ffwavesynth.c 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Wavesynth pseudo-codec
 * Copyright (c) 2011 Nicolas George
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intreadwrite.h"
#include "libavutil/log.h"
#include "avcodec.h"

#define SIN_BITS 14
#define WS_MAX_CHANNELS 32
#define INF_TS 0x7FFFFFFFFFFFFFFF

#define PINK_UNIT 128

/*
   Format of the extradata and packets

   THIS INFORMATION IS NOT PART OF THE PUBLIC API OR ABI.
   IT CAN CHANGE WITHOUT NOTIFICATION.

   All numbers are in little endian.

   The codec extradata define a set of intervals with uniform content.
   Overlapping intervals are added together.

   extradata:
       uint32      number of intervals
       ...         intervals

   interval:
       int64       start timestamp; time_base must be 1/sample_rate;
                   start timestamps must be in ascending order
       int64       end timestamp
       uint32      type
       uint32      channels mask
       ...         additional information, depends on type

   sine interval (type fourcc "SINE"):
       int32       start frequency, in 1/(1<<16) Hz
       int32       end frequency
       int32       start amplitude, 1<<16 is the full amplitude
       int32       end amplitude
       uint32      start phase, 0 is sin(0), 0x20000000 is sin(pi/2), etc.;
                   n | (1<<31) means to match the phase of previous channel #n

   pink noise interval (type fourcc "NOIS"):
       int32       start amplitude
       int32       end amplitude

   The input packets encode the time and duration of the requested segment.

   packet:
       int64       start timestamp
       int32       duration

*/

enum ws_interval_type {
    WS_SINE  = MKTAG('S','I','N','E'),
    WS_NOISE = MKTAG('N','O','I','S'),
};

struct ws_interval {
    int64_t ts_start, ts_end;
    uint64_t phi0, dphi0, ddphi;
    uint64_t amp0, damp;
    uint64_t phi, dphi, amp;
    uint32_t channels;
    enum ws_interval_type type;
    int next;
};

struct wavesynth_context {
    int64_t cur_ts;
    int64_t next_ts;
    int32_t *sin;
    AVFrame frame;
    struct ws_interval *inter;
    uint32_t dither_state;
    uint32_t pink_state;
    int32_t pink_pool[PINK_UNIT];
    unsigned pink_need, pink_pos;
    int nb_inter;
    int cur_inter;
    int next_inter;
};

#define LCG_A 1284865837
#define LCG_C 4150755663
#define LCG_AI 849225893 /* A*AI = 1 [mod 1<<32] */

static uint32_t lcg_next(uint32_t *s)
{
    *s = *s * LCG_A + LCG_C;
    return *s;
}

static void lcg_seek(uint32_t *s, int64_t dt)
{
    uint32_t a, c, t = *s;

    if (dt >= 0) {
        a = LCG_A;
        c = LCG_C;
    } else { /* coefficients for a step backward */
        a = LCG_AI;
        c = (uint32_t)(LCG_AI * LCG_C);
        dt = -dt;
    }
    while (dt) {
        if (dt & 1)
            t = a * t + c;
        c *= a + 1; /* coefficients for a double step */
        a *= a;
        dt >>= 1;
    }
    *s = t;
}

/* Emulate pink noise by summing white noise at the sampling frequency,
 * white noise at half the sampling frequency (each value taken twice),
 * etc., with a total of 8 octaves.
 * This is known as the Voss-McCartney algorithm. */

static void pink_fill(struct wavesynth_context *ws)
{
    int32_t vt[7] = { 0 }, v = 0;
    int i, j;

    ws->pink_pos = 0;
    if (!ws->pink_need)
        return;
    for (i = 0; i < PINK_UNIT; i++) {
        for (j = 0; j < 7; j++) {
            if ((i >> j) & 1)
                break;
            v -= vt[j];
            vt[j] = (int32_t)lcg_next(&ws->pink_state) >> 3;
            v += vt[j];
        }
        ws->pink_pool[i] = v + ((int32_t)lcg_next(&ws->pink_state) >> 3);
    }
    lcg_next(&ws->pink_state); /* so we use exactly 256 steps */
}

/**
 * @return  (1<<64) * a / b, without overflow, if a < b
 */
static uint64_t frac64(uint64_t a, uint64_t b)
{
    uint64_t r = 0;
    int i;

    if (b < (uint64_t)1 << 32) { /* b small, use two 32-bits steps */
        a <<= 32;
        return ((a / b) << 32) | ((a % b) << 32) / b;
    }
    if (b < (uint64_t)1 << 48) { /* b medium, use four 16-bits steps */
        for (i = 0; i < 4; i++) {
            a <<= 16;
            r = (r << 16) | (a / b);
            a %= b;
        }
        return r;
    }
    for (i = 63; i >= 0; i--) {
        if (a >= (uint64_t)1 << 63 || a << 1 >= b) {
            r |= (uint64_t)1 << i;
            a = (a << 1) - b;
        } else {
            a <<= 1;
        }
    }
    return r;
}

