Commit e1b45b85 authored by Guo, Yejun's avatar Guo, Yejun Committed by Pedro Arthur

avfilter/dnn: get the data type of network output from dnn execution result

so,  we can make a filter more general to accept different network
models, by adding a data type convertion after getting data from network.

After we add dt field into struct DNNData, it becomes the same as
DNNInputData, so merge them with one struct: DNNData.
Signed-off-by: 's avatarGuo, Yejun <yejun.guo@intel.com>
Signed-off-by: 's avatarPedro Arthur <bygrandao@gmail.com>
parent dff39ea9
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
#include "dnn_backend_native_layer_conv2d.h" #include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h" #include "dnn_backend_native_layers.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output) static DNNReturnType set_input_output_native(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{ {
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model; ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
DnnOperand *oprd = NULL; DnnOperand *oprd = NULL;
...@@ -263,6 +263,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output ...@@ -263,6 +263,7 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
outputs[i].height = oprd->dims[1]; outputs[i].height = oprd->dims[1];
outputs[i].width = oprd->dims[2]; outputs[i].width = oprd->dims[2];
outputs[i].channels = oprd->dims[3]; outputs[i].channels = oprd->dims[3];
outputs[i].dt = oprd->data_type;
} }
return DNN_SUCCESS; return DNN_SUCCESS;
......
...@@ -106,6 +106,7 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_ ...@@ -106,6 +106,7 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
output_operand->dims[1] = height - pad_size * 2; output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2; output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num; output_operand->dims[3] = conv_params->output_num;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand); output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length); output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) if (!output_operand->data)
......
...@@ -69,6 +69,7 @@ int dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_ope ...@@ -69,6 +69,7 @@ int dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_ope
output_operand->dims[1] = height * block_size; output_operand->dims[1] = height * block_size;
output_operand->dims[2] = width * block_size; output_operand->dims[2] = width * block_size;
output_operand->dims[3] = new_channels; output_operand->dims[3] = new_channels;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand); output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length); output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) if (!output_operand->data)
......
...@@ -105,6 +105,7 @@ int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_ind ...@@ -105,6 +105,7 @@ int dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_ind
output_operand->dims[1] = new_height; output_operand->dims[1] = new_height;
output_operand->dims[2] = new_width; output_operand->dims[2] = new_width;
output_operand->dims[3] = new_channel; output_operand->dims[3] = new_channel;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand); output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length); output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) if (!output_operand->data)
......
...@@ -83,7 +83,7 @@ static TF_Buffer *read_graph(const char *model_filename) ...@@ -83,7 +83,7 @@ static TF_Buffer *read_graph(const char *model_filename)
return graph_buf; return graph_buf;
} }
static TF_Tensor *allocate_input_tensor(const DNNInputData *input) static TF_Tensor *allocate_input_tensor(const DNNData *input)
{ {
TF_DataType dt; TF_DataType dt;
size_t size; size_t size;
...@@ -105,7 +105,7 @@ static TF_Tensor *allocate_input_tensor(const DNNInputData *input) ...@@ -105,7 +105,7 @@ static TF_Tensor *allocate_input_tensor(const DNNInputData *input)
input_dims[1] * input_dims[2] * input_dims[3] * size); input_dims[1] * input_dims[2] * input_dims[3] * size);
} }
static DNNReturnType set_input_output_tf(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output) static DNNReturnType set_input_output_tf(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{ {
TFModel *tf_model = (TFModel *)model; TFModel *tf_model = (TFModel *)model;
TF_SessionOptions *sess_opts; TF_SessionOptions *sess_opts;
...@@ -603,6 +603,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, u ...@@ -603,6 +603,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, u
outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2); outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2);
outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3); outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3);
outputs[i].data = TF_TensorData(tf_model->output_tensors[i]); outputs[i].data = TF_TensorData(tf_model->output_tensors[i]);
outputs[i].dt = TF_TensorType(tf_model->output_tensors[i]);
} }
return DNN_SUCCESS; return DNN_SUCCESS;
......
...@@ -34,15 +34,10 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType; ...@@ -34,15 +34,10 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType; typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
typedef struct DNNInputData{ typedef struct DNNData{
void *data; void *data;
DNNDataType dt; DNNDataType dt;
int width, height, channels; int width, height, channels;
} DNNInputData;
typedef struct DNNData{
float *data;
int width, height, channels;
} DNNData; } DNNData;
typedef struct DNNModel{ typedef struct DNNModel{
...@@ -50,7 +45,7 @@ typedef struct DNNModel{ ...@@ -50,7 +45,7 @@ typedef struct DNNModel{
void *model; void *model;
// Sets model input and output. // Sets model input and output.
// Should be called at least once before model execution. // Should be called at least once before model execution.
DNNReturnType (*set_input_output)(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output); DNNReturnType (*set_input_output)(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output);
} DNNModel; } DNNModel;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends. // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
......
...@@ -39,7 +39,7 @@ typedef struct DRContext { ...@@ -39,7 +39,7 @@ typedef struct DRContext {
DNNBackendType backend_type; DNNBackendType backend_type;
DNNModule *dnn_module; DNNModule *dnn_module;
DNNModel *model; DNNModel *model;
DNNInputData input; DNNData input;
DNNData output; DNNData output;
} DRContext; } DRContext;
...@@ -137,7 +137,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) ...@@ -137,7 +137,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
int t = i * out->width * 3 + j; int t = i * out->width * 3 + j;
int t_in = (i + pad_size) * in->width * 3 + j + pad_size * 3; int t_in = (i + pad_size) * in->width * 3 + j + pad_size * 3;
out->data[0][k] = CLIP((int)((((float *)dr_context->input.data)[t_in] - dr_context->output.data[t]) * 255), 0, 255); out->data[0][k] = CLIP((int)((((float *)dr_context->input.data)[t_in] - ((float *)dr_context->output.data)[t]) * 255), 0, 255);
} }
} }
......
...@@ -41,7 +41,7 @@ typedef struct SRContext { ...@@ -41,7 +41,7 @@ typedef struct SRContext {
DNNBackendType backend_type; DNNBackendType backend_type;
DNNModule *dnn_module; DNNModule *dnn_module;
DNNModel *model; DNNModel *model;
DNNInputData input; DNNData input;
DNNData output; DNNData output;
int scale_factor; int scale_factor;
struct SwsContext *sws_contexts[3]; struct SwsContext *sws_contexts[3];
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment