string.cc 60.8 KB
Newer Older
1 2 3 4 5 6
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/objects/string.h"

7
#include "src/common/assert-scope.h"
8
#include "src/common/globals.h"
9
#include "src/execution/isolate-utils.h"
10
#include "src/execution/thread-id.h"
11
#include "src/handles/handles-inl.h"
12
#include "src/heap/heap-inl.h"
13 14
#include "src/heap/local-factory-inl.h"
#include "src/heap/local-heap-inl.h"
15
#include "src/heap/memory-chunk.h"
16
#include "src/heap/read-only-heap.h"
17
#include "src/numbers/conversions.h"
18 19 20
#include "src/objects/map.h"
#include "src/objects/oddball.h"
#include "src/objects/string-comparator.h"
21
#include "src/objects/string-inl.h"
22 23 24 25 26 27
#include "src/strings/char-predicates.h"
#include "src/strings/string-builder-inl.h"
#include "src/strings/string-hasher.h"
#include "src/strings/string-search.h"
#include "src/strings/string-stream.h"
#include "src/strings/unicode-inl.h"
28
#include "src/utils/ostreams.h"
29 30 31 32 33

namespace v8 {
namespace internal {

Handle<String> String::SlowFlatten(Isolate* isolate, Handle<ConsString> cons,
34
                                   AllocationType allocation) {
35
  DCHECK_NE(cons->second().length(), 0);
36 37

  // TurboFan can create cons strings with empty first parts.
38
  while (cons->first().length() == 0) {
39 40 41
    // We do not want to call this function recursively. Therefore we call
    // String::Flatten only in those cases where String::SlowFlatten is not
    // called again.
42
    if (cons->second().IsConsString() && !cons->second().IsFlat()) {
43 44 45 46 47
      cons = handle(ConsString::cast(cons->second()), isolate);
    } else {
      return String::Flatten(isolate, handle(cons->second(), isolate));
    }
  }
48

49
  DCHECK(AllowGarbageCollection::IsAllowed());
50
  int length = cons->length();
51 52
  allocation =
      ObjectInYoungGeneration(*cons) ? allocation : AllocationType::kOld;
53 54
  Handle<SeqString> result;
  if (cons->IsOneByteRepresentation()) {
55 56 57 58
    Handle<SeqOneByteString> flat =
        isolate->factory()
            ->NewRawOneByteString(length, allocation)
            .ToHandleChecked();
59
    DisallowGarbageCollection no_gc;
60 61 62
    WriteToFlat(*cons, flat->GetChars(no_gc), 0, length);
    result = flat;
  } else {
63 64 65 66
    Handle<SeqTwoByteString> flat =
        isolate->factory()
            ->NewRawTwoByteString(length, allocation)
            .ToHandleChecked();
67
    DisallowGarbageCollection no_gc;
68 69 70
    WriteToFlat(*cons, flat->GetChars(no_gc), 0, length);
    result = flat;
  }
71 72
  cons->set_first(*result);
  cons->set_second(ReadOnlyRoots(isolate).empty_string());
73 74 75 76
  DCHECK(result->IsFlat());
  return result;
}

77 78 79
namespace {

template <class StringClass>
80 81 82 83 84
void MigrateExternalStringResource(Isolate* isolate, ExternalString from,
                                   StringClass to) {
  Address to_resource_address = to.resource_as_address();
  if (to_resource_address == kNullAddress) {
    StringClass cast_from = StringClass::cast(from);
85
    // |to| is a just-created internalized copy of |from|. Migrate the resource.
86
    to.SetResource(isolate, cast_from.resource());
87 88 89
    // Zap |from|'s resource pointer to reflect the fact that |from| has
    // relinquished ownership of its resource.
    isolate->heap()->UpdateExternalString(
90 91
        from, ExternalString::cast(from).ExternalPayloadSize(), 0);
    cast_from.SetResource(isolate, nullptr);
92
  } else if (to_resource_address != from.resource_as_address()) {
93 94 95 96 97
    // |to| already existed and has its own resource. Finalize |from|.
    isolate->heap()->FinalizeExternalString(from);
  }
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
void MigrateExternalString(Isolate* isolate, String string,
                           String internalized) {
  if (internalized.IsExternalOneByteString()) {
    MigrateExternalStringResource(isolate, ExternalString::cast(string),
                                  ExternalOneByteString::cast(internalized));
  } else if (internalized.IsExternalTwoByteString()) {
    MigrateExternalStringResource(isolate, ExternalString::cast(string),
                                  ExternalTwoByteString::cast(internalized));
  } else {
    // If the external string is duped into an existing non-external
    // internalized string, free its resource (it's about to be rewritten
    // into a ThinString below).
    isolate->heap()->FinalizeExternalString(string);
  }
}

114 115
}  // namespace

116 117
template <typename IsolateT>
void String::MakeThin(IsolateT* isolate, String internalized) {
118
  DisallowGarbageCollection no_gc;
119
  DCHECK_NE(*this, internalized);
120
  DCHECK(internalized.IsInternalizedString());
121 122

  if (this->IsExternalString()) {
123
    MigrateExternalString(isolate->AsIsolate(), *this, internalized);
124 125
  }

126 127
  bool has_pointers = StringShape(*this).IsIndirect();

128
  int old_size = this->Size();
129
  bool one_byte = internalized.IsOneByteRepresentation();
130 131
  Handle<Map> map = one_byte ? isolate->factory()->thin_one_byte_string_map()
                             : isolate->factory()->thin_string_map();
132 133 134 135 136
  // Update actual first and then do release store on the map word. This ensures
  // that the concurrent marker will read the pointer when visiting a
  // ThinString.
  ThinString thin = ThinString::unchecked_cast(*this);
  thin.set_actual(internalized);
137
  DCHECK_GE(old_size, ThinString::kSize);
138
  this->set_map(*map, kReleaseStore);
139
  Address thin_end = thin.address() + ThinString::kSize;
140 141
  int size_delta = old_size - ThinString::kSize;
  if (size_delta != 0) {
142 143
    if (!Heap::IsLargeObject(thin)) {
      isolate->heap()->CreateFillerObjectAt(
144 145 146 147 148 149 150
          thin_end, size_delta,
          has_pointers ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo);
    } else {
      // We don't need special handling for the combination IsLargeObject &&
      // has_pointers, because indirect strings never get that large.
      DCHECK(!has_pointers);
    }
151 152 153
  }
}

154 155 156
template void String::MakeThin(Isolate* isolate, String internalized);
template void String::MakeThin(LocalIsolate* isolate, String internalized);

157
bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
158 159 160
  // Disallow garbage collection to avoid possible GC vs string access deadlock.
  DisallowGarbageCollection no_gc;

161 162 163 164 165 166 167 168
  // Externalizing twice leaks the external resource, so it's
  // prohibited by the API.
  DCHECK(this->SupportsExternalization());
  DCHECK(resource->IsCacheable());
#ifdef ENABLE_SLOW_DCHECKS
  if (FLAG_enable_slow_asserts) {
    // Assert that the resource and the string are equivalent.
    DCHECK(static_cast<size_t>(this->length()) == resource->length());
169
    base::ScopedVector<base::uc16> smart_chars(this->length());
170 171
    String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
    DCHECK_EQ(0, memcmp(smart_chars.begin(), resource->data(),
172 173 174 175 176 177 178 179
                        resource->length() * sizeof(smart_chars[0])));
  }
#endif                      // DEBUG
  int size = this->Size();  // Byte size of the original string.
  // Abort if size does not allow in-place conversion.
  if (size < ExternalString::kUncachedSize) return false;
  // Read-only strings cannot be made external, since that would mutate the
  // string.
180 181
  if (IsReadOnlyHeapObject(*this)) return false;
  Isolate* isolate = GetIsolateFromWritableObject(*this);
182 183
  bool is_internalized = this->IsInternalizedString();
  bool has_pointers = StringShape(*this).IsIndirect();
184

