fft.c 6.54 KB
Newer Older
1 2 3 4
/*
 * FFT/IFFT transforms
 * Copyright (c) 2002 Fabrice Bellard.
 *
5 6 7
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
Michael Niedermayer's avatar
Michael Niedermayer committed
21 22 23 24 25 26

/**
 * @file fft.c
 * FFT/IFFT transforms.
 */

27 28 29 30
#include "dsputil.h"

/**
 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
31
 * done
32
 */
33
int ff_fft_init(FFTContext *s, int nbits, int inverse)
34 35 36
{
    int i, j, m, n;
    float alpha, c1, s1, s2;
37

38 39 40 41 42 43 44 45 46 47 48 49
    s->nbits = nbits;
    n = 1 << nbits;

    s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
    if (!s->exptab)
        goto fail;
    s->revtab = av_malloc(n * sizeof(uint16_t));
    if (!s->revtab)
        goto fail;
    s->inverse = inverse;

    s2 = inverse ? 1.0 : -1.0;
50

51 52 53 54 55 56 57
    for(i=0;i<(n/2);i++) {
        alpha = 2 * M_PI * (float)i / (float)n;
        c1 = cos(alpha);
        s1 = sin(alpha) * s2;
        s->exptab[i].re = c1;
        s->exptab[i].im = s1;
    }
58
    s->fft_calc = ff_fft_calc_c;
59
    s->imdct_calc = ff_imdct_calc;
60 61 62
    s->exptab1 = NULL;

    /* compute constant table for HAVE_SSE version */
63
#if defined(HAVE_MMX) \
64
    || (defined(HAVE_ALTIVEC) && !defined(ALTIVEC_USE_REFERENCE_C_CODE))
65
    {
66
        int has_vectors = mm_support();
67

68
        if (has_vectors) {
69
#if defined(HAVE_MMX)
70
            if (has_vectors & MM_3DNOWEXT) {
71
                /* 3DNowEx for K7/K8 */
72
                s->imdct_calc = ff_imdct_calc_3dn2;
73
                s->fft_calc = ff_fft_calc_3dn2;
74
            } else if (has_vectors & MM_3DNOW) {
75 76
                /* 3DNow! for K6-2/3 */
                s->fft_calc = ff_fft_calc_3dn;
77
            } else if (has_vectors & MM_SSE) {
78
                /* SSE for P3/P4 */
79
                s->imdct_calc = ff_imdct_calc_sse;
80
                s->fft_calc = ff_fft_calc_sse;
81
            }
82 83 84
#else /* HAVE_MMX */
            if (has_vectors & MM_ALTIVEC)
                s->fft_calc = ff_fft_calc_altivec;
85
#endif
86 87
        }
        if (s->fft_calc != ff_fft_calc_c) {
88 89
            int np, nblocks, np2, l;
            FFTComplex *q;
90

91 92 93 94 95 96 97 98 99 100 101
            np = 1 << nbits;
            nblocks = np >> 3;
            np2 = np >> 1;
            s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
            if (!s->exptab1)
                goto fail;
            q = s->exptab1;
            do {
                for(l = 0; l < np2; l += 2 * nblocks) {
                    *q++ = s->exptab[l];
                    *q++ = s->exptab[l + nblocks];
102

103 104 105 106 107 108 109 110 111 112 113
                    q->re = -s->exptab[l].im;
                    q->im = s->exptab[l].re;
                    q++;
                    q->re = -s->exptab[l + nblocks].im;
                    q->im = s->exptab[l + nblocks].re;
                    q++;
                }
                nblocks = nblocks >> 1;
            } while (nblocks != 0);
            av_freep(&s->exptab);
        }
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    }
#endif

    /* compute bit reverse table */

    for(i=0;i<n;i++) {
        m=0;
        for(j=0;j<nbits;j++) {
            m |= ((i >> j) & 1) << (nbits-j-1);
        }
        s->revtab[i]=m;
    }
    return 0;
 fail:
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
    return -1;
}

/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
  FFTSample ax, ay, bx, by;\
  bx=pre1;\
  by=pim1;\
  ax=qre1;\
  ay=qim1;\
  pre = (bx + ax);\
  pim = (by + ay);\
  qre = (bx - ax);\
  qim = (by - ay);\
}

#define MUL16(a,b) ((a) * (b))

#define CMUL(pre, pim, are, aim, bre, bim) \
{\
   pre = (MUL16(are, bre) - MUL16(aim, bim));\
   pim = (MUL16(are, bim) + MUL16(bre, aim));\
}

/**
157
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
158
 * input data must be permuted before with s->revtab table. No
159
 * 1.0/sqrt(n) normalization is done.
160
 */
161
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
162 163
{
    int ln = s->nbits;
164 165
    int j, np, np2;
    int nblocks, nloops;
166 167 168 169 170 171 172 173 174 175 176 177
    register FFTComplex *p, *q;
    FFTComplex *exptab = s->exptab;
    int l;
    FFTSample tmp_re, tmp_im;

    np = 1 << ln;

    /* pass 0 */

    p=&z[0];
    j=(np >> 1);
    do {
178
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
179 180 181 182 183 184
           p[0].re, p[0].im, p[1].re, p[1].im);
        p+=2;
    } while (--j != 0);

    /* pass 1 */

185

186 187 188 189
    p=&z[0];
    j=np >> 2;
    if (s->inverse) {
        do {
190
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
191
               p[0].re, p[0].im, p[2].re, p[2].im);
192
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
193 194 195 196 197
               p[1].re, p[1].im, -p[3].im, p[3].re);
            p+=4;
        } while (--j != 0);
    } else {
        do {
198
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
199
               p[0].re, p[0].im, p[2].re, p[2].im);
200
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
               p[1].re, p[1].im, p[3].im, -p[3].re);
            p+=4;
        } while (--j != 0);
    }
    /* pass 2 .. ln-1 */

    nblocks = np >> 3;
    nloops = 1 << 2;
    np2 = np >> 1;
    do {
        p = z;
        q = z + nloops;
        for (j = 0; j < nblocks; ++j) {
            BF(p->re, p->im, q->re, q->im,
               p->re, p->im, q->re, q->im);
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
            p++;
            q++;
            for(l = nblocks; l < np2; l += nblocks) {
                CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
                BF(p->re, p->im, q->re, q->im,
                   p->re, p->im, tmp_re, tmp_im);
                p++;
                q++;
            }

            p += nloops;
            q += nloops;
        }
        nblocks = nblocks >> 1;
        nloops = nloops << 1;
    } while (nblocks != 0);
}

/**
236
 * Do the permutation needed BEFORE calling ff_fft_calc()
237
 */
238
void ff_fft_permute(FFTContext *s, FFTComplex *z)
239 240 241 242
{
    int j, k, np;
    FFTComplex tmp;
    const uint16_t *revtab = s->revtab;
243

244 245 246 247 248 249 250 251 252 253 254 255
    /* reverse */
    np = 1 << s->nbits;
    for(j=0;j<np;j++) {
        k = revtab[j];
        if (k < j) {
            tmp = z[k];
            z[k] = z[j];
            z[j] = tmp;
        }
    }
}

256
void ff_fft_end(FFTContext *s)
257 258 259 260 261 262
{
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
}