Commit 5f058dd6 authored by Guo, Yejun's avatar Guo, Yejun Committed by Pedro Arthur

libavfilter/dnn: separate conv2d layer from dnn_backend_native.c to a new file

the logic is that one layer in one separated source file to make
the source files simple for maintaining.
Signed-off-by: 's avatarGuo, Yejun <yejun.guo@intel.com>
Signed-off-by: 's avatarPedro Arthur <bygrandao@gmail.com>
parent c2ab998f
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
......
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
#include "dnn_backend_native.h" #include "dnn_backend_native.h"
#include "libavutil/avassert.h" #include "libavutil/avassert.h"
#include "dnn_backend_native_layer_pad.h" #include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_conv2d.h"
static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output) static DNNReturnType set_input_output_native(void *model, DNNInputData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{ {
...@@ -281,85 +282,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename) ...@@ -281,85 +282,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
return model; return model;
} }
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
static int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
{
float *output;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num;
output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)
return -1;
output = output_operand->data;
av_assert0(channel == conv_params->input_num);
for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
output[n_filter] = conv_params->biases[n_filter];
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
switch (conv_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += conv_params->output_num;
}
}
return 0;
}
static int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size) static int depth_to_space(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, int block_size)
{ {
float *output; float *output;
......
...@@ -32,10 +32,6 @@ ...@@ -32,10 +32,6 @@
typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType; typedef enum {INPUT, CONV, DEPTH_TO_SPACE, MIRROR_PAD} DNNLayerType;
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType; typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;
typedef struct Layer{ typedef struct Layer{
...@@ -90,15 +86,6 @@ typedef struct DnnOperand{ ...@@ -90,15 +86,6 @@ typedef struct DnnOperand{
int32_t usedNumbersLeft; int32_t usedNumbersLeft;
}DnnOperand; }DnnOperand;
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
DNNActivationFunc activation;
DNNConvPaddingParam padding_method;
int32_t dilation;
float *kernel;
float *biases;
} ConvolutionalParams;
typedef struct InputParams{ typedef struct InputParams{
int height, width, channels; int height, width, channels;
} InputParams; } InputParams;
......
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params)
{
float *output;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num;
output_operand->length = calculate_operand_data_length(output_operand);
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)
return -1;
output = output_operand->data;
av_assert0(channel == conv_params->input_num);
for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
output[n_filter] = conv_params->biases[n_filter];
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
switch (conv_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += conv_params->output_num;
}
}
return 0;
}
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
#include "dnn_backend_native.h"
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
DNNActivationFunc activation;
DNNConvPaddingParam padding_method;
int32_t dilation;
float *kernel;
float *biases;
} ConvolutionalParams;
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params);
#endif
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include "dnn_backend_tf.h" #include "dnn_backend_tf.h"
#include "dnn_backend_native.h" #include "dnn_backend_native.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "libavformat/avio.h" #include "libavformat/avio.h"
#include "libavutil/avassert.h" #include "libavutil/avassert.h"
#include "dnn_backend_native_layer_pad.h" #include "dnn_backend_native_layer_pad.h"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment