- 13 Nov, 2016 2 commits
-
-
Martin Storsjö authored
This work is sponsored by, and copyright, Google. These are ported from the ARM version; thanks to the larger amount of registers available, we can do the loop filters with 16 pixels at a time. The implementation is fully templated, with a single macro which can generate versions for both 8 and 16 pixels wide, for both 4, 8 and 16 pixels loop filters (and the 4/8 mixed versions as well). For the 8 pixel wide versions, it is pretty close in speed (the v_4_8 and v_8_8 filters are the best examples of this; the h_4_8 and h_8_8 filters seem to get some gain in the load/transpose/store part). For the 16 pixels wide ones, we get a speedup of around 1.2-1.4x compared to the 32 bit version. Examples of runtimes vs the 32 bit version, on a Cortex A53: ARM AArch64 vp9_loop_filter_h_4_8_neon: 144.0 127.2 vp9_loop_filter_h_8_8_neon: 207.0 182.5 vp9_loop_filter_h_16_8_neon: 415.0 328.7 vp9_loop_filter_h_16_16_neon: 672.0 558.6 vp9_loop_filter_mix2_h_44_16_neon: 302.0 203.5 vp9_loop_filter_mix2_h_48_16_neon: 365.0 305.2 vp9_loop_filter_mix2_h_84_16_neon: 365.0 305.2 vp9_loop_filter_mix2_h_88_16_neon: 376.0 305.2 vp9_loop_filter_mix2_v_44_16_neon: 193.2 128.2 vp9_loop_filter_mix2_v_48_16_neon: 246.7 218.4 vp9_loop_filter_mix2_v_84_16_neon: 248.0 218.5 vp9_loop_filter_mix2_v_88_16_neon: 302.0 218.2 vp9_loop_filter_v_4_8_neon: 89.0 88.7 vp9_loop_filter_v_8_8_neon: 141.0 137.7 vp9_loop_filter_v_16_8_neon: 295.0 272.7 vp9_loop_filter_v_16_16_neon: 546.0 453.7 The speedup vs C code in checkasm tests is around 2-7x, which is pretty much the same as for the 32 bit version. Even if these functions are faster than their 32 bit equivalent, the C version that we compare to also became around 1.3-1.7x faster than the C version in 32 bit. Based on START_TIMER/STOP_TIMER wrapping around a few individual functions, the speedup vs C code is around 4-5x. Examples of runtimes vs C on a Cortex A57 (for a slightly older version of the patch): A57 gcc-5.3 neon loop_filter_h_4_8_neon: 256.6 93.4 loop_filter_h_8_8_neon: 307.3 139.1 loop_filter_h_16_8_neon: 340.1 254.1 loop_filter_h_16_16_neon: 827.0 407.9 loop_filter_mix2_h_44_16_neon: 524.5 155.4 loop_filter_mix2_h_48_16_neon: 644.5 173.3 loop_filter_mix2_h_84_16_neon: 630.5 222.0 loop_filter_mix2_h_88_16_neon: 697.3 222.0 loop_filter_mix2_v_44_16_neon: 598.5 100.6 loop_filter_mix2_v_48_16_neon: 651.5 127.0 loop_filter_mix2_v_84_16_neon: 591.5 167.1 loop_filter_mix2_v_88_16_neon: 855.1 166.7 loop_filter_v_4_8_neon: 271.7 65.3 loop_filter_v_8_8_neon: 312.5 106.9 loop_filter_v_16_8_neon: 473.3 206.5 loop_filter_v_16_16_neon: 976.1 327.8 The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57 is again 30-50% faster than the cortex-a53. Signed-off-by:
Martin Storsjö <martin@martin.st>
-
Martin Storsjö authored
This work is sponsored by, and copyright, Google. These are ported from the ARM version; thanks to the larger amount of registers available, we can do the 16x16 and 32x32 transforms in slices 8 pixels wide instead of 4. This gives a speedup of around 1.4x compared to the 32 bit version. The fact that aarch64 doesn't have the same d/q register aliasing makes some of the macros quite a bit simpler as well. Examples of runtimes vs the 32 bit version, on a Cortex A53: ARM AArch64 vp9_inv_adst_adst_4x4_add_neon: 90.0 87.7 