test-macro-assembler-mips.cc 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29 30

#include <iostream>
31

32
#include "src/api/api-inl.h"
33
#include "src/base/utils/random-number-generator.h"
34
#include "src/codegen/assembler-inl.h"
35
#include "src/codegen/macro-assembler.h"
36
#include "src/deoptimizer/deoptimizer.h"
37
#include "src/execution/simulator.h"
38
#include "src/init/v8.h"
39
#include "src/objects/heap-number.h"
40
#include "src/objects/js-array-inl.h"
41
#include "src/objects/objects-inl.h"
42
#include "src/utils/ostreams.h"
43
#include "test/cctest/cctest.h"
44
#include "test/common/assembler-tester.h"
45

46 47
namespace v8 {
namespace internal {
48

49
// TODO(mips): Refine these signatures per test case.
50 51 52
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
53 54 55

#define __ masm->

56 57 58
TEST(BYTESWAP) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
59
  HandleScope scope(isolate);
60 61

  struct T {
62 63 64
    uint32_t s4;
    uint32_t s2;
    uint32_t u2;
65
  };
66

67
  T t;
68 69
  uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE,    0x9F,
                            0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000};
70

71
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
72

73 74
  MacroAssembler* masm = &assembler;

75 76 77 78 79 80 81 82 83 84 85 86 87 88
  __ lw(a1, MemOperand(a0, offsetof(T, s4)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 4);
  __ sw(a1, MemOperand(a0, offsetof(T, s4)));

  __ lw(a1, MemOperand(a0, offsetof(T, s2)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, s2)));

  __ lw(a1, MemOperand(a0, offsetof(T, u2)));
  __ nop();
  __ ByteSwapUnsigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, u2)));
89 90 91 92 93

  __ jr(ra);
  __ nop();

  CodeDesc desc;
94
  masm->GetCode(isolate, &desc);
95 96
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
97
  auto f = GeneratedCode<F3>::FromCode(*code);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s4 = test_values[i];
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse(test_values[i]), t.s4);
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
113
}
114

115 116 117 118 119
static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
120
  v8::Local<v8::Context> context = CcTest::NewContext({PRINT_EXTENSION_ID});
121 122
  v8::Context::Scope context_scope(context);

123 124 125 126
  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
127
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
128
  i::Handle<i::JSArray> array1(i::JSArray::cast(*o), o->GetIsolate());
129
  i::FixedDoubleArray a = i::FixedDoubleArray::cast(array1->elements());
130
  double value = a.get_scalar(0);
131
  CHECK(std::isnan(value) &&
132
        bit_cast<uint64_t>(value) ==
133
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}

156

157 158 159 160 161 162 163 164
TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
165
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
166 167 168 169 170 171
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
172
  Label near_start, end, done;
173

174
  __ Push(ra);
175 176 177 178 179 180 181 182 183 184 185
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

186 187
  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });
188 189 190

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
191
    __ li(v0, values[i]);
192 193 194 195
    __ Branch(&done);
  }

  __ bind(&done);
196
  __ Pop(ra);
197 198 199 200 201 202 203
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
204
  masm->GetCode(isolate, &desc);
205 206
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
207
#ifdef OBJECT_PRINT
208
  code->Print(std::cout);
209
#endif
210
  auto f = GeneratedCode<F1>::FromCode(*code);
211
  for (int i = 0; i < kNumCases; ++i) {
212
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
213 214 215 216 217 218
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


219 220 221 222 223 224 225 226
TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
227
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
228 229 230 231 232 233 234 235
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

236
  __ Push(ra);
237 238

  {
239 240 241
    __ BlockTrampolinePoolFor(kNumCases + 6 + 1);

    __ addiupc(at, 6 + 1);
242
    __ Lsa(at, at, a0, 2);
243
    __ lw(at, MemOperand(at));
244 245 246
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
247 248
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)).
249 250 251 252 253 254 255
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
256
    __ li(v0, values[i]);
257 258 259 260 261
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
262
  __ Pop(ra);
263 264 265 266
  __ jr(ra);
  __ nop();

  CodeDesc desc;
267
  masm->GetCode(isolate, &desc);
268 269
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
270
#ifdef OBJECT_PRINT
271
  code->Print(std::cout);
272
#endif
273
  auto f = GeneratedCode<F1>::FromCode(*code);
274
  for (int i = 0; i < kNumCases; ++i) {
275
    int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0));
276
    ::printf("f(%d) = %d\n", i, res);
277 278 279 280
    CHECK_EQ(values[i], res);
  }
}

281 282 283 284 285 286 287 288 289 290
TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
291
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
292 293
  MacroAssembler* masm = &assembler;

294 295 296 297 298 299
  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

300 301
  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
302 303
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + kSwitchTableCases) - 20;
304

