dirac_parser.c 8.97 KB
Newer Older
1 2 3
/*
 * Dirac parser
 *
4 5
 * Copyright (c) 2007-2008 Marco Gerards <marco@gnu.org>
 * Copyright (c) 2008 BBC, Anuradha Suraparaju <asuraparaju@gmail.com>
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
25
 * @file
26 27 28 29
 * Dirac Parser
 * @author Marco Gerards <marco@gnu.org>
 */

30 31
#include <string.h>

32
#include "libavutil/intreadwrite.h"
33
#include "libavutil/mem.h"
34

35 36 37 38 39
#include "parser.h"

#define DIRAC_PARSE_INFO_PREFIX 0x42424344

/**
40
 * Find the end of the current frame in the bitstream.
41 42
 * @return the position of the first byte of the next frame or -1
 */
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
typedef struct DiracParseContext {
    int state;
    int is_synced;
    int sync_offset;
    int header_bytes_needed;
    int overread_index;
    int buffer_size;
    int index;
    uint8_t *buffer;
    int dirac_unit_size;
    uint8_t *dirac_unit;
} DiracParseContext;

static int find_frame_end(DiracParseContext *pc,
                          const uint8_t *buf, int buf_size)
58 59
{
    uint32_t state = pc->state;
60 61 62 63 64 65 66 67 68 69 70
    int i = 0;

    if (!pc->is_synced) {
        for (i = 0; i < buf_size; i++) {
            state = (state << 8) | buf[i];
            if (state == DIRAC_PARSE_INFO_PREFIX) {
                state                   = -1;
                pc->is_synced           = 1;
                pc->header_bytes_needed = 9;
                pc->sync_offset         = i;
                break;
71 72 73 74
            }
        }
    }

75 76 77 78
    if (pc->is_synced) {
        pc->sync_offset = 0;
        for (; i < buf_size; i++) {
            if (state == DIRAC_PARSE_INFO_PREFIX) {
79
                if ((buf_size - i) >= pc->header_bytes_needed) {
80 81 82
                    pc->state = -1;
                    return i + pc->header_bytes_needed;
                } else {
83
                    pc->header_bytes_needed = 9 - (buf_size - i);
84 85 86
                    break;
                }
            } else
87
                state = (state << 8) | buf[i];
88 89
        }
    }
90
    pc->state = state;
91 92 93
    return -1;
}

94
typedef struct DiracParseUnit {
95 96 97 98 99 100 101 102
    int next_pu_offset;
    int prev_pu_offset;
    uint8_t pu_type;
} DiracParseUnit;

static int unpack_parse_unit(DiracParseUnit *pu, DiracParseContext *pc,
                             int offset)
{
103
    int i;
104
    int8_t *start;
105
    static const uint8_t valid_pu_types[] = {
106 107
        0x00, 0x10, 0x20, 0x30, 0x08, 0x48, 0xC8, 0xE8, 0x0A, 0x0C, 0x0D, 0x0E,
        0x4C, 0x09, 0xCC, 0x88, 0xCB
108
    };
109 110

    if (offset < 0 || pc->index - 13 < offset)
111
        return 0;
112 113

    start = pc->buffer + offset;
114 115
    pu->pu_type = start[4];

116 117
    pu->next_pu_offset = AV_RB32(start + 5);
    pu->prev_pu_offset = AV_RB32(start + 9);
118

119
    /* Check for valid parse code */
120
    for (i = 0; i < 17; i++)
121 122
        if (valid_pu_types[i] == pu->pu_type)
            break;
123
    if (i == 17)
124 125
        return 0;

126
    if (pu->pu_type == 0x10 && pu->next_pu_offset == 0x00)
127
        pu->next_pu_offset = 13; /* The length of a parse info header */
128

129 130 131
    /* Check if the parse offsets are somewhat sane */
    if ((pu->next_pu_offset && pu->next_pu_offset < 13) ||
        (pu->prev_pu_offset && pu->prev_pu_offset < 13))
132 133
        return 0;

134 135 136 137 138 139 140 141 142 143 144
    return 1;
}

static int dirac_combine_frame(AVCodecParserContext *s, AVCodecContext *avctx,
                               int next, const uint8_t **buf, int *buf_size)
{
    int parse_timing_info = (s->pts == AV_NOPTS_VALUE &&
                             s->dts == AV_NOPTS_VALUE);
    DiracParseContext *pc = s->priv_data;

    if (pc->overread_index) {
145
        memmove(pc->buffer, pc->buffer + pc->overread_index,
146
               pc->index - pc->overread_index);
147
        pc->index         -= pc->overread_index;
148 149 150 151 152 153 154 155
        pc->overread_index = 0;
        if (*buf_size == 0 && pc->buffer[4] == 0x10) {
            *buf      = pc->buffer;
            *buf_size = pc->index;
            return 0;
        }
    }

