sonic.c 24.6 KB
Newer Older
1 2 3 4
/*
 * Simple free lossless/lossy audio codec
 * Copyright (c) 2004 Alex Beregszaszi
 *
5 6 7
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 21
 */
#include "avcodec.h"
22
#include "get_bits.h"
23 24 25
#include "golomb.h"

/**
26
 * @file
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 * Simple free lossless/lossy audio codec
 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
 * Written and designed by Alex Beregszaszi
 *
 * TODO:
 *  - CABAC put/get_symbol
 *  - independent quantizer for channels
 *  - >2 channels support
 *  - more decorrelation types
 *  - more tap_quant tests
 *  - selectable intlist writers/readers (bonk-style, golomb, cabac)
 */

#define MAX_CHANNELS 2

42 43 44 45
#define MID_SIDE 0
#define LEFT_SIDE 1
#define RIGHT_SIDE 2

46
typedef struct SonicContext {
47
    int lossless, decorrelation;
48

49 50
    int num_taps, downsampling;
    double quantization;
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    int channels, samplerate, block_align, frame_size;

    int *tap_quant;
    int *int_samples;
    int *coded_samples[MAX_CHANNELS];

    // for encoding
    int *tail;
    int tail_size;
    int *window;
    int window_size;

    // for decoding
    int *predictor_k;
    int *predictor_state[MAX_CHANNELS];
} SonicContext;

69 70 71 72
#define LATTICE_SHIFT   10
#define SAMPLE_SHIFT    4
#define LATTICE_FACTOR  (1 << LATTICE_SHIFT)
#define SAMPLE_FACTOR   (1 << SAMPLE_SHIFT)
73

74 75
#define BASE_QUANT      0.6
#define RATE_VARIATION  3.0
76 77 78 79

static inline int divide(int a, int b)
{
    if (a < 0)
80
        return -( (-a + b/2)/b );
81
    else
82
        return (a + b/2)/b;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
}

static inline int shift(int a,int b)
{
    return (a+(1<<(b-1))) >> b;
}

static inline int shift_down(int a,int b)
{
    return (a>>b)+((a<0)?1:0);
}

#if 1
static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
{
    int i;

    for (i = 0; i < entries; i++)
101
        set_se_golomb(pb, buf[i]);
102 103 104 105 106 107 108

    return 1;
}

static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
{
    int i;
109

110
    for (i = 0; i < entries; i++)
111
        buf[i] = get_se_golomb(gb);
112 113 114 115 116 117 118 119 120 121 122

    return 1;
}

#else

#define ADAPT_LEVEL 8

static int bits_to_store(uint64_t x)
{
    int res = 0;
123

124 125
    while(x)
    {
126 127
        res++;
        x >>= 1;
128 129 130 131 132 133 134 135 136
    }
    return res;
}

static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
{
    int i, bits;

    if (!max)
137
        return;
138 139 140 141

    bits = bits_to_store(max);

    for (i = 0; i < bits-1; i++)
142
        put_bits(pb, 1, value & (1 << i));
143 144

    if ( (value | (1 << (bits-1))) <= max)
145
        put_bits(pb, 1, value & (1 << (bits-1)));
146 147 148 149 150
}

static unsigned int read_uint_max(GetBitContext *gb, int max)
{
    int i, bits, value = 0;
151

152
    if (!max)
153
        return 0;
154 155 156 157

    bits = bits_to_store(max);

    for (i = 0; i < bits-1; i++)
158 159
        if (get_bits1(gb))
            value += 1 << i;
160 161

    if ( (value | (1<<(bits-1))) <= max)
162 163
        if (get_bits1(gb))
            value += 1 << (bits-1);
164 165 166 167 168 169 170 171 172 173 174 175

    return value;
}

static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
{
    int i, j, x = 0, low_bits = 0, max = 0;
    int step = 256, pos = 0, dominant = 0, any = 0;
    int *copy, *bits;

    copy = av_mallocz(4* entries);
    if (!copy)
176
        return -1;
177

178 179
    if (base_2_part)
    {
180
        int energy = 0;
181

182 183
        for (i = 0; i < entries; i++)
            energy += abs(buf[i]);
184

185 186 187
        low_bits = bits_to_store(energy / (entries * 2));
        if (low_bits > 15)
            low_bits = 15;
188

189
        put_bits(pb, 4, low_bits);
190
    }
191

192 193
    for (i = 0; i < entries; i++)
    {
194 195 196 197
        put_bits(pb, low_bits, abs(buf[i]));
        copy[i] = abs(buf[i]) >> low_bits;
        if (copy[i] > max)
            max = abs(copy[i]);
198 199 200 201 202
    }

    bits = av_mallocz(4* entries*max);
    if (!bits)
    {
203 204
//        av_free(copy);
        return -1;
205
    }
206

207 208
    for (i = 0; i <= max; i++)
    {
209 210 211
        for (j = 0; j < entries; j++)
            if (copy[j] >= i)
                bits[x++] = copy[j] > i;
212 213 214 215 216
    }

    // store bitstream
    while (pos < x)
    {
217
        int steplet = step >> 8;
218

219 220
        if (pos + steplet > x)
            steplet = x - pos;
221

222 223 224
        for (i = 0; i < steplet; i++)
            if (bits[i+pos] != dominant)
                any = 1;
225

226
        put_bits(pb, 1, any);
227

228 229 230 231 232 233 234 235
        if (!any)
        {
            pos += steplet;
            step += step / ADAPT_LEVEL;
        }
        else
        {
            int interloper = 0;
236

237 238
            while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
                interloper++;
239

240 241
            // note change
            write_uint_max(pb, interloper, (step >> 8) - 1);
242

243 244 245
            pos += interloper + 1;
            step -= step / ADAPT_LEVEL;
        }
246

247 248 249 250 251
        if (step < 256)
        {
            step = 65536 / step;
            dominant = !dominant;
        }
252
    }
253

254 255
    // store signs
    for (i = 0; i < entries; i++)
256 257
        if (buf[i])
            put_bits(pb, 1, buf[i] < 0);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

//    av_free(bits);
//    av_free(copy);

    return 0;
}

static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
{
    int i, low_bits = 0, x = 0;
    int n_zeros = 0, step = 256, dominant = 0;
    int pos = 0, level = 0;
    int *bits = av_mallocz(4* entries);

    if (!bits)
273
        return -1;
274

275 276
    if (base_2_part)
    {
277
        low_bits = get_bits(gb, 4);
278

279 280 281
        if (low_bits)
            for (i = 0; i < entries; i++)
                buf[i] = get_bits(gb, low_bits);
282 283 284 285 286 287
    }

//    av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);

    while (n_zeros < entries)
    {
288
        int steplet = step >> 8;
289

290 291 292 293
        if (!get_bits1(gb))
        {
            for (i = 0; i < steplet; i++)
                bits[x++] = dominant;
294

295 296
            if (!dominant)
                n_zeros += steplet;
297

298 299 300 301 302
            step += step / ADAPT_LEVEL;
        }
        else
        {
            int actual_run = read_uint_max(gb, steplet-1);
303

304
//            av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
305

306 307
            for (i = 0; i < actual_run; i++)
                bits[x++] = dominant;
308

309
            bits[x++] = !dominant;
310

311 312 313 314
            if (!dominant)
                n_zeros += actual_run;
            else
                n_zeros++;
315

316 317
            step -= step / ADAPT_LEVEL;
        }
318

319 320 321 322 323
        if (step < 256)
        {
            step = 65536 / step;
            dominant = !dominant;
        }
324
    }
325

326 327 328 329
    // reconstruct unsigned values
    n_zeros = 0;
    for (i = 0; n_zeros < entries; i++)
    {
330 331 332 333 334 335 336
        while(1)
        {
            if (pos >= entries)
            {
                pos = 0;
                level += 1 << low_bits;
            }
337

338 339
            if (buf[pos] >= level)
                break;
340

341 342
            pos++;
        }
343

344 345 346 347
        if (bits[i])
            buf[pos] += 1 << low_bits;
        else
            n_zeros++;
348

349
        pos++;
350 351
    }
//    av_free(bits);
352

353 354
    // read signs
    for (i = 0; i < entries; i++)
355 356
        if (buf[i] && get_bits1(gb))
            buf[i] = -buf[i];
357 358 359 360 361 362 363 364 365 366 367 368 369

//    av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);

    return 0;
}
#endif

static void predictor_init_state(int *k, int *state, int order)
{
    int i;

    for (i = order-2; i >= 0; i--)
    {
370
        int j, p, x = state[i];
371

372 373 374 375 376 377
        for (j = 0, p = i+1; p < order; j++,p++)
            {
            int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT);
            state[p] += shift_down(k[j]*x, LATTICE_SHIFT);
            x = tmp;
        }
378 379 380 381 382 383 384 385 386
    }
}

static int predictor_calc_error(int *k, int *state, int order, int error)
{
    int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);

#if 1
    int *k_ptr = &(k[order-2]),
387
        *state_ptr = &(state[order-2]);
388 389
    for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
    {
390 391 392
        int k_value = *k_ptr, state_value = *state_ptr;
        x -= shift_down(k_value * state_value, LATTICE_SHIFT);
        state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT);
393 394 395 396
    }
#else
    for (i = order-2; i >= 0; i--)
    {
397 398
        x -= shift_down(k[i] * state[i], LATTICE_SHIFT);
        state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
399 400 401
    }
#endif

402
    // don't drift too far, to avoid overflows
403 404 405 406 407 408 409 410
    if (x >  (SAMPLE_FACTOR<<16)) x =  (SAMPLE_FACTOR<<16);
    if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);

    state[0] = x;

    return x;
}

411
#if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
412 413 414 415 416
// Heavily modified Levinson-Durbin algorithm which
// copes better with quantization, and calculates the
// actual whitened result as it goes.

static void modified_levinson_durbin(int *window, int window_entries,
417
        int *out, int out_entries, int channels, int *tap_quant)
418 419 420
{
    int i;
    int *state = av_mallocz(4* window_entries);
421

422
    memcpy(state, window, 4* window_entries);
423

424 425
    for (i = 0; i < out_entries; i++)
    {
426 427
        int step = (i+1)*channels, k, j;
        double xx = 0.0, xy = 0.0;
428
#if 1
429 430 431 432 433 434 435 436
        int *x_ptr = &(window[step]), *state_ptr = &(state[0]);
        j = window_entries - step;
        for (;j>=0;j--,x_ptr++,state_ptr++)
        {
            double x_value = *x_ptr, state_value = *state_ptr;
            xx += state_value*state_value;
            xy += x_value*state_value;
        }
437
#else
438 439 440 441 442 443 444 445
        for (j = 0; j <= (window_entries - step); j++);
        {
            double stepval = window[step+j], stateval = window[j];
//            xx += (double)window[j]*(double)window[j];
//            xy += (double)window[step+j]*(double)window[j];
            xx += stateval*stateval;
            xy += stepval*stateval;
        }
446
#endif
447 448 449 450
        if (xx == 0.0)
            k = 0;
        else
            k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
451

452 453 454 455
        if (k > (LATTICE_FACTOR/tap_quant[i]))
            k = LATTICE_FACTOR/tap_quant[i];
        if (-k > (LATTICE_FACTOR/tap_quant[i]))
            k = -(LATTICE_FACTOR/tap_quant[i]);
456

