layout-descriptor.cc 10.5 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/layout-descriptor.h"
6

7
#include <sstream>
8

9
#include "src/base/bits.h"
10
#include "src/handles-inl.h"
11

12 13
using v8::base::bits::CountTrailingZeros32;

14 15 16 17 18 19 20 21
namespace v8 {
namespace internal {

Handle<LayoutDescriptor> LayoutDescriptor::New(
    Handle<Map> map, Handle<DescriptorArray> descriptors, int num_descriptors) {
  Isolate* isolate = descriptors->GetIsolate();
  if (!FLAG_unbox_double_fields) return handle(FastPointerLayout(), isolate);

22 23
  int layout_descriptor_length =
      CalculateCapacity(*map, *descriptors, num_descriptors);
24

25 26 27
  if (layout_descriptor_length == 0) {
    // No double fields were found, use fast pointer layout.
    return handle(FastPointerLayout(), isolate);
28 29 30 31 32 33 34
  }

  // Initially, layout descriptor corresponds to an object with all fields
  // tagged.
  Handle<LayoutDescriptor> layout_descriptor_handle =
      LayoutDescriptor::New(isolate, layout_descriptor_length);

35 36 37
  LayoutDescriptor* layout_descriptor = Initialize(
      *layout_descriptor_handle, *map, *descriptors, num_descriptors);

38 39 40 41
  return handle(layout_descriptor, isolate);
}


42 43 44
Handle<LayoutDescriptor> LayoutDescriptor::ShareAppend(
    Handle<Map> map, PropertyDetails details) {
  DCHECK(map->owns_descriptors());
45 46 47 48
  Isolate* isolate = map->GetIsolate();
  Handle<LayoutDescriptor> layout_descriptor(map->GetLayoutDescriptor(),
                                             isolate);

49
  if (!InobjectUnboxedField(map->GetInObjectProperties(), details)) {
50 51
    DCHECK(details.location() != kField ||
           layout_descriptor->IsTagged(details.field_index()));
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    return layout_descriptor;
  }
  int field_index = details.field_index();
  layout_descriptor = LayoutDescriptor::EnsureCapacity(
      isolate, layout_descriptor, field_index + details.field_width_in_words());

  DisallowHeapAllocation no_allocation;
  LayoutDescriptor* layout_desc = *layout_descriptor;
  layout_desc = layout_desc->SetRawData(field_index);
  if (details.field_width_in_words() > 1) {
    layout_desc = layout_desc->SetRawData(field_index + 1);
  }
  return handle(layout_desc, isolate);
}


Handle<LayoutDescriptor> LayoutDescriptor::AppendIfFastOrUseFull(
    Handle<Map> map, PropertyDetails details,
    Handle<LayoutDescriptor> full_layout_descriptor) {
  DisallowHeapAllocation no_allocation;
  LayoutDescriptor* layout_descriptor = map->layout_descriptor();
  if (layout_descriptor->IsSlowLayout()) {
    return full_layout_descriptor;
  }
76
  if (!InobjectUnboxedField(map->GetInObjectProperties(), details)) {
77 78
    DCHECK(details.location() != kField ||
           layout_descriptor->IsTagged(details.field_index()));
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    return handle(layout_descriptor, map->GetIsolate());
  }
  int field_index = details.field_index();
  int new_capacity = field_index + details.field_width_in_words();
  if (new_capacity > layout_descriptor->capacity()) {
    // Current map's layout descriptor runs out of space, so use the full
    // layout descriptor.
    return full_layout_descriptor;
  }

  layout_descriptor = layout_descriptor->SetRawData(field_index);
  if (details.field_width_in_words() > 1) {
    layout_descriptor = layout_descriptor->SetRawData(field_index + 1);
  }
  return handle(layout_descriptor, map->GetIsolate());
}