305
  int values[kSwitchTableCases];
306
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
307
  Label labels[kSwitchTableCases];
308 309 310 311 312 313 314 315 316
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
317
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
318 319 320 321 322 323 324 325 326
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

327
  __ GenerateSwitchTable(a0, kSwitchTableCases,
328
                         [&labels](size_t i) { return labels + i; });
329
  gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
330

331
  for (int i = 0; i < kSwitchTableCases; ++i) {
332 333 334 335
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
336 337
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);
338 339 340 341 342 343

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
344
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
345 346 347 348 349 350 351 352 353 354

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
355
  masm->GetCode(isolate, &desc);
356 357
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
358
#ifdef OBJECT_PRINT
359
  code->Print(std::cout);
360
#endif
361
  auto f = GeneratedCode<F1>::FromCode(*code);
362
  for (int i = 0; i < kSwitchTableCases; ++i) {
363
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
364 365 366 367
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}
368

369 370 371
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
372
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
373 374 375 376 377 378 379
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
380
  assembler.GetCode(isolate, &desc);
381 382
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
383

384
  auto f = GeneratedCode<F1>::FromCode(*code);
385

386
  uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0));
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
404
                             {0x4, 0x1, 3, 0xC},
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
421 422 423
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4},
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

448
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
449 450 451
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
452 453 454
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

455
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
456 457
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
458
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
459
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
460 461
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
462 463 464 465
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
466 467
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
468 469 470
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

471 472 473 474 475 476 477
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

478 479 480 481 482 483 484 485
#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
486 487 488 489 490
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)

#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint32, var, test_vector)
491 492 493

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
494
  using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
495 496 497

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
498
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
499 500 501 502 503 504 505 506 507
  MacroAssembler* masm = &assm;

  __ mtc1(a0, f4);
  GenerateConvertInstructionFunc(masm);
  __ mfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
508
  assm.GetCode(isolate, &desc);
509 510
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
511

512
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
513

514
  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
515 516 517 518
}

TEST(cvt_s_w_Trunc_uw_s) {
  CcTest::InitializeVM();
519
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
520
    uint32_t input = *i;
521 522
    auto fn = [](MacroAssembler* masm) {
      __ cvt_s_w(f0, f4);
523
      __ Trunc_uw_s(f2, f0, f6);
524 525
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn));
526 527 528 529 530
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
531
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
532
    int32_t input = *i;
533 534 535 536 537
    auto fn = [](MacroAssembler* masm) {
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn));
538 539 540
  }
}

541 542
static const std::vector<int32_t> overflow_int32_test_values() {
  static const int32_t kValues[] = {
543 544 545 546 547
      static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000),
      static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB),
      static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF),
      static_cast<int32_t>(0xFFFFFFFF)};
548 549 550
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

551 552
TEST(OverflowInstructions) {
  CcTest::InitializeVM();
553
  Isolate* isolate = CcTest::i_isolate();
554
  HandleScope handles(isolate);
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
  struct T {
    int32_t lhs;
    int32_t rhs;
    int32_t output_add;
    int32_t output_add2;
    int32_t output_sub;
    int32_t output_sub2;
    int32_t output_mul;
    int32_t output_mul2;
    int32_t overflow_add;
    int32_t overflow_add2;
    int32_t overflow_sub;
    int32_t overflow_sub2;
    int32_t overflow_mul;
    int32_t overflow_mul2;
  };
  T t;
573 574 575

  FOR_INT32_INPUTS(i, overflow_int32_test_values) {
    FOR_INT32_INPUTS(j, overflow_int32_test_values) {
576 577 578 579
      int32_t ii = *i;
      int32_t jj = *j;
      int32_t expected_add, expected_sub, expected_mul;
      bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
580
      MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
      MacroAssembler* masm = &assembler;

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ AddOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ AddOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ SubOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ SubOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
622
          Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub);
      expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
647 648 649 650 651 652
      }
    }
  }
}


653 654 655 656
TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
657
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
701
    __ LoadRoot(t8, RootIndex::kNanValue);
702
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
703 704 705 706 707 708 709 710 711 712 713 714 715 716
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
717 718
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
719 720
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
721
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
722
  __ bind(&back_mind_nan);
723
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
724
  __ bind(&back_maxd_nan);
725
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
726
  __ bind(&back_mins_nan);
727
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
728
  __ bind(&back_maxs_nan);
729 730
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
731 732 733 734 735 736 737 738 739 740 741 742
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
743
  masm->GetCode(isolate, &desc);
744 745
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
746
  auto f = GeneratedCode<F3>::FromCode(*code);
747 748 749 750 751 752
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

753
    f.Call(&test, 0, 0, 0, 0);
754 755 756 757 758 759 760 761

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

762 763 764
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
765
  using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
766 767 768

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
769
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
770 771 772 773 774 775 776 777
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
778
  assm.GetCode(isolate, &desc);
779 780
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
781