156
    if (next == -1) {
157
        /* Found a possible frame start but not a frame end */
158 159 160
        void *new_buffer =
            av_fast_realloc(pc->buffer, &pc->buffer_size,
                            pc->index + (*buf_size - pc->sync_offset));
161 162
        if (!new_buffer)
            return AVERROR(ENOMEM);
163
        pc->buffer = new_buffer;
164
        memcpy(pc->buffer + pc->index, (*buf + pc->sync_offset),
165 166 167 168 169 170 171 172
               *buf_size - pc->sync_offset);
        pc->index += *buf_size - pc->sync_offset;
        return -1;
    } else {
        /* Found a possible frame start and a  possible frame end */
        DiracParseUnit pu1, pu;
        void *new_buffer = av_fast_realloc(pc->buffer, &pc->buffer_size,
                                           pc->index + next);
173 174
        if (!new_buffer)
            return AVERROR(ENOMEM);
175 176 177
        pc->buffer = new_buffer;
        memcpy(pc->buffer + pc->index, *buf, next);
        pc->index += next;
178

179 180 181 182 183 184 185 186
        /* Need to check if we have a valid Parse Unit. We can't go by the
         * sync pattern 'BBCD' alone because arithmetic coding of the residual
         * and motion data can cause the pattern triggering a false start of
         * frame. So check if the previous parse offset of the next parse unit
         * is equal to the next parse offset of the current parse unit then
         * we can be pretty sure that we have a valid parse unit */
        if (!unpack_parse_unit(&pu1, pc, pc->index - 13)                     ||
            !unpack_parse_unit(&pu, pc, pc->index - 13 - pu1.prev_pu_offset) ||
187 188 189
            pu.next_pu_offset != pu1.prev_pu_offset                          ||
            pc->index < pc->dirac_unit_size + 13LL + pu1.prev_pu_offset
        ) {
190 191
            pc->index              -= 9;
            *buf_size               = next - 9;
192 193 194 195 196 197 198 199 200 201 202 203 204
            pc->header_bytes_needed = 9;
            return -1;
        }

        /* All non-frame data must be accompanied by frame data. This is to
         * ensure that pts is set correctly. So if the current parse unit is
         * not frame data, wait for frame data to come along */

        pc->dirac_unit = pc->buffer + pc->index - 13 -
                         pu1.prev_pu_offset - pc->dirac_unit_size;

        pc->dirac_unit_size += pu.next_pu_offset;

205
        if ((pu.pu_type & 0x08) != 0x08) {
206
            pc->header_bytes_needed = 9;
207
            *buf_size               = next;
208 209 210 211
            return -1;
        }

        /* Get the picture number to set the pts and dts*/
212
        if (parse_timing_info && pu1.prev_pu_offset >= 13) {
213 214
            uint8_t *cur_pu = pc->buffer +
                              pc->index - 13 - pu1.prev_pu_offset;
215
            int64_t pts = AV_RB32(cur_pu + 13);
216 217 218
            if (s->last_pts == 0 && s->last_dts == 0)
                s->dts = pts - 1;
            else
219
                s->dts = s->last_dts + 1;
220 221 222 223 224
            s->pts = pts;
            if (!avctx->has_b_frames && (cur_pu[4] & 0x03))
                avctx->has_b_frames = 1;
        }
        if (avctx->has_b_frames && s->pts == s->dts)
225
            s->pict_type = AV_PICTURE_TYPE_B;
226 227 228 229 230 231

        /* Finally have a complete Dirac data unit */
        *buf      = pc->dirac_unit;
        *buf_size = pc->dirac_unit_size;

        pc->dirac_unit_size     = 0;
232
        pc->overread_index      = pc->index - 13;
233 234 235
        pc->header_bytes_needed = 9;
    }
    return next;
236 237 238 239 240 241
}

static int dirac_parse(AVCodecParserContext *s, AVCodecContext *avctx,
                       const uint8_t **poutbuf, int *poutbuf_size,
                       const uint8_t *buf, int buf_size)
{
242
    DiracParseContext *pc = s->priv_data;
243 244
    int next;

245
    *poutbuf      = NULL;
246 247
    *poutbuf_size = 0;

248
    if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) {
249 250
        next          = buf_size;
        *poutbuf      = buf;
251 252 253
        *poutbuf_size = buf_size;
        /* Assume that data has been packetized into an encapsulation unit. */
    } else {
254
        next = find_frame_end(pc, buf, buf_size);
255
        if (!pc->is_synced && next == -1)
256 257
            /* No frame start found yet. So throw away the entire buffer. */
            return buf_size;
258

259
        if (dirac_combine_frame(s, avctx, next, &buf, &buf_size) < 0)
260 261 262
            return buf_size;
    }

263
    *poutbuf      = buf;
264 265 266 267
    *poutbuf_size = buf_size;
    return next;
}

268 269 270 271 272
static void dirac_parse_close(AVCodecParserContext *s)
{
    DiracParseContext *pc = s->priv_data;

    if (pc->buffer_size > 0)
273
        av_freep(&pc->buffer);
274 275
}

276
AVCodecParser ff_dirac_parser = {
277
    .codec_ids      = { AV_CODEC_ID_DIRAC },
278 279 280
    .priv_data_size = sizeof(DiracParseContext),
    .parser_parse   = dirac_parse,
    .parser_close   = dirac_parse_close,
281
};