Handle<LayoutDescriptor> LayoutDescriptor::EnsureCapacity(
    Isolate* isolate, Handle<LayoutDescriptor> layout_descriptor,
    int new_capacity) {
  int old_capacity = layout_descriptor->capacity();
  if (new_capacity <= old_capacity) {
    return layout_descriptor;
  }
  Handle<LayoutDescriptor> new_layout_descriptor =
      LayoutDescriptor::New(isolate, new_capacity);
  DCHECK(new_layout_descriptor->IsSlowLayout());

  if (layout_descriptor->IsSlowLayout()) {
109 110
    memcpy(new_layout_descriptor->DataPtr(), layout_descriptor->DataPtr(),
           layout_descriptor->DataSize());
111 112 113 114 115 116 117 118 119
    return new_layout_descriptor;
  } else {
    // Fast layout.
    uint32_t value =
        static_cast<uint32_t>(Smi::cast(*layout_descriptor)->value());
    new_layout_descriptor->set(0, value);
    return new_layout_descriptor;
  }
}
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152


bool LayoutDescriptor::IsTagged(int field_index, int max_sequence_length,
                                int* out_sequence_length) {
  DCHECK(max_sequence_length > 0);
  if (IsFastPointerLayout()) {
    *out_sequence_length = max_sequence_length;
    return true;
  }

  int layout_word_index;
  int layout_bit_index;

  if (!GetIndexes(field_index, &layout_word_index, &layout_bit_index)) {
    // Out of bounds queries are considered tagged.
    *out_sequence_length = max_sequence_length;
    return true;
  }
  uint32_t layout_mask = static_cast<uint32_t>(1) << layout_bit_index;

  uint32_t value = IsSlowLayout()
                       ? get_scalar(layout_word_index)
                       : static_cast<uint32_t>(Smi::cast(this)->value());

  bool is_tagged = (value & layout_mask) == 0;
  if (!is_tagged) value = ~value;  // Count set bits instead of cleared bits.
  value = value & ~(layout_mask - 1);  // Clear bits we are not interested in.
  int sequence_length = CountTrailingZeros32(value) - layout_bit_index;

  if (layout_bit_index + sequence_length == kNumberOfBits) {
    // This is a contiguous sequence till the end of current word, proceed
    // counting in the subsequent words.
    if (IsSlowLayout()) {
153
      int len = length();
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      ++layout_word_index;
      for (; layout_word_index < len; layout_word_index++) {
        value = get_scalar(layout_word_index);
        bool cur_is_tagged = (value & 1) == 0;
        if (cur_is_tagged != is_tagged) break;
        if (!is_tagged) value = ~value;  // Count set bits instead.
        int cur_sequence_length = CountTrailingZeros32(value);
        sequence_length += cur_sequence_length;
        if (sequence_length >= max_sequence_length) break;
        if (cur_sequence_length != kNumberOfBits) break;
      }
    }
    if (is_tagged && (field_index + sequence_length == capacity())) {
      // The contiguous sequence of tagged fields lasts till the end of the
      // layout descriptor which means that all the fields starting from
      // field_index are tagged.
      sequence_length = std::numeric_limits<int>::max();
    }
  }
  *out_sequence_length = Min(sequence_length, max_sequence_length);
  return is_tagged;
}


Handle<LayoutDescriptor> LayoutDescriptor::NewForTesting(Isolate* isolate,
                                                         int length) {
  return New(isolate, length);
}


LayoutDescriptor* LayoutDescriptor::SetTaggedForTesting(int field_index,
                                                        bool tagged) {
  return SetTagged(field_index, tagged);
}