185
  if (has_pointers) {
186
    isolate->heap()->NotifyObjectLayoutChange(*this, no_gc,
187
                                              InvalidateRecordedSlots::kYes);
188
  }
189 190

  base::SharedMutexGuard<base::kExclusive> shared_mutex_guard(
191
      isolate->internalized_string_access());
192 193 194 195 196 197 198
  // Morph the string to an external string by replacing the map and
  // reinitializing the fields.  This won't work if the space the existing
  // string occupies is too small for a regular external string.  Instead, we
  // resort to an uncached external string instead, omitting the field caching
  // the address of the backing store.  When we encounter uncached external
  // strings in generated code, we need to bailout to runtime.
  Map new_map;
199
  ReadOnlyRoots roots(isolate);
200
  if (size < ExternalString::kSizeOfAllExternalStrings) {
201
    if (is_internalized) {
202
      new_map = roots.uncached_external_internalized_string_map();
203
    } else {
204
      new_map = roots.uncached_external_string_map();
205 206
    }
  } else {
207 208
    new_map = is_internalized ? roots.external_internalized_string_map()
                              : roots.external_string_map();
209 210 211 212
  }

  // Byte size of the external String object.
  int new_size = this->SizeFromMap(new_map);
213 214 215 216 217 218 219 220 221
  if (!isolate->heap()->IsLargeObject(*this)) {
    isolate->heap()->CreateFillerObjectAt(
        this->address() + new_size, size - new_size,
        has_pointers ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo);
  } else {
    // We don't need special handling for the combination IsLargeObject &&
    // has_pointers, because indirect strings never get that large.
    DCHECK(!has_pointers);
  }
222 223 224

  // We are storing the new map using release store after creating a filler for
  // the left-over space to avoid races with the sweeper thread.
225
  this->set_map(new_map, kReleaseStore);
226 227

  ExternalTwoByteString self = ExternalTwoByteString::cast(*this);
228
  self.AllocateExternalPointerEntries(isolate);
229
  self.SetResource(isolate, resource);
230
  isolate->heap()->RegisterExternalString(*this);
231 232
  // Force regeneration of the hash value.
  if (is_internalized) self.EnsureHash();
233 234 235 236
  return true;
}

bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
237 238 239
  // Disallow garbage collection to avoid possible GC vs string access deadlock.
  DisallowGarbageCollection no_gc;

240 241 242 243 244 245 246 247 248
  // Externalizing twice leaks the external resource, so it's
  // prohibited by the API.
  DCHECK(this->SupportsExternalization());
  DCHECK(resource->IsCacheable());
#ifdef ENABLE_SLOW_DCHECKS
  if (FLAG_enable_slow_asserts) {
    // Assert that the resource and the string are equivalent.
    DCHECK(static_cast<size_t>(this->length()) == resource->length());
    if (this->IsTwoByteRepresentation()) {
249
      base::ScopedVector<uint16_t> smart_chars(this->length());
250 251
      String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
      DCHECK(String::IsOneByte(smart_chars.begin(), this->length()));
252
    }
253
    base::ScopedVector<char> smart_chars(this->length());
254 255
    String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
    DCHECK_EQ(0, memcmp(smart_chars.begin(), resource->data(),
256 257 258 259 260 261 262 263
                        resource->length() * sizeof(smart_chars[0])));
  }
#endif                      // DEBUG
  int size = this->Size();  // Byte size of the original string.
  // Abort if size does not allow in-place conversion.
  if (size < ExternalString::kUncachedSize) return false;
  // Read-only strings cannot be made external, since that would mutate the
  // string.
264 265
  if (IsReadOnlyHeapObject(*this)) return false;
  Isolate* isolate = GetIsolateFromWritableObject(*this);
266 267 268 269
  bool is_internalized = this->IsInternalizedString();
  bool has_pointers = StringShape(*this).IsIndirect();

  if (has_pointers) {
270
    isolate->heap()->NotifyObjectLayoutChange(*this, no_gc,
271
                                              InvalidateRecordedSlots::kYes);
272
  }
273 274

  base::SharedMutexGuard<base::kExclusive> shared_mutex_guard(
275
      isolate->internalized_string_access());
276 277 278 279 280 281 282
  // Morph the string to an external string by replacing the map and
  // reinitializing the fields.  This won't work if the space the existing
  // string occupies is too small for a regular external string.  Instead, we
  // resort to an uncached external string instead, omitting the field caching
  // the address of the backing store.  When we encounter uncached external
  // strings in generated code, we need to bailout to runtime.
  Map new_map;
283
  ReadOnlyRoots roots(isolate);
284
  if (size < ExternalString::kSizeOfAllExternalStrings) {
285 286 287
    new_map = is_internalized
                  ? roots.uncached_external_one_byte_internalized_string_map()
                  : roots.uncached_external_one_byte_string_map();
288 289 290 291 292 293
  } else {
    new_map = is_internalized
                  ? roots.external_one_byte_internalized_string_map()
                  : roots.external_one_byte_string_map();
  }

294 295 296 297 298 299 300 301 302 303 304 305
  if (!isolate->heap()->IsLargeObject(*this)) {
    // Byte size of the external String object.
    int new_size = this->SizeFromMap(new_map);

    isolate->heap()->CreateFillerObjectAt(
        this->address() + new_size, size - new_size,
        has_pointers ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo);
  } else {
    // We don't need special handling for the combination IsLargeObject &&
    // has_pointers, because indirect strings never get that large.
    DCHECK(!has_pointers);
  }
306 307 308

  // We are storing the new map using release store after creating a filler for
  // the left-over space to avoid races with the sweeper thread.
309
  this->set_map(new_map, kReleaseStore);
310 311

  ExternalOneByteString self = ExternalOneByteString::cast(*this);
312
  self.AllocateExternalPointerEntries(isolate);
313
  self.SetResource(isolate, resource);
314
  isolate->heap()->RegisterExternalString(*this);
315 316
  // Force regeneration of the hash value.
  if (is_internalized) self.EnsureHash();
317 318 319 320 321
  return true;
}

bool String::SupportsExternalization() {
  if (this->IsThinString()) {
322
    return i::ThinString::cast(*this).actual().SupportsExternalization();
323 324 325
  }

  // RO_SPACE strings cannot be externalized.
326
  if (IsReadOnlyHeapObject(*this)) {
327 328 329 330 331 332 333 334
    return false;
  }

  // Already an external string.
  if (StringShape(*this).IsExternal()) {
    return false;
  }

335 336 337 338 339 340 341
#ifdef V8_COMPRESS_POINTERS
  // Small strings may not be in-place externalizable.
  if (this->Size() < ExternalString::kUncachedSize) return false;
#else
  DCHECK_LE(ExternalString::kUncachedSize, this->Size());
#endif

342
  Isolate* isolate = GetIsolateFromWritableObject(*this);
343 344 345
  return !isolate->heap()->IsInGCPostProcessing();
}

346 347 348 349 350 351 352 353 354 355
const char* String::PrefixForDebugPrint() const {
  StringShape shape(*this);
  if (IsTwoByteRepresentation()) {
    StringShape shape(*this);
    if (shape.IsInternalized()) {
      return "u#";
    } else if (shape.IsCons()) {
      return "uc\"";
    } else if (shape.IsThin()) {
      return "u>\"";
356 357
    } else if (shape.IsExternal()) {
      return "ue\"";
358 359 360 361 362 363 364 365 366 367 368
    } else {
      return "u\"";
    }
  } else {
    StringShape shape(*this);
    if (shape.IsInternalized()) {
      return "#";
    } else if (shape.IsCons()) {
      return "c\"";
    } else if (shape.IsThin()) {
      return ">\"";
369 370
    } else if (shape.IsExternal()) {
      return "e\"";
371 372 373
    } else {
      return "\"";
    }
374
  }
375 376 377 378 379 380 381 382
  UNREACHABLE();
}

const char* String::SuffixForDebugPrint() const {
  StringShape shape(*this);
  if (shape.IsInternalized()) return "";
  return "\"";
}
383

384
void String::StringShortPrint(StringStream* accumulator) {
385 386 387 388 389
  if (!LooksValid()) {
    accumulator->Add("<Invalid String>");
    return;
  }

