g723_1dec.c 32.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * G.723.1 compatible decoder
 * Copyright (c) 2006 Benjamin Larsson
 * Copyright (c) 2010 Mohamed Naufal Basheer
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * G.723.1 compatible decoder
 */

28
#include "libavutil/channel_layout.h"
29
#include "libavutil/mem.h"
30
#include "libavutil/opt.h"
31 32

#define BITSTREAM_READER_LE
33
#include "acelp_vectors.h"
34
#include "avcodec.h"
35 36
#include "celp_filters.h"
#include "celp_math.h"
37
#include "get_bits.h"
38
#include "internal.h"
39
#include "g723_1.h"
40

41 42
#define CNG_RANDOM_SEED 12345

43 44
static av_cold int g723_1_decode_init(AVCodecContext *avctx)
{
45
    G723_1_Context *p = avctx->priv_data;
46

47 48 49 50
    avctx->channel_layout = AV_CH_LAYOUT_MONO;
    avctx->sample_fmt     = AV_SAMPLE_FMT_S16;
    avctx->channels       = 1;
    p->pf_gain            = 1 << 12;
51

52
    memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
53 54 55 56
    memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));

    p->cng_random_seed = CNG_RANDOM_SEED;
    p->past_frame_type = SID_FRAME;
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    return 0;
}

/**
 * Unpack the frame into parameters.
 *
 * @param p           the context
 * @param buf         pointer to the input buffer
 * @param buf_size    size of the input buffer
 */
static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf,
                            int buf_size)
{
    GetBitContext gb;
    int ad_cb_len;
    int temp, info_bits, i;

    init_get_bits(&gb, buf, buf_size * 8);

    /* Extract frame type and rate info */
    info_bits = get_bits(&gb, 2);

    if (info_bits == 3) {
81
        p->cur_frame_type = UNTRANSMITTED_FRAME;
82 83 84 85 86 87 88 89 90
        return 0;
    }

    /* Extract 24 bit lsp indices, 8 bit for each band */
    p->lsp_index[2] = get_bits(&gb, 8);
    p->lsp_index[1] = get_bits(&gb, 8);
    p->lsp_index[0] = get_bits(&gb, 8);

    if (info_bits == 2) {
91
        p->cur_frame_type = SID_FRAME;
92 93 94 95 96
        p->subframe[0].amp_index = get_bits(&gb, 6);
        return 0;
    }

    /* Extract the info common to both rates */
97 98
    p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
    p->cur_frame_type = ACTIVE_FRAME;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    p->pitch_lag[0] = get_bits(&gb, 7);
    if (p->pitch_lag[0] > 123)       /* test if forbidden code */
        return -1;
    p->pitch_lag[0] += PITCH_MIN;
    p->subframe[1].ad_cb_lag = get_bits(&gb, 2);

    p->pitch_lag[1] = get_bits(&gb, 7);
    if (p->pitch_lag[1] > 123)
        return -1;
    p->pitch_lag[1] += PITCH_MIN;
    p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
    p->subframe[0].ad_cb_lag = 1;
    p->subframe[2].ad_cb_lag = 1;

    for (i = 0; i < SUBFRAMES; i++) {
        /* Extract combined gain */
        temp = get_bits(&gb, 12);
        ad_cb_len = 170;
        p->subframe[i].dirac_train = 0;
119
        if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
120
            p->subframe[i].dirac_train = temp >> 11;
121
            temp &= 0x7FF;
122 123 124 125 126 127 128 129 130 131 132
            ad_cb_len = 85;
        }
        p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
        if (p->subframe[i].ad_cb_gain < ad_cb_len) {
            p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
                                       GAIN_LEVELS;
        } else {
            return -1;
        }
    }

133 134 135 136
    p->subframe[0].grid_index = get_bits1(&gb);
    p->subframe[1].grid_index = get_bits1(&gb);
    p->subframe[2].grid_index = get_bits1(&gb);
    p->subframe[3].grid_index = get_bits1(&gb);
137

138
    if (p->cur_rate == RATE_6300) {
139
        skip_bits1(&gb);  /* skip reserved bit */
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