vp9_inv_adst_adst_8x8_add_neon: 400.0 354.7 vp9_inv_adst_adst_16x16_add_neon: 2526.5 1827.2 vp9_inv_dct_dct_4x4_add_neon: 74.0 72.7 vp9_inv_dct_dct_8x8_add_neon: 271.0 256.7 vp9_inv_dct_dct_16x16_add_neon: 1960.7 1372.7 vp9_inv_dct_dct_32x32_add_neon: 11988.9 8088.3 vp9_inv_wht_wht_4x4_add_neon: 63.0 57.7 The speedup vs C code (2-4x) is smaller than in the 32 bit case, mostly because the C code ends up significantly faster (around 1.6x faster, with GCC 5.4) when built for aarch64. Examples of runtimes vs C on a Cortex A57 (for a slightly older version of the patch): A57 gcc-5.3 neon vp9_inv_adst_adst_4x4_add_neon: 152.2 60.0 vp9_inv_adst_adst_8x8_add_neon: 948.2 288.0 vp9_inv_adst_adst_16x16_add_neon: 4830.4 1380.5 vp9_inv_dct_dct_4x4_add_neon: 153.0 58.6 vp9_inv_dct_dct_8x8_add_neon: 789.2 180.2 vp9_inv_dct_dct_16x16_add_neon: 3639.6 917.1 vp9_inv_dct_dct_32x32_add_neon: 20462.1 4985.0 vp9_inv_wht_wht_4x4_add_neon: 91.0 49.8 The asm is around factor 3-4 faster than C on the cortex-a57 and the asm is around 30-50% faster on the a57 compared to the a53. Signed-off-by:
Martin Storsjö <martin@martin.st>
-
- 10 Nov, 2016 1 commit
-
-
Martin Storsjö authored
This work is sponsored by, and copyright, Google. These are ported from the ARM version; it is essentially a 1:1 port with no extra added features, but with some hand tuning (especially for the plain copy/avg functions). The ARM version isn't very register starved to begin with, so there's not much to be gained from having more spare registers here - we only avoid having to clobber callee-saved registers. Examples of runtimes vs the 32 bit version, on a Cortex A53: ARM AArch64 vp9_avg4_neon: 27.2 23.7 vp9_avg8_neon: 56.5 54.7 vp9_avg16_neon: 169.9 167.4 vp9_avg32_neon: 585.8 585.2 vp9_avg64_neon: 2460.3 2294.7 vp9_avg_8tap_smooth_4h_neon: 132.7 125.2 vp9_avg_8tap_smooth_4hv_neon: 478.8 442.0 vp9_avg_8tap_smooth_4v_neon: 126.0 93.7 vp9_avg_8tap_smooth_8h_neon: 241.7 234.2 vp9_avg_8tap_smooth_8hv_neon: 690.9 646.5 vp9_avg_8tap_smooth_8v_neon: 245.0 205.5 vp9_avg_8tap_smooth_64h_neon: 11273.2 11280.1 vp9_avg_8tap_smooth_64hv_neon: 22980.6 22184.1 vp9_avg_8tap_smooth_64v_neon: 11549.7 10781.1 vp9_put4_neon: 18.0 17.2 vp9_put8_neon: 40.2 37.7 vp9_put16_neon: 97.4 99.5 vp9_put32_neon/armv8: 346.0 307.4 vp9_put64_neon/armv8: 1319.0 1107.5 vp9_put_8tap_smooth_4h_neon: 126.7 118.2 vp9_put_8tap_smooth_4hv_neon: 465.7 434.0 vp9_put_8tap_smooth_4v_neon: 113.0 86.5 vp9_put_8tap_smooth_8h_neon: 229.7 221.6 vp9_put_8tap_smooth_8hv_neon: 658.9 621.3 vp9_put_8tap_smooth_8v_neon: 215.0 187.5 vp9_put_8tap_smooth_64h_neon: 10636.7 10627.8 vp9_put_8tap_smooth_64hv_neon: 21076.8 21026.9 vp9_put_8tap_smooth_64v_neon: 9635.0 9632.4 These are generally about as fast as the corresponding ARM routines on the same CPU (at least on the A53), in most cases marginally faster. The speedup vs C code is pretty much the same as for the 32 bit case; on the A53 it's around 6-13x for ther larger 8tap filters. The exact speedup varies a little, since the C versions generally don't end up exactly as slow/fast as on 32 bit. Signed-off-by:
Martin Storsjö <martin@martin.st>
-
- 07 Apr, 2016 1 commit
-
-
Diego Biurrun authored
Restore alphabetical order in lists, break overly long lines, do some prettyprinting, add some explanatory section comments, group parts together that belong together logically.
-
- 01 Mar, 2016 1 commit
-
-
Diego Biurrun authored
-
- 14 Dec, 2015 3 commits
-
-
Janne Grunau authored
3% faster dts decoding on a cortex-a57. cortex-a57 cortex-a53 int32_to_float_fmul_array8_c: 1270.9 4475.6 int32_to_float_fmul_array8_neon: 328.6 569.2 int32_to_float_fmul_scalar_c: 928.5 4119.6 int32_to_float_fmul_scalar_neon: 309.1 524.1
-
Janne Grunau authored
~25% faster dts decoding overall. The checkasm CPU cycles numbers are not that useful since synth_filter_float() calls FFTContext.imdct_half(). cortex-a57 cortex-a53 synth_filter_float_c: 1866.2 3490.9 synth_filter_float_neon: 915.0 1531.5 With fftc.imdct_half forced to imdct_half_neon: cortex-a57 cortex-a53 synth_filter_float_c: 1718.4 3025.3 synth_filter_float_neon: 926.2 1530.1
-
Janne Grunau authored
~2% faster dts decoding overall. cortex-a57 cortex-a53 dca_decode_hf_c: 474.8 1659.9 dca_decode_hf_neon: 225.2 301.1 dca_lfe_fir0_c: 913.2 1537.7 dca_lfe_fir0_neon: 286.8 451.9 dca_lfe_fir1_c: 848.7 1711.5 dca_lfe_fir1_neon: 387.1 506.4
-
- 20 Jul, 2015 1 commit
-
-
Janne Grunau authored
-
- 02 Feb, 2015 1 commit
-
-
Diego Biurrun authored
It will be reused by the AAC decoder.
-
- 15 May, 2014 1 commit
-
-
Janne Grunau authored
Opus celt decoding 11% faster and the iMDCT over 2.5 times faster on Apple's A7.
-
- 22 Apr, 2014 4 commits
-
-
Janne Grunau authored
From the ARMv7 NEON version. 16 times faster as the C version, overall more than 12% faster vorbis decoding on Apple's A7.
-
Janne Grunau authored
30%/25% (fixed/float) faster mp3 decoding on Apple's A7. The floating point decoder is approximately 7% faster.
-
Janne Grunau authored
Approximately as fast as the ARM NEON version on Apple's A7.
-
Janne Grunau authored
Approximately as fast as the ARM NEON version on Apple's A7.
-
- 06 Apr, 2014 1 commit
-
-
Janne Grunau authored
8% faster h264 decoding on Apple A7.
-
- 20 Mar, 2014 1 commit
-
-
Diego Biurrun authored
This is in line with how the top-level libavcodec Makefile is structured.
-
- 15 Jan, 2014 6 commits
-
-
Janne Grunau authored
-
Janne Grunau authored
Ported from ARMv7 NEON.
-
Janne Grunau authored
Ported from ARMv7 NEON.
-
Janne Grunau authored
Ported from ARMv7 NEON.
-
Janne Grunau authored
Ported from ARMv7 NEON.
-
Janne Grunau authored
Since RV40 and VC-1 use almost the same algorithm so optimizations for those two decoders are easy to do and included.
-