(interval), profiling_(profiling), active_(false) {
654 655 656 657
  data_ = new PlatformData();
}


658
Sampler::~Sampler() {
659 660 661 662
  delete data_;
}


663
void Sampler::Start() {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  // There can only be one active sampler at the time on POSIX
  // platforms.
  if (active_sampler_ != NULL) return;

  // Request profiling signals.
  struct sigaction sa;
  sa.sa_sigaction = ProfilerSignalHandler;
  sigemptyset(&sa.sa_mask);
  sa.sa_flags = SA_SIGINFO;
  if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
  data_->signal_handler_installed_ = true;

  // Set the itimer to generate a tick for each interval.
  itimerval itimer;
  itimer.it_interval.tv_sec = interval_ / 1000;
  itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
  itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
  itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
  setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);

  // Set this sampler as the active sampler.
  active_sampler_ = this;
  active_ = true;
}


690
void Sampler::Stop() {
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
  // Restore old signal handler
  if (data_->signal_handler_installed_) {
    setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
    sigaction(SIGPROF, &data_->old_signal_handler_, 0);
    data_->signal_handler_installed_ = false;
  }

  // This sampler is no longer the active sampler.
  active_sampler_ = NULL;
  active_ = false;
}

#endif  // ENABLE_LOGGING_AND_PROFILING

} }  // namespace v8::internal