390 391 392
  const int len = length();
  accumulator->Add("<String[%u]: ", len);
  accumulator->Add(PrefixForDebugPrint());
393 394

  if (len > kMaxShortPrintLength) {
395 396 397 398
    accumulator->Add("...<truncated>>");
    accumulator->Add(SuffixForDebugPrint());
    accumulator->Put('>');
    return;
399 400
  }

401 402 403
  PrintUC16(accumulator, 0, len);
  accumulator->Add(SuffixForDebugPrint());
  accumulator->Put('>');
404 405
}

406
void String::PrintUC16(std::ostream& os, int start, int end) {
407 408 409 410 411 412 413
  if (end < 0) end = length();
  StringCharacterStream stream(*this, start);
  for (int i = start; i < end && stream.HasMore(); i++) {
    os << AsUC16(stream.GetNext());
  }
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
void String::PrintUC16(StringStream* accumulator, int start, int end) {
  if (end < 0) end = length();
  StringCharacterStream stream(*this, start);
  for (int i = start; i < end && stream.HasMore(); i++) {
    uint16_t c = stream.GetNext();
    if (c == '\n') {
      accumulator->Add("\\n");
    } else if (c == '\r') {
      accumulator->Add("\\r");
    } else if (c == '\\') {
      accumulator->Add("\\\\");
    } else if (!std::isprint(c)) {
      accumulator->Add("\\x%02x", c);
    } else {
      accumulator->Put(static_cast<char>(c));
    }
  }
}

433
int32_t String::ToArrayIndex(Address addr) {
434
  DisallowGarbageCollection no_gc;
435 436 437 438 439 440 441 442
  String key(addr);

  uint32_t index;
  if (!key.AsArrayIndex(&index)) return -1;
  if (index <= INT_MAX) return index;
  return -1;
}

443 444 445 446
bool String::LooksValid() {
  // TODO(leszeks): Maybe remove this check entirely, Heap::Contains uses
  // basically the same logic as the way we access the heap in the first place.
  // RO_SPACE objects should always be valid.
447
  if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return true;
448
  if (ReadOnlyHeap::Contains(*this)) return true;
449
  BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(*this);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  if (chunk->heap() == nullptr) return false;
  return chunk->heap()->Contains(*this);
}

namespace {

bool AreDigits(const uint8_t* s, int from, int to) {
  for (int i = from; i < to; i++) {
    if (s[i] < '0' || s[i] > '9') return false;
  }

  return true;
}

int ParseDecimalInteger(const uint8_t* s, int from, int to) {
  DCHECK_LT(to - from, 10);  // Overflow is not possible.
  DCHECK(from < to);
  int d = s[from] - '0';

  for (int i = from + 1; i < to; i++) {
    d = 10 * d + (s[i] - '0');
  }

  return d;
}

}  // namespace

// static
Handle<Object> String::ToNumber(Isolate* isolate, Handle<String> subject) {
  // Flatten {subject} string first.
  subject = String::Flatten(isolate, subject);

  // Fast array index case.
  uint32_t index;
  if (subject->AsArrayIndex(&index)) {
    return isolate->factory()->NewNumberFromUint(index);
  }

  // Fast case: short integer or some sorts of junk values.
  if (subject->IsSeqOneByteString()) {
    int len = subject->length();
492
    if (len == 0) return handle(Smi::zero(), isolate);
493

494
    DisallowGarbageCollection no_gc;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    uint8_t const* data =
        Handle<SeqOneByteString>::cast(subject)->GetChars(no_gc);
    bool minus = (data[0] == '-');
    int start_pos = (minus ? 1 : 0);

    if (start_pos == len) {
      return isolate->factory()->nan_value();
    } else if (data[start_pos] > '9') {
      // Fast check for a junk value. A valid string may start from a
      // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
      // or the 'I' character ('Infinity'). All of that have codes not greater
      // than '9' except 'I' and &nbsp;.
      if (data[start_pos] != 'I' && data[start_pos] != 0xA0) {
        return isolate->factory()->nan_value();
      }
    } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
      // The maximal/minimal smi has 10 digits. If the string has less digits
      // we know it will fit into the smi-data type.
      int d = ParseDecimalInteger(data, start_pos, len);
      if (minus) {
        if (d == 0) return isolate->factory()->minus_zero_value();
        d = -d;
      } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
                 (len == 1 || data[0] != '0')) {
        // String hash is not calculated yet but all the data are present.
        // Update the hash field to speed up sequential convertions.
521
        uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(d, len);
522
#ifdef DEBUG
523 524
        subject->EnsureHash();  // Force hash calculation.
        DCHECK_EQ(subject->raw_hash_field(), raw_hash_field);
525
#endif
526
        subject->set_raw_hash_field(raw_hash_field);
527 528 529 530 531 532 533 534 535 536 537
      }
      return handle(Smi::FromInt(d), isolate);
    }
  }

  // Slower case.
  int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
  return isolate->factory()->NewNumber(StringToDouble(isolate, subject, flags));
}

String::FlatContent String::GetFlatContent(
538
    const DisallowGarbageCollection& no_gc) {
539 540 541 542 543 544 545 546 547
#if DEBUG
  // Check that this method is called only from the main thread.
  {
    Isolate* isolate;
    // We don't have to check read only strings as those won't move.
    DCHECK_IMPLIES(GetIsolateFromHeapObject(*this, &isolate),
                   ThreadId::Current() == isolate->thread_id());
  }
#endif
548 549 550 551 552 553 554
  USE(no_gc);
  int length = this->length();
  StringShape shape(*this);
  String string = *this;
  int offset = 0;
  if (shape.representation_tag() == kConsStringTag) {
    ConsString cons = ConsString::cast(string);
555
    if (cons.second().length() != 0) {
556
      return FlatContent(no_gc);
557
    }
558
    string = cons.first();
559 560 561
    shape = StringShape(string);
  } else if (shape.representation_tag() == kSlicedStringTag) {
    SlicedString slice = SlicedString::cast(string);
562 563
    offset = slice.offset();
    string = slice.parent();
564 565 566 567 568 569
    shape = StringShape(string);
    DCHECK(shape.representation_tag() != kConsStringTag &&
           shape.representation_tag() != kSlicedStringTag);
  }
  if (shape.representation_tag() == kThinStringTag) {
    ThinString thin = ThinString::cast(string);
570
    string = thin.actual();
571 572 573 574 575 576 577
    shape = StringShape(string);
    DCHECK(!shape.IsCons());
    DCHECK(!shape.IsSliced());
  }
  if (shape.encoding_tag() == kOneByteStringTag) {
    const uint8_t* start;
    if (shape.representation_tag() == kSeqStringTag) {
578
      start = SeqOneByteString::cast(string).GetChars(no_gc);
579
    } else {
580
      start = ExternalOneByteString::cast(string).GetChars();
581
    }
582
    return FlatContent(start + offset, length, no_gc);
583 584
  } else {
    DCHECK_EQ(shape.encoding_tag(), kTwoByteStringTag);
585
    const base::uc16* start;
586
    if (shape.representation_tag() == kSeqStringTag) {
587
      start = SeqTwoByteString::cast(string).GetChars(no_gc);
588
    } else {
589
      start = ExternalTwoByteString::cast(string).GetChars();
590
    }
591
    return FlatContent(start + offset, length, no_gc);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
  }
}

std::unique_ptr<char[]> String::ToCString(AllowNullsFlag allow_nulls,
                                          RobustnessFlag robust_flag,
                                          int offset, int length,
                                          int* length_return) {
  if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
    return std::unique_ptr<char[]>();
  }
  // Negative length means the to the end of the string.
  if (length < 0) length = kMaxInt - offset;

  // Compute the size of the UTF-8 string. Start at the specified offset.
  StringCharacterStream stream(*this, offset);
  int character_position = offset;
  int utf8_bytes = 0;
  int last = unibrow::Utf16::kNoPreviousCharacter;
  while (stream.HasMore() && character_position++ < offset + length) {
    uint16_t character = stream.GetNext();
    utf8_bytes += unibrow::Utf8::Length(character, last);
    last = character;
  }

  if (length_return) {
    *length_return = utf8_bytes;
  }

  char* result = NewArray<char>(utf8_bytes + 1);

  // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
  stream.Reset(*this, offset);
  character_position = offset;
  int utf8_byte_position = 0;
  last = unibrow::Utf16::kNoPreviousCharacter;
  while (stream.HasMore() && character_position++ < offset + length) {
    uint16_t character = stream.GetNext();
    if (allow_nulls == DISALLOW_NULLS && character == 0) {
      character = ' ';
    }
    utf8_byte_position +=
        unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
    last = character;
  }
  result[utf8_byte_position] = 0;
  return std::unique_ptr<char[]>(result);
}

std::unique_ptr<char[]> String::ToCString(AllowNullsFlag allow_nulls,
                                          RobustnessFlag robust_flag,
                                          int* length_return) {
  return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
}

646
// static
647
template <typename sinkchar>
648
void String::WriteToFlat(String source, sinkchar* sink, int from, int to) {
649 650 651 652 653
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(source));
  return WriteToFlat(source, sink, from, to,
                     SharedStringAccessGuardIfNeeded::NotNeeded());
}

654
// static
655 656 657
template <typename sinkchar>
void String::WriteToFlat(String source, sinkchar* sink, int from, int to,
                         const SharedStringAccessGuardIfNeeded& access_guard) {
658
  DisallowGarbageCollection no_gc;
659
  while (from < to) {
660
    DCHECK_LE(0, from);
661
    DCHECK_LE(to, source.length());
662 663
    switch (StringShape(source).full_representation_tag()) {
      case kOneByteStringTag | kExternalStringTag: {
664
        CopyChars(sink, ExternalOneByteString::cast(source).GetChars() + from,
665 666 667 668
                  to - from);
        return;
      }
      case kTwoByteStringTag | kExternalStringTag: {
669
        const base::uc16* data = ExternalTwoByteString::cast(source).GetChars();
670 671 672 673
        CopyChars(sink, data + from, to - from);
        return;
      }
      case kOneByteStringTag | kSeqStringTag: {
674 675 676 677
        CopyChars(
            sink,
            SeqOneByteString::cast(source).GetChars(no_gc, access_guard) + from,
            to - from);
678 679 680
        return;
      }
      case kTwoByteStringTag | kSeqStringTag: {
681 682 683 684
        CopyChars(
            sink,
            SeqTwoByteString::cast(source).GetChars(no_gc, access_guard) + from,
            to - from);
685 686 687 688 689
        return;
      }
      case kOneByteStringTag | kConsStringTag:
      case kTwoByteStringTag | kConsStringTag: {
        ConsString cons_string = ConsString::cast(source);
690 691
        String first = cons_string.first();
        int boundary = first.length();
692 693 694
        if (to - boundary >= boundary - from) {
          // Right hand side is longer.  Recurse over left.
          if (from < boundary) {
695
            WriteToFlat(first, sink, from, boundary, access_guard);
696
            if (from == 0 && cons_string.second() == first) {
697 698 699 700 701 702 703 704 705
              CopyChars(sink + boundary, sink, boundary);
              return;
            }
            sink += boundary - from;
            from = 0;
          } else {
            from -= boundary;
          }
          to -= boundary;
706
          source = cons_string.second();
707 708 709
        } else {
          // Left hand side is longer.  Recurse over right.
          if (to > boundary) {
710
            String second = cons_string.second();
711 712 713 714
            // When repeatedly appending to a string, we get a cons string that
            // is unbalanced to the left, a list, essentially.  We inline the
            // common case of sequential one-byte right child.
            if (to - boundary == 1) {
715 716
              sink[boundary - from] = static_cast<sinkchar>(second.Get(0));
            } else if (second.IsSeqOneByteString()) {
717 718 719 720
              CopyChars(
                  sink + boundary - from,
                  SeqOneByteString::cast(second).GetChars(no_gc, access_guard),
                  to - boundary);
721
            } else {
722 723
              WriteToFlat(second, sink + boundary - from, 0, to - boundary,
                          access_guard);
724 725 726 727 728 729 730 731 732 733
            }
            to = boundary;
          }
          source = first;
        }
        break;
      }
      case kOneByteStringTag | kSlicedStringTag:
      case kTwoByteStringTag | kSlicedStringTag: {
        SlicedString slice = SlicedString::cast(source);
734
        unsigned offset = slice.offset();
735 736
        WriteToFlat(slice.parent(), sink, from + offset, to + offset,
                    access_guard);
737 738 739 740
        return;
      }
      case kOneByteStringTag | kThinStringTag:
      case kTwoByteStringTag | kThinStringTag:
741
        source = ThinString::cast(source).actual();
742 743 744
        break;
    }
  }
745
  DCHECK_EQ(from, to);
746 747 748
}

template <typename SourceChar>
749
static void CalculateLineEndsImpl(std::vector<int>* line_ends,
750
                                  base::Vector<const SourceChar> src,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
                                  bool include_ending_line) {
  const int src_len = src.length();
  for (int i = 0; i < src_len - 1; i++) {
    SourceChar current = src[i];
    SourceChar next = src[i + 1];
    if (IsLineTerminatorSequence(current, next)) line_ends->push_back(i);
  }

  if (src_len > 0 && IsLineTerminatorSequence(src[src_len - 1], 0)) {
    line_ends->push_back(src_len - 1);
  }
  if (include_ending_line) {
    // Include one character beyond the end of script. The rewriter uses that
    // position for the implicit return statement.
    line_ends->push_back(src_len);
  }
}

769 770
template <typename IsolateT>
Handle<FixedArray> String::CalculateLineEnds(IsolateT* isolate,
771 772
                                             Handle<String> src,
                                             bool include_ending_line) {
773 774 775 776 777 778 779
  src = Flatten(isolate, src);
  // Rough estimate of line count based on a roughly estimated average
  // length of (unpacked) code.
  int line_count_estimate = src->length() >> 4;
  std::vector<int> line_ends;
  line_ends.reserve(line_count_estimate);
  {
780
    DisallowGarbageCollection no_gc;  // ensure vectors stay valid.
781
    // Dispatch on type of strings.
782
    String::FlatContent content = src->GetFlatContent(no_gc);
783 784
    DCHECK(content.IsFlat());
    if (content.IsOneByte()) {
785
      CalculateLineEndsImpl(&line_ends, content.ToOneByteVector(),
786 787
                            include_ending_line);
    } else {
788
      CalculateLineEndsImpl(&line_ends, content.ToUC16Vector(),
789 790 791 792
                            include_ending_line);
    }
  }
  int line_count = static_cast<int>(line_ends.size());
793
  Handle<FixedArray> array =
794
      isolate->factory()->NewFixedArray(line_count, AllocationType::kOld);
795 796 797 798 799 800
  for (int i = 0; i < line_count; i++) {
    array->set(i, Smi::FromInt(line_ends[i]));
  }
  return array;
}

801 802 803
template Handle<FixedArray> String::CalculateLineEnds(Isolate* isolate,
                                                      Handle<String> src,
                                                      bool include_ending_line);
804
template Handle<FixedArray> String::CalculateLineEnds(LocalIsolate* isolate,
805 806
                                                      Handle<String> src,
                                                      bool include_ending_line);
807

808
bool String::SlowEquals(String other) const {
809 810 811 812 813 814 815
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(other));
  return SlowEquals(other, SharedStringAccessGuardIfNeeded::NotNeeded());
}

bool String::SlowEquals(
    String other, const SharedStringAccessGuardIfNeeded& access_guard) const {
816
  DisallowGarbageCollection no_gc;
817 818
  // Fast check: negative check with lengths.
  int len = length();
819
  if (len != other.length()) return false;
820 821 822 823
  if (len == 0) return true;

  // Fast check: if at least one ThinString is involved, dereference it/them
  // and restart.
824 825
  if (this->IsThinString() || other.IsThinString()) {
    if (other.IsThinString()) other = ThinString::cast(other).actual();
826
    if (this->IsThinString()) {
827
      return ThinString::cast(*this).actual().Equals(other);
828 829 830 831 832 833 834
    } else {
      return this->Equals(other);
    }
  }