457 458
        out[i] = k;
        k *= tap_quant[i];
459 460

#if 1
461 462 463 464 465 466 467 468 469
        x_ptr = &(window[step]);
        state_ptr = &(state[0]);
        j = window_entries - step;
        for (;j>=0;j--,x_ptr++,state_ptr++)
        {
            int x_value = *x_ptr, state_value = *state_ptr;
            *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
            *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
        }
470
#else
471 472 473 474 475 476
        for (j=0; j <= (window_entries - step); j++)
        {
            int stepval = window[step+j], stateval=state[j];
            window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
            state[j] += shift_down(k * stepval, LATTICE_SHIFT);
        }
477 478
#endif
    }
479

480 481 482 483 484 485 486
    av_free(state);
}

static inline int code_samplerate(int samplerate)
{
    switch (samplerate)
    {
487 488 489 490 491 492 493 494 495
        case 44100: return 0;
        case 22050: return 1;
        case 11025: return 2;
        case 96000: return 3;
        case 48000: return 4;
        case 32000: return 5;
        case 24000: return 6;
        case 16000: return 7;
        case 8000: return 8;
496 497 498 499
    }
    return -1;
}

500
static av_cold int sonic_encode_init(AVCodecContext *avctx)
501 502 503 504 505 506
{
    SonicContext *s = avctx->priv_data;
    PutBitContext pb;
    int i, version = 0;

    if (avctx->channels > MAX_CHANNELS)
507
    {
508
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
509
        return -1; /* only stereo or mono for now */
510
    }
511 512

    if (avctx->channels == 2)
513
        s->decorrelation = MID_SIDE;
514

515 516
    if (avctx->codec->id == CODEC_ID_SONIC_LS)
    {
517 518 519 520
        s->lossless = 1;
        s->num_taps = 32;
        s->downsampling = 1;
        s->quantization = 0.0;
521 522 523
    }
    else
    {
524 525 526
        s->num_taps = 128;
        s->downsampling = 2;
        s->quantization = 1.0;
527 528 529 530
    }

    // max tap 2048
    if ((s->num_taps < 32) || (s->num_taps > 1024) ||
531
        ((s->num_taps>>5)<<5 != s->num_taps))
532
    {
533 534
        av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
        return -1;
535 536 537 538 539
    }

    // generate taps
    s->tap_quant = av_mallocz(4* s->num_taps);
    for (i = 0; i < s->num_taps; i++)
540
        s->tap_quant[i] = (int)(sqrt(i+1));
541 542 543 544 545 546 547 548 549

    s->channels = avctx->channels;
    s->samplerate = avctx->sample_rate;

    s->block_align = (int)(2048.0*s->samplerate/44100)/s->downsampling;
    s->frame_size = s->channels*s->block_align*s->downsampling;

    s->tail = av_mallocz(4* s->num_taps*s->channels);
    if (!s->tail)
550
        return -1;
551 552 553 554
    s->tail_size = s->num_taps*s->channels;

    s->predictor_k = av_mallocz(4 * s->num_taps);
    if (!s->predictor_k)
555
        return -1;
556 557 558

    for (i = 0; i < s->channels; i++)
    {
559 560 561
        s->coded_samples[i] = av_mallocz(4* s->block_align);
        if (!s->coded_samples[i])
            return -1;
562
    }
563

564 565 566 567 568
    s->int_samples = av_mallocz(4* s->frame_size);

    s->window_size = ((2*s->tail_size)+s->frame_size);
    s->window = av_mallocz(4* s->window_size);
    if (!s->window)
569
        return -1;
570 571 572

    avctx->extradata = av_mallocz(16);
    if (!avctx->extradata)
573
        return -1;
574 575 576 577 578
    init_put_bits(&pb, avctx->extradata, 16*8);

    put_bits(&pb, 2, version); // version
    if (version == 1)
    {
579 580
        put_bits(&pb, 2, s->channels);
        put_bits(&pb, 4, code_samplerate(s->samplerate));
581 582 583
    }
    put_bits(&pb, 1, s->lossless);
    if (!s->lossless)
584
        put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
585
    put_bits(&pb, 2, s->decorrelation);
586 587 588 589 590 591 592
    put_bits(&pb, 2, s->downsampling);
    put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
    put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table

    flush_put_bits(&pb);
    avctx->extradata_size = put_bits_count(&pb)/8;