782
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
783 784

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
785
  f.Call(memory_buffer, 0, 0, 0, 0);
786 787 788 789 790 791 792
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
793 794
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

928 929 930 931 932 933 934 935 936 937 938 939 940 941
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
942
        CHECK_EQ(true,
943 944
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

964 965 966 967 968 969 970
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

990 991 992 993 994 995 996
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
997 998 999 1000 1001
      }
    }
  }
}

1002 1003
static const std::vector<uint32_t> sltu_test_values() {
  static const uint32_t kValues[] = {
1004 1005 1006
      0,          1,          0x7FFE,     0x7FFF,     0x8000,
      0x8001,     0xFFFE,     0xFFFF,     0xFFFF7FFE, 0xFFFF7FFF,
      0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF,
1007 1008 1009 1010 1011 1012
  };
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) {
1013
  using F_CVT = int32_t(uint32_t x0, uint32_t x1, int x2, int x3, int x4);
1014 1015 1016

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1017
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1018 1019 1020 1021 1022 1023 1024
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1025
  assm.GetCode(isolate, &desc);
1026 1027
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
1028

1029 1030
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0));
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT32_INPUTS(i, sltu_test_values) {
    FOR_UINT32_INPUTS(j, sltu_test_values) {
      uint32_t rs = *i;
      uint32_t rd = *j;

1042 1043 1044 1045 1046 1047 1048 1049 1050
      auto fn_1 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
1051 1052 1053 1054
    }
  }
}

1055
template <typename T, typename Inputs, typename Results>
1056
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ swc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
1096
  __ Branch(&done_min_abc);
1097 1098 1099

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
1100
  __ Branch(&done_min_aab);
1101 1102 1103

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
1104
  __ Branch(&done_min_aba);
1105 1106 1107

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
1108
  __ Branch(&done_max_abc);
1109 1110 1111

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
1112
  __ Branch(&done_max_aab);
1113 1114 1115

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
1116
  __ Branch(&done_max_aba);
1117 1118

  CodeDesc desc;
1119
  masm->GetCode(masm->isolate(), &desc);
1120
  Handle<Code> code =
1121
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1122
          .Build();
1123
#ifdef DEBUG
1124
  StdoutStream os;
1125
  code->Print(os);
1126
#endif
1127
  return GeneratedCode<F4>::FromCode(*code);
1128 1129 1130 1131 1132 1133 1134 1135
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1136
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

1155 1156
  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
1157 1158 1159 1160 1161

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1162
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
1198
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1210 1211
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1212 1213
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1214
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
1238
  __ Branch(&done_min_abc);
1239 1240 1241

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
1242
  __ Branch(&done_min_aab);
1243 1244 1245

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
1246
  __ Branch(&done_min_aba);
1247 1248 1249

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
1250
  __ Branch(&done_max_abc);
1251 1252 1253

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
1254
  __ Branch(&done_max_aab);
1255 1256 1257

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
1258
  __ Branch(&done_max_aba);
1259 1260

  CodeDesc desc;
1261
  masm->GetCode(masm->isolate(), &desc);
1262
  Handle<Code> code =
1263
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1264
          .Build();
1265
#ifdef DEBUG
1266
  StdoutStream os;
1267
  code->Print(os);
1268
#endif
1269
  return GeneratedCode<F4>::FromCode(*code);
1270 1271 1272 1273 1274 1275 1276 1277
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1278
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

1297 1298
  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
1299 1300 1301 1302 1303

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1304
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
TEST(DeoptExitSizeIsFixed) {
  CHECK(Deoptimizer::kSupportsFixedDeoptExitSizes);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);
  auto buffer = AllocateAssemblerBuffer();
  MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
                      buffer->CreateView());
  STATIC_ASSERT(static_cast<int>(kFirstDeoptimizeKind) == 0);
  for (int i = 0; i < kDeoptimizeKindCount; i++) {
    DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
    Label before_exit;
    masm.bind(&before_exit);
    if (kind == DeoptimizeKind::kEagerWithResume) {
1353
      Builtin target = Deoptimizer::GetDeoptWithResumeBuiltin(
1354
          DeoptimizeReason::kDynamicCheckMaps);
1355 1356 1357
      masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
                                 nullptr);
      CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
1358
               Deoptimizer::kEagerWithResumeBeforeArgsSize);
1359
    } else {
1360
      Builtin target = Deoptimizer::GetDeoptimizationEntry(kind);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
      masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
                                 nullptr);
      CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
               kind == DeoptimizeKind::kLazy
                   ? Deoptimizer::kLazyDeoptExitSize
                   : Deoptimizer::kNonLazyDeoptExitSize);
    }
  }
}

1371
#undef __
1372 1373 1374

}  // namespace internal
}  // namespace v8