bool LayoutDescriptorHelper::IsTagged(
    int offset_in_bytes, int end_offset,
    int* out_end_of_contiguous_region_offset) {
  DCHECK(IsAligned(offset_in_bytes, kPointerSize));
  DCHECK(IsAligned(end_offset, kPointerSize));
  DCHECK(offset_in_bytes < end_offset);
  if (all_fields_tagged_) {
    *out_end_of_contiguous_region_offset = end_offset;
    DCHECK(offset_in_bytes < *out_end_of_contiguous_region_offset);
    return true;
  }
  int max_sequence_length = (end_offset - offset_in_bytes) / kPointerSize;
  int field_index = Max(0, (offset_in_bytes - header_size_) / kPointerSize);
  int sequence_length;
  bool tagged = layout_descriptor_->IsTagged(field_index, max_sequence_length,
                                             &sequence_length);
  DCHECK(sequence_length > 0);
  if (offset_in_bytes < header_size_) {
    // Object headers do not contain non-tagged fields. Check if the contiguous
    // region continues after the header.
    if (tagged) {
      // First field is tagged, calculate end offset from there.
      *out_end_of_contiguous_region_offset =
          header_size_ + sequence_length * kPointerSize;

    } else {
      *out_end_of_contiguous_region_offset = header_size_;
    }
    DCHECK(offset_in_bytes < *out_end_of_contiguous_region_offset);
    return true;
  }
  *out_end_of_contiguous_region_offset =
      offset_in_bytes + sequence_length * kPointerSize;
  DCHECK(offset_in_bytes < *out_end_of_contiguous_region_offset);
  return tagged;
}
226 227


228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
LayoutDescriptor* LayoutDescriptor::Trim(Heap* heap, Map* map,
                                         DescriptorArray* descriptors,
                                         int num_descriptors) {
  DisallowHeapAllocation no_allocation;
  // Fast mode descriptors are never shared and therefore always fully
  // correspond to their map.
  if (!IsSlowLayout()) return this;

  int layout_descriptor_length =
      CalculateCapacity(map, descriptors, num_descriptors);
  // It must not become fast-mode descriptor here, because otherwise it has to
  // be fast pointer layout descriptor already but it's is slow mode now.
  DCHECK_LT(kSmiValueSize, layout_descriptor_length);

  // Trim, clean and reinitialize this slow-mode layout descriptor.
  int array_length = GetSlowModeBackingStoreLength(layout_descriptor_length);
244
  int current_length = length();
245 246 247
  if (current_length != array_length) {
    DCHECK_LT(array_length, current_length);
    int delta = current_length - array_length;
248
    heap->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(this, delta);
249
  }
250
  memset(DataPtr(), 0, DataSize());
251 252 253 254 255 256 257 258
  LayoutDescriptor* layout_descriptor =
      Initialize(this, map, descriptors, num_descriptors);
  DCHECK_EQ(this, layout_descriptor);
  return layout_descriptor;
}


bool LayoutDescriptor::IsConsistentWithMap(Map* map, bool check_tail) {
259 260 261
  if (FLAG_unbox_double_fields) {
    DescriptorArray* descriptors = map->instance_descriptors();
    int nof_descriptors = map->NumberOfOwnDescriptors();
262
    int last_field_index = 0;
263 264
    for (int i = 0; i < nof_descriptors; i++) {
      PropertyDetails details = descriptors->GetDetails(i);
265
      if (details.location() != kField) continue;
266 267 268 269 270 271 272 273
      FieldIndex field_index = FieldIndex::ForDescriptor(map, i);
      bool tagged_expected =
          !field_index.is_inobject() || !details.representation().IsDouble();
      for (int bit = 0; bit < details.field_width_in_words(); bit++) {
        bool tagged_actual = IsTagged(details.field_index() + bit);
        DCHECK_EQ(tagged_expected, tagged_actual);
        if (tagged_actual != tagged_expected) return false;
      }
274 275 276 277 278 279 280 281 282
      last_field_index =
          Max(last_field_index,
              details.field_index() + details.field_width_in_words());
    }
    if (check_tail) {
      int n = capacity();
      for (int i = last_field_index; i < n; i++) {
        DCHECK(IsTagged(i));
      }
283 284 285 286
    }
  }
  return true;
}
287 288
}  // namespace internal
}  // namespace v8