593
    av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
594
        version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
595 596 597

    avctx->coded_frame = avcodec_alloc_frame();
    if (!avctx->coded_frame)
598
        return AVERROR(ENOMEM);
599 600 601 602 603 604
    avctx->coded_frame->key_frame = 1;
    avctx->frame_size = s->block_align*s->downsampling;

    return 0;
}

605
static av_cold int sonic_encode_close(AVCodecContext *avctx)
606 607 608 609 610 611 612
{
    SonicContext *s = avctx->priv_data;
    int i;

    av_freep(&avctx->coded_frame);

    for (i = 0; i < s->channels; i++)
613
        av_free(s->coded_samples[i]);
614 615 616 617 618 619 620 621 622 623 624

    av_free(s->predictor_k);
    av_free(s->tail);
    av_free(s->tap_quant);
    av_free(s->window);
    av_free(s->int_samples);

    return 0;
}

static int sonic_encode_frame(AVCodecContext *avctx,
625
                            uint8_t *buf, int buf_size, void *data)
626 627 628 629 630 631 632 633 634 635
{
    SonicContext *s = avctx->priv_data;
    PutBitContext pb;
    int i, j, ch, quant = 0, x = 0;
    short *samples = data;

    init_put_bits(&pb, buf, buf_size*8);

    // short -> internal
    for (i = 0; i < s->frame_size; i++)
636
        s->int_samples[i] = samples[i];
637 638

    if (!s->lossless)
639 640
        for (i = 0; i < s->frame_size; i++)
            s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
641

642 643
    switch(s->decorrelation)
    {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        case MID_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
            {
                s->int_samples[i] += s->int_samples[i+1];
                s->int_samples[i+1] -= shift(s->int_samples[i], 1);
            }
            break;
        case LEFT_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
                s->int_samples[i+1] -= s->int_samples[i];
            break;
        case RIGHT_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
                s->int_samples[i] -= s->int_samples[i+1];
            break;
659
    }
660 661

    memset(s->window, 0, 4* s->window_size);
662

663
    for (i = 0; i < s->tail_size; i++)
664
        s->window[x++] = s->tail[i];
665 666

    for (i = 0; i < s->frame_size; i++)
667
        s->window[x++] = s->int_samples[i];
668

669
    for (i = 0; i < s->tail_size; i++)
670
        s->window[x++] = 0;
671 672

    for (i = 0; i < s->tail_size; i++)
673
        s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
674 675 676

    // generate taps
    modified_levinson_durbin(s->window, s->window_size,
677
                s->predictor_k, s->num_taps, s->channels, s->tap_quant);
678
    if (intlist_write(&pb, s->predictor_k, s->num_taps, 0) < 0)
679
        return -1;
680 681 682

    for (ch = 0; ch < s->channels; ch++)
    {
683 684 685 686 687 688 689 690
        x = s->tail_size+ch;
        for (i = 0; i < s->block_align; i++)
        {
            int sum = 0;
            for (j = 0; j < s->downsampling; j++, x += s->channels)
                sum += s->window[x];
            s->coded_samples[ch][i] = sum;
        }
691
    }
692 693

    // simple rate control code
694 695
    if (!s->lossless)
    {
696 697 698 699 700 701 702 703 704 705
        double energy1 = 0.0, energy2 = 0.0;
        for (ch = 0; ch < s->channels; ch++)
        {
            for (i = 0; i < s->block_align; i++)
            {
                double sample = s->coded_samples[ch][i];
                energy2 += sample*sample;
                energy1 += fabs(sample);
            }
        }
706

707 708
        energy2 = sqrt(energy2/(s->channels*s->block_align));
        energy1 = sqrt(2.0)*energy1/(s->channels*s->block_align);
709

710 711
        // increase bitrate when samples are like a gaussian distribution
        // reduce bitrate when samples are like a two-tailed exponential distribution
712