static uint64_t phi_at(struct ws_interval *in, int64_t ts)
{
    uint64_t dt = ts - in->ts_start;
    uint64_t dt2 = dt & 1 ? /* dt * (dt - 1) / 2 without overflow */
                   dt * ((dt - 1) >> 1) : (dt >> 1) * (dt - 1);
    return in->phi0 + dt * in->dphi0 + dt2 * in->ddphi;
}

static void wavesynth_seek(struct wavesynth_context *ws, int64_t ts)
{
    int *last, i;
    struct ws_interval *in;

    last = &ws->cur_inter;
    for (i = 0; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (ts < in->ts_start)
            break;
        if (ts >= in->ts_end)
            continue;
        *last = i;
        last = &in->next;
        in->phi  = phi_at(in, ts);
        in->dphi = in->dphi0 + (ts - in->ts_start) * in->ddphi;
        in->amp  = in->amp0  + (ts - in->ts_start) * in->damp;
    }
    ws->next_inter = i;
    ws->next_ts = i < ws->nb_inter ? ws->inter[i].ts_start : INF_TS;
    *last = -1;
    lcg_seek(&ws->dither_state, ts - ws->cur_ts);
    if (ws->pink_need) {
        int64_t pink_ts_cur  = (ws->cur_ts + PINK_UNIT - 1) & ~(PINK_UNIT - 1);
        int64_t pink_ts_next = ts & ~(PINK_UNIT - 1);
        int pos = ts & (PINK_UNIT - 1);
        lcg_seek(&ws->pink_state, (pink_ts_next - pink_ts_cur) << 1);
        if (pos) {
            pink_fill(ws);
            ws->pink_pos = pos;
        } else {
            ws->pink_pos = PINK_UNIT;
        }
    }
    ws->cur_ts = ts;
}

static int wavesynth_parse_extradata(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;
    struct ws_interval *in;
    uint8_t *edata, *edata_end;
    int32_t f1, f2, a1, a2;
    uint32_t phi;
    int64_t dphi1, dphi2, dt, cur_ts = -0x8000000000000000;
    int i;

    if (avc->extradata_size < 4)
        return AVERROR(EINVAL);
    edata = avc->extradata;
    edata_end = edata + avc->extradata_size;
    ws->nb_inter = AV_RL32(edata);
    edata += 4;
    if (ws->nb_inter < 0)
        return AVERROR(EINVAL);
    ws->inter = av_calloc(ws->nb_inter, sizeof(*ws->inter));
    if (!ws->inter)
        return AVERROR(ENOMEM);
    for (i = 0; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (edata_end - edata < 24)
            return AVERROR(EINVAL);
        in->ts_start = AV_RL64(edata +  0);
        in->ts_end   = AV_RL64(edata +  8);
        in->type     = AV_RL32(edata + 16);
        in->channels = AV_RL32(edata + 20);
        edata += 24;
        if (in->ts_start < cur_ts || in->ts_end <= in->ts_start)
            return AVERROR(EINVAL);
        cur_ts = in->ts_start;
        dt = in->ts_end - in->ts_start;
        switch (in->type) {
            case WS_SINE:
                if (edata_end - edata < 20)
                    return AVERROR(EINVAL);
                f1  = AV_RL32(edata +  0);
                f2  = AV_RL32(edata +  4);
                a1  = AV_RL32(edata +  8);
                a2  = AV_RL32(edata + 12);
                phi = AV_RL32(edata + 16);
                edata += 20;
                dphi1 = frac64(f1, (int64_t)avc->sample_rate << 16);
                dphi2 = frac64(f2, (int64_t)avc->sample_rate << 16);
                in->dphi0 = dphi1;
                in->ddphi = (dphi2 - dphi1) / dt;
                if (phi & 0x80000000) {
                    phi &= ~0x80000000;
                    if (phi >= i)
                        return AVERROR(EINVAL);
                    in->phi0 = phi_at(&ws->inter[phi], in->ts_start);
                } else {
                    in->phi0 = (uint64_t)phi << 33;
                }
                break;
            case WS_NOISE:
                if (edata_end - edata < 8)
                    return AVERROR(EINVAL);
                a1  = AV_RL32(edata +  0);
                a2  = AV_RL32(edata +  4);
                edata += 8;
                break;
            default:
                return AVERROR(EINVAL);
        }
        in->amp0 = (int64_t)a1 << 32;
        in->damp = (((int64_t)a2 << 32) - ((int64_t)a1 << 32)) / dt;
    }
    if (edata != edata_end)
        return AVERROR(EINVAL);
    return 0;
}

static av_cold int wavesynth_init(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;
    int i, r;