        /* Compute pulse_pos index using the 13-bit combined position index */
        temp = get_bits(&gb, 13);
        p->subframe[0].pulse_pos = temp / 810;

        temp -= p->subframe[0].pulse_pos * 810;
        p->subframe[1].pulse_pos = FASTDIV(temp, 90);

        temp -= p->subframe[1].pulse_pos * 90;
        p->subframe[2].pulse_pos = FASTDIV(temp, 9);
        p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;

        p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
                                   get_bits(&gb, 16);
        p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
                                   get_bits(&gb, 14);
        p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
                                   get_bits(&gb, 16);
        p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
                                   get_bits(&gb, 14);

        p->subframe[0].pulse_sign = get_bits(&gb, 6);
        p->subframe[1].pulse_sign = get_bits(&gb, 5);
        p->subframe[2].pulse_sign = get_bits(&gb, 6);
        p->subframe[3].pulse_sign = get_bits(&gb, 5);
165
    } else { /* 5300 bps */
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        p->subframe[0].pulse_pos  = get_bits(&gb, 12);
        p->subframe[1].pulse_pos  = get_bits(&gb, 12);
        p->subframe[2].pulse_pos  = get_bits(&gb, 12);
        p->subframe[3].pulse_pos  = get_bits(&gb, 12);

        p->subframe[0].pulse_sign = get_bits(&gb, 4);
        p->subframe[1].pulse_sign = get_bits(&gb, 4);
        p->subframe[2].pulse_sign = get_bits(&gb, 4);
        p->subframe[3].pulse_sign = get_bits(&gb, 4);
    }

    return 0;
}

/**
 * Bitexact implementation of sqrt(val/2).
 */
183
static int16_t square_root(unsigned val)
184
{
185 186
    av_assert2(!(val & 0x80000000));

187
    return (ff_sqrt(val << 1) >> 1) & (~1);
188 189 190 191 192 193 194 195 196 197 198
}

/**
 * Generate fixed codebook excitation vector.
 *
 * @param vector    decoded excitation vector
 * @param subfrm    current subframe
 * @param cur_rate  current bitrate
 * @param pitch_lag closed loop pitch lag
 * @param index     current subframe index
 */
199
static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
200
                               enum Rate cur_rate, int pitch_lag, int index)
201 202 203
{
    int temp, i, j;

204
    memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
205

206
    if (cur_rate == RATE_6300) {
207
        if (subfrm->pulse_pos >= max_pos[index])
208 209 210 211
            return;

        /* Decode amplitudes and positions */
        j = PULSE_MAX - pulses[index];
212
        temp = subfrm->pulse_pos;
213 214 215 216 217
        for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
            temp -= combinatorial_table[j][i];
            if (temp >= 0)
                continue;
            temp += combinatorial_table[j++][i];
218 219 220
            if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
                vector[subfrm->grid_index + GRID_SIZE * i] =
                                        -fixed_cb_gain[subfrm->amp_index];
221
            } else {
222 223
                vector[subfrm->grid_index + GRID_SIZE * i] =
                                         fixed_cb_gain[subfrm->amp_index];
224 225 226 227
            }
            if (j == PULSE_MAX)
                break;
        }
228
        if (subfrm->dirac_train == 1)
229
            ff_g723_1_gen_dirac_train(vector, pitch_lag);
230
    } else { /* 5300 bps */
231 232 233 234
        int cb_gain  = fixed_cb_gain[subfrm->amp_index];
        int cb_shift = subfrm->grid_index;
        int cb_sign  = subfrm->pulse_sign;
        int cb_pos   = subfrm->pulse_pos;
235 236 237 238 239 240 241 242 243 244
        int offset, beta, lag;

        for (i = 0; i < 8; i += 2) {
            offset         = ((cb_pos & 7) << 3) + cb_shift + i;
            vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
            cb_pos  >>= 3;
            cb_sign >>= 1;
        }

        /* Enhance harmonic components */
245 246 247
        lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
               subfrm->ad_cb_lag - 1;
        beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
248 249 250 251 252 253 254 255 256 257 258

        if (lag < SUBFRAME_LEN - 2) {
            for (i = lag; i < SUBFRAME_LEN; i++)
                vector[i] += beta * vector[i - lag] >> 15;
        }
    }
}