713 714
        if (energy2 > energy1)
            energy2 += (energy2-energy1)*RATE_VARIATION;
715

716 717
        quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
//        av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
718

719 720 721 722
        if (quant < 1)
            quant = 1;
        if (quant > 65535)
            quant = 65535;
723

724
        set_ue_golomb(&pb, quant);
725

726
        quant *= SAMPLE_FACTOR;
727 728 729 730 731
    }

    // write out coded samples
    for (ch = 0; ch < s->channels; ch++)
    {
732 733 734
        if (!s->lossless)
            for (i = 0; i < s->block_align; i++)
                s->coded_samples[ch][i] = divide(s->coded_samples[ch][i], quant);
735

736 737
        if (intlist_write(&pb, s->coded_samples[ch], s->block_align, 1) < 0)
            return -1;
738 739 740 741 742 743 744
    }

//    av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);

    flush_put_bits(&pb);
    return (put_bits_count(&pb)+7)/8;
}
745
#endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
746

747
#if CONFIG_SONIC_DECODER
748 749 750
static const int samplerate_table[] =
    { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };

751
static av_cold int sonic_decode_init(AVCodecContext *avctx)
752 753 754 755
{
    SonicContext *s = avctx->priv_data;
    GetBitContext gb;
    int i, version;
756

757 758
    s->channels = avctx->channels;
    s->samplerate = avctx->sample_rate;
759

760 761
    if (!avctx->extradata)
    {
762 763
        av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
        return -1;
764
    }
765

766
    init_get_bits(&gb, avctx->extradata, avctx->extradata_size);
767

768 769 770
    version = get_bits(&gb, 2);
    if (version > 1)
    {
771 772
        av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
        return -1;
773 774 775 776
    }

    if (version == 1)
    {
777 778 779 780
        s->channels = get_bits(&gb, 2);
        s->samplerate = samplerate_table[get_bits(&gb, 4)];
        av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
            s->channels, s->samplerate);
781 782 783 784
    }

    if (s->channels > MAX_CHANNELS)
    {
785 786
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
        return -1;
787 788 789 790
    }

    s->lossless = get_bits1(&gb);
    if (!s->lossless)
791
        skip_bits(&gb, 3); // XXX FIXME
792
    s->decorrelation = get_bits(&gb, 2);
793 794 795 796

    s->downsampling = get_bits(&gb, 2);
    s->num_taps = (get_bits(&gb, 5)+1)<<5;
    if (get_bits1(&gb)) // XXX FIXME
797
        av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
798

799 800 801 802
    s->block_align = (int)(2048.0*(s->samplerate/44100))/s->downsampling;
    s->frame_size = s->channels*s->block_align*s->downsampling;
//    avctx->frame_size = s->block_align;

803
    av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
804
        version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
805 806 807 808

    // generate taps
    s->tap_quant = av_mallocz(4* s->num_taps);
    for (i = 0; i < s->num_taps; i++)
809
        s->tap_quant[i] = (int)(sqrt(i+1));
810

811
    s->predictor_k = av_mallocz(4* s->num_taps);
812

813 814
    for (i = 0; i < s->channels; i++)
    {
815 816 817
        s->predictor_state[i] = av_mallocz(4* s->num_taps);
        if (!s->predictor_state[i])
            return -1;
818 819 820 821
    }

    for (i = 0; i < s->channels; i++)
    {
822 823 824
        s->coded_samples[i] = av_mallocz(4* s->block_align);
        if (!s->coded_samples[i])
            return -1;
825 826 827
    }
    s->int_samples = av_mallocz(4* s->frame_size);

828
    avctx->sample_fmt = SAMPLE_FMT_S16;
829 830 831
    return 0;
}

832
static av_cold int sonic_decode_close(AVCodecContext *avctx)
833 834 835
{
    SonicContext *s = avctx->priv_data;
    int i;
836

837 838 839
    av_free(s->int_samples);
    av_free(s->tap_quant);
    av_free(s->predictor_k);
840