    if (avc->channels > WS_MAX_CHANNELS) {
        av_log(avc, AV_LOG_ERROR,
               "This implementation is limited to %d channels.\n",
               WS_MAX_CHANNELS);
        return AVERROR(EINVAL);
    }
    r = wavesynth_parse_extradata(avc);
    if (r < 0) {
        av_log(avc, AV_LOG_ERROR, "Invalid intervals definitions.\n");
        goto fail;
    }
    ws->sin = av_malloc(sizeof(*ws->sin) << SIN_BITS);
    if (!ws->sin) {
        r = AVERROR(ENOMEM);
        goto fail;
    }
    for (i = 0; i < 1 << SIN_BITS; i++)
        ws->sin[i] = floor(32767 * sin(2 * M_PI * i / (1 << SIN_BITS)));
    ws->dither_state = MKTAG('D','I','T','H');
    for (i = 0; i < ws->nb_inter; i++)
        ws->pink_need += ws->inter[i].type == WS_NOISE;
    ws->pink_state = MKTAG('P','I','N','K');
    ws->pink_pos = PINK_UNIT;
    avcodec_get_frame_defaults(&ws->frame);
    avc->coded_frame = &ws->frame;
    wavesynth_seek(ws, 0);
    avc->sample_fmt = AV_SAMPLE_FMT_S16;
    return 0;

fail:
    av_free(ws->inter);
    av_free(ws->sin);
    return r;
}

static void wavesynth_synth_sample(struct wavesynth_context *ws, int64_t ts,
                                   int32_t *channels)
{
    int32_t amp, val, *cv;
    struct ws_interval *in;
    int i, *last, pink;
    uint32_t c, all_ch = 0;

    i = ws->cur_inter;
    last = &ws->cur_inter;
    if (ws->pink_pos == PINK_UNIT)
        pink_fill(ws);
    pink = ws->pink_pool[ws->pink_pos++] >> 16;
    while (i >= 0) {
        in = &ws->inter[i];
        i = in->next;
        if (ts >= in->ts_end) {
            *last = i;
            continue;
        }
        last = &in->next;
        amp = in->amp >> 32;
        in->amp  += in->damp;
        switch (in->type) {
            case WS_SINE:
                val = amp * ws->sin[in->phi >> (64 - SIN_BITS)];
                in->phi  += in->dphi;
                in->dphi += in->ddphi;
                break;
            case WS_NOISE:
                val = amp * pink;
                break;
            default:
                val = 0;
        }
        all_ch |= in->channels;
        for (c = in->channels, cv = channels; c; c >>= 1, cv++)
            if (c & 1)
                *cv += val;
    }
    val = (int32_t)lcg_next(&ws->dither_state) >> 16;
    for (c = all_ch, cv = channels; c; c >>= 1, cv++)
        if (c & 1)
            *cv += val;
}

static void wavesynth_enter_intervals(struct wavesynth_context *ws, int64_t ts)
{
    int *last, i;
    struct ws_interval *in;

    last = &ws->cur_inter;
    for (i = ws->cur_inter; i >= 0; i = ws->inter[i].next)
        last = &ws->inter[i].next;
    for (i = ws->next_inter; i < ws->nb_inter; i++) {
        in = &ws->inter[i];
        if (ts < in->ts_start)
            break;
        if (ts >= in->ts_end)
            continue;
        *last = i;
        last = &in->next;
        in->phi = in->phi0;
        in->dphi = in->dphi0;
        in->amp = in->amp0;
    }
    ws->next_inter = i;
    ws->next_ts = i < ws->nb_inter ? ws->inter[i].ts_start : INF_TS;
    *last = -1;
}

static int wavesynth_decode(AVCodecContext *avc, void *rframe, int *rgot_frame,
                            AVPacket *packet)
{
    struct wavesynth_context *ws = avc->priv_data;
    int64_t ts;
    int duration;
    int s, c, r;
    int16_t *pcm;
    int32_t channels[WS_MAX_CHANNELS];

    *rgot_frame = 0;
    if (packet->size != 12)
        return AVERROR_INVALIDDATA;
    ts = AV_RL64(packet->data);
    if (ts != ws->cur_ts)
        wavesynth_seek(ws, ts);
    duration = AV_RL32(packet->data + 8);
    if (duration <= 0)
        return AVERROR(EINVAL);
    ws->frame.nb_samples = duration;
    r = avc->get_buffer(avc, &ws->frame);
    if (r < 0)
        return r;
    pcm = (int16_t *)ws->frame.data[0];
    for (s = 0; s < duration; s++, ts++) {
        memset(channels, 0, avc->channels * sizeof(*channels));
        if (ts >= ws->next_ts)
            wavesynth_enter_intervals(ws, ts);
        wavesynth_synth_sample(ws, ts, channels);
        for (c = 0; c < avc->channels; c++)
            *(pcm++) = channels[c] >> 16;
    }
    ws->cur_ts += duration;
    *rgot_frame = 1;
    *(AVFrame *)rframe = ws->frame;
    return packet->size;
}

static av_cold int wavesynth_close(AVCodecContext *avc)
{
    struct wavesynth_context *ws = avc->priv_data;

    av_free(ws->sin);
    av_free(ws->inter);
    return 0;
}

AVCodec ff_ffwavesynth_decoder = {
    .name           = "wavesynth",
    .type           = AVMEDIA_TYPE_AUDIO,
475
    .id             = AV_CODEC_ID_FFWAVESYNTH,
476 477 478 479 480 481 482
    .priv_data_size = sizeof(struct wavesynth_context),
    .init           = wavesynth_init,
    .close          = wavesynth_close,
    .decode         = wavesynth_decode,
    .capabilities   = CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("Wave synthesis pseudo-codec"),
};