/**
 * Estimate maximum auto-correlation around pitch lag.
 *
259
 * @param buf       buffer with offset applied
260 261 262 263 264 265
 * @param offset    offset of the excitation vector
 * @param ccr_max   pointer to the maximum auto-correlation
 * @param pitch_lag decoded pitch lag
 * @param length    length of autocorrelation
 * @param dir       forward lag(1) / backward lag(-1)
 */
266
static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
267 268 269 270 271 272
                        int pitch_lag, int length, int dir)
{
    int limit, ccr, lag = 0;
    int i;

    pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
273 274 275 276
    if (dir > 0)
        limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
    else
        limit = pitch_lag + 3;
277 278

    for (i = pitch_lag - 3; i <= limit; i++) {
279
        ccr = ff_g723_1_dot_product(buf, buf + dir * i, length);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        if (ccr > *ccr_max) {
            *ccr_max = ccr;
            lag = i;
        }
    }
    return lag;
}

/**
 * Calculate pitch postfilter optimal and scaling gains.
 *
 * @param lag      pitch postfilter forward/backward lag
 * @param ppf      pitch postfilter parameters
 * @param cur_rate current bitrate
 * @param tgt_eng  target energy
 * @param ccr      cross-correlation
 * @param res_eng  residual energy
 */
299
static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
300 301 302
                           int tgt_eng, int ccr, int res_eng)
{
    int pf_residual;     /* square of postfiltered residual */
303
    int temp1, temp2;
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

    ppf->index = lag;

    temp1 = tgt_eng * res_eng >> 1;
    temp2 = ccr * ccr << 1;

    if (temp2 > temp1) {
        if (ccr >= res_eng) {
            ppf->opt_gain = ppf_gain_weight[cur_rate];
        } else {
            ppf->opt_gain = (ccr << 15) / res_eng *
                            ppf_gain_weight[cur_rate] >> 15;
        }
        /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
        temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
        temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
320
        pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        if (tgt_eng >= pf_residual << 1) {
            temp1 = 0x7fff;
        } else {
            temp1 = (tgt_eng << 14) / pf_residual;
        }

        /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
        ppf->sc_gain = square_root(temp1 << 16);
    } else {
        ppf->opt_gain = 0;
        ppf->sc_gain  = 0x7fff;
    }

    ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
}

/**
 * Calculate pitch postfilter parameters.
 *
 * @param p         the context
 * @param offset    offset of the excitation vector
 * @param pitch_lag decoded pitch lag
 * @param ppf       pitch postfilter parameters
 * @param cur_rate  current bitrate
 */
static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag,
348
                           PPFParam *ppf, enum Rate cur_rate)
349 350 351 352
{

    int16_t scale;
    int i;
353
    int temp1, temp2;
354 355 356 357 358 359 360 361 362

    /*
     * 0 - target energy
     * 1 - forward cross-correlation
     * 2 - forward residual energy
     * 3 - backward cross-correlation
     * 4 - backward residual energy
     */
    int energy[5] = {0, 0, 0, 0, 0};
363
    int16_t *buf  = p->audio + LPC_ORDER + offset;
364
    int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
365
                                 SUBFRAME_LEN, 1);
366
    int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
367 368 369 370 371 372 373 374 375 376 377
                                 SUBFRAME_LEN, -1);

    ppf->index    = 0;
    ppf->opt_gain = 0;
    ppf->sc_gain  = 0x7fff;

    /* Case 0, Section 3.6 */
    if (!back_lag && !fwd_lag)
        return;

    /* Compute target energy */
378
    energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN);
379 380 381

    /* Compute forward residual energy */
    if (fwd_lag)
382 383
        energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag,
                                          SUBFRAME_LEN);
384 385 386

    /* Compute backward residual energy */
    if (back_lag)
387 388
        energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag,
                                          SUBFRAME_LEN);
389 390 391 392 393 394