  // Fast check: if hash code is computed for both strings
  // a fast negative check can be performed.
835
  if (HasHashCode() && other.HasHashCode()) {
836 837
#ifdef ENABLE_SLOW_DCHECKS
    if (FLAG_enable_slow_asserts) {
838
      if (hash() != other.hash()) {
839 840
        bool found_difference = false;
        for (int i = 0; i < len; i++) {
841
          if (Get(i) != other.Get(i)) {
842 843 844 845 846 847 848 849
            found_difference = true;
            break;
          }
        }
        DCHECK(found_difference);
      }
    }
#endif
850
    if (hash() != other.hash()) return false;
851 852 853 854
  }

  // We know the strings are both non-empty. Compare the first chars
  // before we try to flatten the strings.
855
  if (this->Get(0, access_guard) != other.Get(0, access_guard)) return false;
856

857
  if (IsSeqOneByteString() && other.IsSeqOneByteString()) {
858 859 860 861
    const uint8_t* str1 =
        SeqOneByteString::cast(*this).GetChars(no_gc, access_guard);
    const uint8_t* str2 =
        SeqOneByteString::cast(other).GetChars(no_gc, access_guard);
862
    return CompareCharsEqual(str1, str2, len);
863 864 865
  }

  StringComparator comparator;
866
  return comparator.Equals(*this, other, access_guard);
867 868
}

869
// static
870 871 872 873 874 875 876 877 878 879 880
bool String::SlowEquals(Isolate* isolate, Handle<String> one,
                        Handle<String> two) {
  // Fast check: negative check with lengths.
  int one_length = one->length();
  if (one_length != two->length()) return false;
  if (one_length == 0) return true;

  // Fast check: if at least one ThinString is involved, dereference it/them
  // and restart.
  if (one->IsThinString() || two->IsThinString()) {
    if (one->IsThinString())
881
      one = handle(ThinString::cast(*one).actual(), isolate);
882
    if (two->IsThinString())
883
      two = handle(ThinString::cast(*two).actual(), isolate);
884 885 886 887 888 889 890 891
    return String::Equals(isolate, one, two);
  }

  // Fast check: if hash code is computed for both strings
  // a fast negative check can be performed.
  if (one->HasHashCode() && two->HasHashCode()) {
#ifdef ENABLE_SLOW_DCHECKS
    if (FLAG_enable_slow_asserts) {
892
      if (one->hash() != two->hash()) {
893 894 895 896 897 898 899 900 901 902 903
        bool found_difference = false;
        for (int i = 0; i < one_length; i++) {
          if (one->Get(i) != two->Get(i)) {
            found_difference = true;
            break;
          }
        }
        DCHECK(found_difference);
      }
    }
#endif
904
    if (one->hash() != two->hash()) return false;
905 906 907 908 909 910 911 912 913
  }

  // We know the strings are both non-empty. Compare the first chars
  // before we try to flatten the strings.
  if (one->Get(0) != two->Get(0)) return false;

  one = String::Flatten(isolate, one);
  two = String::Flatten(isolate, two);

914
  DisallowGarbageCollection no_gc;
915 916 917 918
  String::FlatContent flat1 = one->GetFlatContent(no_gc);
  String::FlatContent flat2 = two->GetFlatContent(no_gc);

  if (flat1.IsOneByte() && flat2.IsOneByte()) {
919 920
    return CompareCharsEqual(flat1.ToOneByteVector().begin(),
                             flat2.ToOneByteVector().begin(), one_length);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
  } else {
    for (int i = 0; i < one_length; i++) {
      if (flat1.Get(i) != flat2.Get(i)) return false;
    }
    return true;
  }
}

// static
ComparisonResult String::Compare(Isolate* isolate, Handle<String> x,
                                 Handle<String> y) {
  // A few fast case tests before we flatten.
  if (x.is_identical_to(y)) {
    return ComparisonResult::kEqual;
  } else if (y->length() == 0) {
    return x->length() == 0 ? ComparisonResult::kEqual
                            : ComparisonResult::kGreaterThan;
  } else if (x->length() == 0) {
    return ComparisonResult::kLessThan;
  }

  int const d = x->Get(0) - y->Get(0);
  if (d < 0) {
    return ComparisonResult::kLessThan;
  } else if (d > 0) {
    return ComparisonResult::kGreaterThan;
  }

  // Slow case.
  x = String::Flatten(isolate, x);
  y = String::Flatten(isolate, y);

953
  DisallowGarbageCollection no_gc;
954 955 956 957 958 959 960 961 962 963 964 965
  ComparisonResult result = ComparisonResult::kEqual;
  int prefix_length = x->length();
  if (y->length() < prefix_length) {
    prefix_length = y->length();
    result = ComparisonResult::kGreaterThan;
  } else if (y->length() > prefix_length) {
    result = ComparisonResult::kLessThan;
  }
  int r;
  String::FlatContent x_content = x->GetFlatContent(no_gc);
  String::FlatContent y_content = y->GetFlatContent(no_gc);
  if (x_content.IsOneByte()) {
966
    base::Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
967
    if (y_content.IsOneByte()) {
968
      base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
969
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
970
    } else {
971
      base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
972
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
973 974
    }
  } else {
975
    base::Vector<const base::uc16> x_chars = x_content.ToUC16Vector();
976
    if (y_content.IsOneByte()) {
977
      base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
978
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
979
    } else {
980
      base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
981
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
982 983 984 985 986 987 988 989 990 991
    }
  }
  if (r < 0) {
    result = ComparisonResult::kLessThan;
  } else if (r > 0) {
    result = ComparisonResult::kGreaterThan;
  }
  return result;
}

992 993 994 995 996 997 998 999 1000 1001 1002
namespace {

uint32_t ToValidIndex(String str, Object number) {
  uint32_t index = PositiveNumberToUint32(number);
  uint32_t length_value = static_cast<uint32_t>(str.length());
  if (index > length_value) return length_value;
  return index;
}

}  // namespace

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
Object String::IndexOf(Isolate* isolate, Handle<Object> receiver,
                       Handle<Object> search, Handle<Object> position) {
  if (receiver->IsNullOrUndefined(isolate)) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
                              isolate->factory()->NewStringFromAsciiChecked(
                                  "String.prototype.indexOf")));
  }
  Handle<String> receiver_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string,
                                     Object::ToString(isolate, receiver));

  Handle<String> search_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string,
                                     Object::ToString(isolate, search));

  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                     Object::ToInteger(isolate, position));

1022
  uint32_t index = ToValidIndex(*receiver_string, *position);
1023 1024 1025 1026 1027 1028 1029 1030
  return Smi::FromInt(
      String::IndexOf(isolate, receiver_string, search_string, index));
}

namespace {

template <typename T>
int SearchString(Isolate* isolate, String::FlatContent receiver_content,
1031
                 base::Vector<T> pat_vector, int start_index) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  if (receiver_content.IsOneByte()) {
    return SearchString(isolate, receiver_content.ToOneByteVector(), pat_vector,
                        start_index);
  }
  return SearchString(isolate, receiver_content.ToUC16Vector(), pat_vector,
                      start_index);
}

}  // namespace

int String::IndexOf(Isolate* isolate, Handle<String> receiver,
                    Handle<String> search, int start_index) {
  DCHECK_LE(0, start_index);
  DCHECK(start_index <= receiver->length());

  uint32_t search_length = search->length();
  if (search_length == 0) return start_index;

  uint32_t receiver_length = receiver->length();
  if (start_index + search_length > receiver_length) return -1;

  receiver = String::Flatten(isolate, receiver);
  search = String::Flatten(isolate, search);

1056
  DisallowGarbageCollection no_gc;  // ensure vectors stay valid
1057 1058 1059 1060 1061 1062
  // Extract flattened substrings of cons strings before getting encoding.
  String::FlatContent receiver_content = receiver->GetFlatContent(no_gc);
  String::FlatContent search_content = search->GetFlatContent(no_gc);