841 842
    for (i = 0; i < s->channels; i++)
    {
843 844
        av_free(s->predictor_state[i]);
        av_free(s->coded_samples[i]);
845
    }
846

847 848 849 850
    return 0;
}

static int sonic_decode_frame(AVCodecContext *avctx,
851
                            void *data, int *data_size,
852
                            AVPacket *avpkt)
853
{
854 855
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
856 857 858 859 860 861 862 863
    SonicContext *s = avctx->priv_data;
    GetBitContext gb;
    int i, quant, ch, j;
    short *samples = data;

    if (buf_size == 0) return 0;

//    av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
864

865
    init_get_bits(&gb, buf, buf_size*8);
866

867 868 869 870
    intlist_read(&gb, s->predictor_k, s->num_taps, 0);

    // dequantize
    for (i = 0; i < s->num_taps; i++)
871
        s->predictor_k[i] *= s->tap_quant[i];
872 873

    if (s->lossless)
874
        quant = 1;
875
    else
876
        quant = get_ue_golomb(&gb) * SAMPLE_FACTOR;
877 878 879 880 881

//    av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);

    for (ch = 0; ch < s->channels; ch++)
    {
882
        int x = ch;
883

884
        predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
885

886
        intlist_read(&gb, s->coded_samples[ch], s->block_align, 1);
887

888 889 890 891 892 893 894
        for (i = 0; i < s->block_align; i++)
        {
            for (j = 0; j < s->downsampling - 1; j++)
            {
                s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
                x += s->channels;
            }
895

896 897 898
            s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant);
            x += s->channels;
        }
899

900 901
        for (i = 0; i < s->num_taps; i++)
            s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
902
    }
903

904 905
    switch(s->decorrelation)
    {
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        case MID_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
            {
                s->int_samples[i+1] += shift(s->int_samples[i], 1);
                s->int_samples[i] -= s->int_samples[i+1];
            }
            break;
        case LEFT_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
                s->int_samples[i+1] += s->int_samples[i];
            break;
        case RIGHT_SIDE:
            for (i = 0; i < s->frame_size; i += s->channels)
                s->int_samples[i] += s->int_samples[i+1];
            break;
921
    }
922 923

    if (!s->lossless)
924 925
        for (i = 0; i < s->frame_size; i++)
            s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
926 927 928

    // internal -> short
    for (i = 0; i < s->frame_size; i++)
929
        samples[i] = av_clip_int16(s->int_samples[i]);
930 931 932 933 934 935 936

    align_get_bits(&gb);

    *data_size = s->frame_size * 2;

    return (get_bits_count(&gb)+7)/8;
}
937 938 939

AVCodec sonic_decoder = {
    "sonic",
940
    AVMEDIA_TYPE_AUDIO,
941 942 943 944 945 946 947 948
    CODEC_ID_SONIC,
    sizeof(SonicContext),
    sonic_decode_init,
    NULL,
    sonic_decode_close,
    sonic_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
};
949
#endif /* CONFIG_SONIC_DECODER */
950

951
#if CONFIG_SONIC_ENCODER
952 953
AVCodec sonic_encoder = {
    "sonic",
954
    AVMEDIA_TYPE_AUDIO,
955 956 957 958 959 960
    CODEC_ID_SONIC,
    sizeof(SonicContext),
    sonic_encode_init,
    sonic_encode_frame,
    sonic_encode_close,
    NULL,
961
    .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
962
};
963
#endif
964

965
#if CONFIG_SONIC_LS_ENCODER
966 967
AVCodec sonic_ls_encoder = {
    "sonicls",
968
    AVMEDIA_TYPE_AUDIO,
969 970 971 972 973 974
    CODEC_ID_SONIC_LS,
    sizeof(SonicContext),
    sonic_encode_init,
    sonic_encode_frame,
    sonic_encode_close,
    NULL,
975
    .long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"),
976 977
};
#endif