  // dispatch on type of strings
  if (search_content.IsOneByte()) {
1063
    base::Vector<const uint8_t> pat_vector = search_content.ToOneByteVector();
1064 1065 1066
    return SearchString<const uint8_t>(isolate, receiver_content, pat_vector,
                                       start_index);
  }
1067 1068 1069
  base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
  return SearchString<const base::uc16>(isolate, receiver_content, pat_vector,
                                        start_index);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

MaybeHandle<String> String::GetSubstitution(Isolate* isolate, Match* match,
                                            Handle<String> replacement,
                                            int start_index) {
  DCHECK_GE(start_index, 0);

  Factory* factory = isolate->factory();

  const int replacement_length = replacement->length();
  const int captures_length = match->CaptureCount();

  replacement = String::Flatten(isolate, replacement);

  Handle<String> dollar_string =
      factory->LookupSingleCharacterStringFromCode('$');
  int next_dollar_ix =
      String::IndexOf(isolate, replacement, dollar_string, start_index);
  if (next_dollar_ix < 0) {
    return replacement;
  }

  IncrementalStringBuilder builder(isolate);

  if (next_dollar_ix > 0) {
    builder.AppendString(factory->NewSubString(replacement, 0, next_dollar_ix));
  }

  while (true) {
    const int peek_ix = next_dollar_ix + 1;
    if (peek_ix >= replacement_length) {
      builder.AppendCharacter('$');
      return builder.Finish();
    }

    int continue_from_ix = -1;
    const uint16_t peek = replacement->Get(peek_ix);
    switch (peek) {
      case '$':  // $$
        builder.AppendCharacter('$');
        continue_from_ix = peek_ix + 1;
        break;
      case '&':  // $& - match
        builder.AppendString(match->GetMatch());
        continue_from_ix = peek_ix + 1;
        break;
      case '`':  // $` - prefix
        builder.AppendString(match->GetPrefix());
        continue_from_ix = peek_ix + 1;
        break;
      case '\'':  // $' - suffix
        builder.AppendString(match->GetSuffix());
        continue_from_ix = peek_ix + 1;
        break;
      case '0':
      case '1':
      case '2':
      case '3':
      case '4':
      case '5':
      case '6':
      case '7':
      case '8':
      case '9': {
        // Valid indices are $1 .. $9, $01 .. $09 and $10 .. $99
        int scaled_index = (peek - '0');
        int advance = 1;

        if (peek_ix + 1 < replacement_length) {
          const uint16_t next_peek = replacement->Get(peek_ix + 1);
          if (next_peek >= '0' && next_peek <= '9') {
            const int new_scaled_index = scaled_index * 10 + (next_peek - '0');
            if (new_scaled_index < captures_length) {
              scaled_index = new_scaled_index;
              advance = 2;
            }
          }
        }

        if (scaled_index == 0 || scaled_index >= captures_length) {
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        bool capture_exists;
        Handle<String> capture;
        ASSIGN_RETURN_ON_EXCEPTION(
            isolate, capture, match->GetCapture(scaled_index, &capture_exists),
            String);
        if (capture_exists) builder.AppendString(capture);
        continue_from_ix = peek_ix + advance;
        break;
      }
      case '<': {  // $<name> - named capture
1165
        using CaptureState = String::Match::CaptureState;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

        if (!match->HasNamedCaptures()) {
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        Handle<String> bracket_string =
            factory->LookupSingleCharacterStringFromCode('>');
        const int closing_bracket_ix =
            String::IndexOf(isolate, replacement, bracket_string, peek_ix + 1);

        if (closing_bracket_ix == -1) {
          // No closing bracket was found, treat '$<' as a string literal.
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        Handle<String> capture_name =
            factory->NewSubString(replacement, peek_ix + 1, closing_bracket_ix);
        Handle<String> capture;
        CaptureState capture_state;
        ASSIGN_RETURN_ON_EXCEPTION(
            isolate, capture,
            match->GetNamedCapture(capture_name, &capture_state), String);

1193 1194
        if (capture_state == CaptureState::MATCHED) {
          builder.AppendString(capture);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        }

        continue_from_ix = closing_bracket_ix + 1;
        break;
      }
      default:
        builder.AppendCharacter('$');
        continue_from_ix = peek_ix;
        break;
    }

    // Go the the next $ in the replacement.
    // TODO(jgruber): Single-char lookups could be much more efficient.
    DCHECK_NE(continue_from_ix, -1);
    next_dollar_ix =
        String::IndexOf(isolate, replacement, dollar_string, continue_from_ix);

    // Return if there are no more $ characters in the replacement. If we
    // haven't reached the end, we need to append the suffix.
    if (next_dollar_ix < 0) {
      if (continue_from_ix < replacement_length) {
        builder.AppendString(factory->NewSubString(
            replacement, continue_from_ix, replacement_length));
      }
      return builder.Finish();
    }

    // Append substring between the previous and the next $ character.
    if (next_dollar_ix > continue_from_ix) {
      builder.AppendString(
          factory->NewSubString(replacement, continue_from_ix, next_dollar_ix));
    }
  }

  UNREACHABLE();
}

namespace {  // for String.Prototype.lastIndexOf

template <typename schar, typename pchar>
1235 1236
int StringMatchBackwards(base::Vector<const schar> subject,
                         base::Vector<const pchar> pattern, int idx) {
1237 1238 1239 1240 1241 1242
  int pattern_length = pattern.length();
  DCHECK_GE(pattern_length, 1);
  DCHECK(idx + pattern_length <= subject.length());

  if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
    for (int i = 0; i < pattern_length; i++) {
1243
      base::uc16 c = pattern[i];
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      if (c > String::kMaxOneByteCharCode) {
        return -1;
      }
    }
  }

  pchar pattern_first_char = pattern[0];
  for (int i = idx; i >= 0; i--) {
    if (subject[i] != pattern_first_char) continue;
    int j = 1;
    while (j < pattern_length) {
      if (pattern[j] != subject[i + j]) {
        break;
      }
      j++;
    }
    if (j == pattern_length) {
      return i;
    }
  }
  return -1;
}

}  // namespace

Object String::LastIndexOf(Isolate* isolate, Handle<Object> receiver,
                           Handle<Object> search, Handle<Object> position) {
  if (receiver->IsNullOrUndefined(isolate)) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
                              isolate->factory()->NewStringFromAsciiChecked(
                                  "String.prototype.lastIndexOf")));
  }
  Handle<String> receiver_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string,
                                     Object::ToString(isolate, receiver));

  Handle<String> search_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string,
                                     Object::ToString(isolate, search));

  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                     Object::ToNumber(isolate, position));

  uint32_t start_index;

  if (position->IsNaN()) {
    start_index = receiver_string->length();
  } else {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                       Object::ToInteger(isolate, position));
1295
    start_index = ToValidIndex(*receiver_string, *position);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  }

  uint32_t pattern_length = search_string->length();
  uint32_t receiver_length = receiver_string->length();

  if (start_index + pattern_length > receiver_length) {
    start_index = receiver_length - pattern_length;
  }

  if (pattern_length == 0) {
    return Smi::FromInt(start_index);
  }

  receiver_string = String::Flatten(isolate, receiver_string);
  search_string = String::Flatten(isolate, search_string);

  int last_index = -1;
1313
  DisallowGarbageCollection no_gc;  // ensure vectors stay valid
1314 1315 1316 1317 1318

  String::FlatContent receiver_content = receiver_string->GetFlatContent(no_gc);
  String::FlatContent search_content = search_string->GetFlatContent(no_gc);

  if (search_content.IsOneByte()) {
1319
    base::Vector<const uint8_t> pat_vector = search_content.ToOneByteVector();
1320 1321 1322 1323 1324 1325 1326 1327
    if (receiver_content.IsOneByte()) {
      last_index = StringMatchBackwards(receiver_content.ToOneByteVector(),
                                        pat_vector, start_index);
    } else {
      last_index = StringMatchBackwards(receiver_content.ToUC16Vector(),
                                        pat_vector, start_index);
    }
  } else {
1328
    base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    if (receiver_content.IsOneByte()) {
      last_index = StringMatchBackwards(receiver_content.ToOneByteVector(),
                                        pat_vector, start_index);
    } else {
      last_index = StringMatchBackwards(receiver_content.ToUC16Vector(),
                                        pat_vector, start_index);
    }
  }
  return Smi::FromInt(last_index);
}

1340
bool String::HasOneBytePrefix(base::Vector<const char> str) {
1341 1342
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return IsEqualToImpl<EqualityType::kPrefix>(
1343
      str, GetPtrComprCageBase(*this),
1344
      SharedStringAccessGuardIfNeeded::NotNeeded());
1345 1346
}

1347 1348 1349
namespace {

template <typename Char>
1350 1351
uint32_t HashString(String string, size_t start, int length, uint64_t seed,
                    const SharedStringAccessGuardIfNeeded& access_guard) {
1352
  DisallowGarbageCollection no_gc;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

  if (length > String::kMaxHashCalcLength) {
    return StringHasher::GetTrivialHash(length);
  }

  std::unique_ptr<Char[]> buffer;
  const Char* chars;

  if (string.IsConsString()) {
    DCHECK_EQ(0, start);
    DCHECK(!string.IsFlat());
    buffer.reset(new Char[length]);
1365
    String::WriteToFlat(string, buffer.get(), 0, length, access_guard);
1366 1367
    chars = buffer.get();
  } else {
1368
    chars = string.GetChars<Char>(no_gc, access_guard) + start;
1369 1370 1371 1372 1373 1374 1375
  }

  return StringHasher::HashSequentialString<Char>(chars, length, seed);
}

}  // namespace

1376
uint32_t String::ComputeAndSetHash() {
1377 1378 1379 1380 1381
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return ComputeAndSetHash(SharedStringAccessGuardIfNeeded::NotNeeded());
}
uint32_t String::ComputeAndSetHash(
    const SharedStringAccessGuardIfNeeded& access_guard) {
1382
  DisallowGarbageCollection no_gc;
1383 1384 1385 1386
  // Should only be called if hash code has not yet been computed.
  DCHECK(!HasHashCode());

  // Store the hash code in the object.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
  uint64_t seed = HashSeed(GetReadOnlyRoots());
  size_t start = 0;
  String string = *this;
  if (string.IsSlicedString()) {
    SlicedString sliced = SlicedString::cast(string);
    start = sliced.offset();
    string = sliced.parent();
  }
  if (string.IsConsString() && string.IsFlat()) {
    string = ConsString::cast(string).first();
  }
  if (string.IsThinString()) {
    string = ThinString::cast(string).actual();
1400
    if (length() == string.length()) {
1401 1402
      set_raw_hash_field(string.raw_hash_field());
      return hash();
1403 1404
    }
  }
1405 1406
  uint32_t raw_hash_field =
      string.IsOneByteRepresentation()
1407 1408
          ? HashString<uint8_t>(string, start, length(), seed, access_guard)
          : HashString<uint16_t>(string, start, length(), seed, access_guard);
1409
  set_raw_hash_field(raw_hash_field);
1410 1411 1412

  // Check the hash code is there.
  DCHECK(HasHashCode());
1413
  uint32_t result = raw_hash_field >> kHashShift;
1414 1415 1416 1417
  DCHECK_NE(result, 0);  // Ensure that the hash value of 0 is never computed.
  return result;
}

1418
bool String::SlowAsArrayIndex(uint32_t* index) {
1419
  DisallowGarbageCollection no_gc;
1420
  int length = this->length();
1421
  if (length <= kMaxCachedArrayIndexLength) {
1422
    EnsureHash();  // Force computation of hash code.
1423
    uint32_t field = raw_hash_field();
1424
    if ((field & kIsNotIntegerIndexMask) != 0) return false;
1425 1426 1427
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
1428 1429
  if (length == 0 || length > kMaxArrayIndexSize) return false;
  StringCharacterStream stream(*this);
1430
  return StringToIndex(&stream, index);
1431 1432
}

1433
bool String::SlowAsIntegerIndex(size_t* index) {
1434
  DisallowGarbageCollection no_gc;
1435 1436
  int length = this->length();
  if (length <= kMaxCachedArrayIndexLength) {
1437
    EnsureHash();  // Force computation of hash code.
1438
    uint32_t field = raw_hash_field();
1439
    if ((field & kIsNotIntegerIndexMask) != 0) return false;
1440 1441 1442
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
1443 1444
  if (length == 0 || length > kMaxIntegerIndexSize) return false;
  StringCharacterStream stream(*this);
1445 1446
  return StringToIndex<StringCharacterStream, size_t, kToIntegerIndex>(&stream,
                                                                       index);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

void String::PrintOn(FILE* file) {
  int length = this->length();
  for (int i = 0; i < length; i++) {
    PrintF(file, "%c", Get(i));
  }
}

Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
  if (new_length == 0) return string->GetReadOnlyRoots().empty_string_handle();

  int new_size, old_size;
  int old_length = string->length();
  if (old_length <= new_length) return string;

  if (string->IsSeqOneByteString()) {
    old_size = SeqOneByteString::SizeFor(old_length);
    new_size = SeqOneByteString::SizeFor(new_length);
  } else {
    DCHECK(string->IsSeqTwoByteString());
    old_size = SeqTwoByteString::SizeFor(old_length);
    new_size = SeqTwoByteString::SizeFor(new_length);
  }

  int delta = old_size - new_size;

  Address start_of_string = string->address();
1475 1476
  DCHECK(IsAligned(start_of_string, kObjectAlignment));
  DCHECK(IsAligned(start_of_string + new_size, kObjectAlignment));
1477 1478

  Heap* heap = Heap::FromWritableHeapObject(*string);
1479 1480 1481 1482 1483 1484
  if (!heap->IsLargeObject(*string)) {
    // Sizes are pointer size aligned, so that we can use filler objects
    // that are a multiple of pointer size.
    heap->CreateFillerObjectAt(start_of_string + new_size, delta,
                               ClearRecordedSlots::kNo);
  }
1485 1486
  // We are storing the new length using release store after creating a filler
  // for the left-over space to avoid races with the sweeper thread.
1487
  string->set_length(new_length, kReleaseStore);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

  return string;
}

void SeqOneByteString::clear_padding() {
  int data_size = SeqString::kHeaderSize + length() * kOneByteSize;
  memset(reinterpret_cast<void*>(address() + data_size), 0,
         SizeFor(length()) - data_size);
}

void SeqTwoByteString::clear_padding() {
1499
  int data_size = SeqString::kHeaderSize + length() * base::kUC16Size;
1500 1501 1502 1503
  memset(reinterpret_cast<void*>(address() + data_size), 0,
         SizeFor(length()) - data_size);
}

1504 1505
uint16_t ConsString::Get(
    int index, const SharedStringAccessGuardIfNeeded& access_guard) const {
1506 1507 1508
  DCHECK(index >= 0 && index < this->length());

  // Check for a flattened cons string
1509
  if (second().length() == 0) {
1510
    String left = first();
1511
    return left.Get(index);
1512 1513 1514 1515 1516 1517 1518
  }

  String string = String::cast(*this);

  while (true) {
    if (StringShape(string).IsCons()) {
      ConsString cons_string = ConsString::cast(string);
1519 1520
      String left = cons_string.first();
      if (left.length() > index) {
1521 1522
        string = left;
      } else {
1523 1524
        index -= left.length();
        string = cons_string.second();
1525 1526
      }
    } else {
1527
      return string.Get(index, access_guard);
1528 1529 1530 1531 1532 1533
    }
  }

  UNREACHABLE();
}

1534 1535 1536 1537
uint16_t ThinString::Get(
    int index, const SharedStringAccessGuardIfNeeded& access_guard) const {
  return actual().Get(index, access_guard);
}
1538

1539 1540 1541
uint16_t SlicedString::Get(
    int index, const SharedStringAccessGuardIfNeeded& access_guard) const {
  return parent().Get(offset() + index, access_guard);
1542
}
1543 1544 1545 1546 1547 1548 1549

int ExternalString::ExternalPayloadSize() const {
  int length_multiplier = IsTwoByteRepresentation() ? i::kShortSize : kCharSize;
  return length() * length_multiplier;
}

FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
1550
    : Relocatable(isolate), str_(str), length_(str->length()) {
1551 1552 1553 1554
#if DEBUG
  // Check that this constructor is called only from the main thread.
  DCHECK_EQ(ThreadId::Current(), isolate->thread_id());
#endif
1555 1556 1557 1558
  PostGarbageCollection();
}

void FlatStringReader::PostGarbageCollection() {
1559
  DCHECK(str_->IsFlat());
1560
  DisallowGarbageCollection no_gc;
1561
  // This does not actually prevent the vector from being relocated later.
1562
  String::FlatContent content = str_->GetFlatContent(no_gc);
1563 1564 1565
  DCHECK(content.IsFlat());
  is_one_byte_ = content.IsOneByte();
  if (is_one_byte_) {
1566
    start_ = content.ToOneByteVector().begin();
1567
  } else {
1568
    start_ = content.ToUC16Vector().begin();
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
  }
}

void ConsStringIterator::Initialize(ConsString cons_string, int offset) {
  DCHECK(!cons_string.is_null());
  root_ = cons_string;
  consumed_ = offset;
  // Force stack blown condition to trigger restart.
  depth_ = 1;
  maximum_depth_ = kStackSize + depth_;
  DCHECK(StackBlown());
}

String ConsStringIterator::Continue(int* offset_out) {
  DCHECK_NE(depth_, 0);
  DCHECK_EQ(0, *offset_out);
  bool blew_stack = StackBlown();
  String string;
  // Get the next leaf if there is one.
  if (!blew_stack) string = NextLeaf(&blew_stack);
  // Restart search from root.
  if (blew_stack) {
    DCHECK(string.is_null());
    string = Search(offset_out);
  }
  // Ensure future calls return null immediately.
  if (string.is_null()) Reset(ConsString());
  return string;
}

String ConsStringIterator::Search(int* offset_out) {
  ConsString cons_string = root_;
  // Reset the stack, pushing the root string.
  depth_ = 1;
  maximum_depth_ = 1;
  frames_[0] = cons_string;
  const int consumed = consumed_;
  int offset = 0;
  while (true) {
    // Loop until the string is found which contains the target offset.
1609 1610
    String string = cons_string.first();
    int length = string.length();
1611 1612 1613 1614
    int32_t type;
    if (consumed < offset + length) {
      // Target offset is in the left branch.
      // Keep going if we're still in a ConString.
1615
      type = string.map().instance_type();
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
      if ((type & kStringRepresentationMask) == kConsStringTag) {
        cons_string = ConsString::cast(string);
        PushLeft(cons_string);
        continue;
      }
      // Tell the stack we're done descending.
      AdjustMaximumDepth();
    } else {
      // Descend right.
      // Update progress through the string.
      offset += length;
      // Keep going if we're still in a ConString.
1628 1629
      string = cons_string.second();
      type = string.map().instance_type();
1630 1631 1632 1633 1634 1635
      if ((type & kStringRepresentationMask) == kConsStringTag) {
        cons_string = ConsString::cast(string);
        PushRight(cons_string);
        continue;
      }
      // Need this to be updated for the current string.
1636
      length = string.length();
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
      // Account for the possibility of an empty right leaf.
      // This happens only if we have asked for an offset outside the string.
      if (length == 0) {
        // Reset so future operations will return null immediately.
        Reset(ConsString());
        return String();
      }
      // Tell the stack we're done descending.
      AdjustMaximumDepth();
      // Pop stack so next iteration is in correct place.
      Pop();
    }
    DCHECK_NE(length, 0);
    // Adjust return values and exit.
    consumed_ = offset + length;
    *offset_out = consumed - offset;
    return string;
  }
  UNREACHABLE();
}

String ConsStringIterator::NextLeaf(bool* blew_stack) {
  while (true) {
    // Tree traversal complete.
    if (depth_ == 0) {
      *blew_stack = false;
      return String();
    }
    // We've lost track of higher nodes.
    if (StackBlown()) {
      *blew_stack = true;
      return String();
    }
    // Go right.
    ConsString cons_string = frames_[OffsetForDepth(depth_ - 1)];
1672 1673
    String string = cons_string.second();
    int32_t type = string.map().instance_type();
1674 1675 1676
    if ((type & kStringRepresentationMask) != kConsStringTag) {
      // Pop stack so next iteration is in correct place.
      Pop();
1677
      int length = string.length();
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
      // Could be a flattened ConsString.
      if (length == 0) continue;
      consumed_ += length;
      return string;
    }
    cons_string = ConsString::cast(string);
    PushRight(cons_string);
    // Need to traverse all the way left.
    while (true) {
      // Continue left.
1688 1689
      string = cons_string.first();
      type = string.map().instance_type();
1690 1691
      if ((type & kStringRepresentationMask) != kConsStringTag) {
        AdjustMaximumDepth();
1692
        int length = string.length();
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        if (length == 0) break;  // Skip empty left-hand sides of ConsStrings.
        consumed_ += length;
        return string;
      }
      cons_string = ConsString::cast(string);
      PushLeft(cons_string);
    }
  }
  UNREACHABLE();
}

1704 1705
const byte* String::AddressOfCharacterAt(
    int start_index, const DisallowGarbageCollection& no_gc) {
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
  DCHECK(IsFlat());
  String subject = *this;
  if (subject.IsConsString()) {
    subject = ConsString::cast(subject).first();
  } else if (subject.IsSlicedString()) {
    start_index += SlicedString::cast(subject).offset();
    subject = SlicedString::cast(subject).parent();
  }
  if (subject.IsThinString()) {
    subject = ThinString::cast(subject).actual();
  }
  CHECK_LE(0, start_index);
  CHECK_LE(start_index, subject.length());
  if (subject.IsSeqOneByteString()) {
    return reinterpret_cast<const byte*>(
        SeqOneByteString::cast(subject).GetChars(no_gc) + start_index);
  } else if (subject.IsSeqTwoByteString()) {
    return reinterpret_cast<const byte*>(
        SeqTwoByteString::cast(subject).GetChars(no_gc) + start_index);
  } else if (subject.IsExternalOneByteString()) {
    return reinterpret_cast<const byte*>(
        ExternalOneByteString::cast(subject).GetChars() + start_index);
  } else {
    DCHECK(subject.IsExternalTwoByteString());
    return reinterpret_cast<const byte*>(
        ExternalTwoByteString::cast(subject).GetChars() + start_index);
  }
}

1735 1736
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint16_t* sink, int from, int to);
1737 1738
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint8_t* sink, int from, int to);
1739 1740 1741 1742 1743 1744
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint16_t* sink, int from, int to,
    const SharedStringAccessGuardIfNeeded&);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint8_t* sink, int from, int to,
    const SharedStringAccessGuardIfNeeded&);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
namespace {
// Check that the constants defined in src/objects/instance-type.h coincides
// with the Torque-definition of string instance types in src/objects/string.tq.

DEFINE_TORQUE_GENERATED_STRING_INSTANCE_TYPE()

STATIC_ASSERT(kStringRepresentationMask == RepresentationBits::kMask);

STATIC_ASSERT(kStringEncodingMask == IsOneByteBit::kMask);
STATIC_ASSERT(kTwoByteStringTag == IsOneByteBit::encode(false));
STATIC_ASSERT(kOneByteStringTag == IsOneByteBit::encode(true));

STATIC_ASSERT(kUncachedExternalStringMask == IsUncachedBit::kMask);
STATIC_ASSERT(kUncachedExternalStringTag == IsUncachedBit::encode(true));

STATIC_ASSERT(kIsNotInternalizedMask == IsNotInternalizedBit::kMask);
STATIC_ASSERT(kNotInternalizedTag == IsNotInternalizedBit::encode(true));
STATIC_ASSERT(kInternalizedTag == IsNotInternalizedBit::encode(false));
}  // namespace

1766 1767
}  // namespace internal
}  // namespace v8