    /* Normalize and shorten */
    temp1 = 0;
    for (i = 0; i < 5; i++)
        temp1 = FFMAX(energy[i], temp1);

395
    scale = ff_g723_1_normalize_bits(temp1, 31);
396
    for (i = 0; i < 5; i++)
397
        energy[i] = (energy[i] << scale) >> 16;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

    if (fwd_lag && !back_lag) {  /* Case 1 */
        comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
                       energy[2]);
    } else if (!fwd_lag) {       /* Case 2 */
        comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
                       energy[4]);
    } else {                     /* Case 3 */

        /*
         * Select the largest of energy[1]^2/energy[2]
         * and energy[3]^2/energy[4]
         */
        temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
        temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
        if (temp1 >= temp2) {
            comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
                           energy[2]);
        } else {
            comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
                           energy[4]);
        }
    }
}

/**
 * Classify frames as voiced/unvoiced.
 *
 * @param p         the context
 * @param pitch_lag decoded pitch_lag
 * @param exc_eng   excitation energy estimation
 * @param scale     scaling factor of exc_eng
 *
 * @return residual interpolation index if voiced, 0 otherwise
 */
static int comp_interp_index(G723_1_Context *p, int pitch_lag,
                             int *exc_eng, int *scale)
{
    int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
437
    int16_t *buf = p->audio + LPC_ORDER;
438 439 440

    int index, ccr, tgt_eng, best_eng, temp;

441
    *scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
442
    buf   += offset;
443 444 445

    /* Compute maximum backward cross-correlation */
    ccr   = 0;
446
    index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
447
    ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
448 449

    /* Compute target energy */
450
    tgt_eng  = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2);
451
    *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
452 453 454 455 456

    if (ccr <= 0)
        return 0;

    /* Compute best energy */
457 458
    best_eng = ff_g723_1_dot_product(buf - index, buf - index,
                                     SUBFRAME_LEN * 2);
459
    best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
460 461 462 463 464 465 466 467 468 469

    temp = best_eng * *exc_eng >> 3;

    if (temp < ccr * ccr) {
        return index;
    } else
        return 0;
}

/**
470
 * Perform residual interpolation based on frame classification.
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
 *
 * @param buf   decoded excitation vector
 * @param out   output vector
 * @param lag   decoded pitch lag
 * @param gain  interpolated gain
 * @param rseed seed for random number generator
 */
static void residual_interp(int16_t *buf, int16_t *out, int lag,
                            int gain, int *rseed)
{
    int i;
    if (lag) { /* Voiced */
        int16_t *vector_ptr = buf + PITCH_MAX;
        /* Attenuate */
        for (i = 0; i < lag; i++)
486 487 488
            out[i] = vector_ptr[i - lag] * 3 >> 2;
        av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
                          (FRAME_LEN - lag) * sizeof(*out));
489 490 491 492 493
    } else {  /* Unvoiced */
        for (i = 0; i < FRAME_LEN; i++) {
            *rseed = *rseed * 521 + 259;
            out[i] = gain * *rseed >> 15;
        }
494
        memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    }
}

/**
 * Perform IIR filtering.
 *
 * @param fir_coef FIR coefficients
 * @param iir_coef IIR coefficients
 * @param src      source vector
 * @param dest     destination vector
 * @param width    width of the output, 16 bits(0) / 32 bits(1)
 */
#define iir_filter(fir_coef, iir_coef, src, dest, width)\
{\
    int m, n;\
    int res_shift = 16 & ~-(width);\
    int in_shift  = 16 - res_shift;\
\
    for (m = 0; m < SUBFRAME_LEN; m++) {\
        int64_t filter = 0;\
        for (n = 1; n <= LPC_ORDER; n++) {\
            filter -= (fir_coef)[n - 1] * (src)[m - n] -\
                      (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
        }\
\
        (dest)[m] = av_clipl_int32(((src)[m] << 16) + (filter << 3) +\
                                   (1 << 15)) >> res_shift;\
    }\
}

/**
 * Adjust gain of postfiltered signal.
 *
 * @param p      the context
 * @param buf    postfiltered output vector
 * @param energy input energy coefficient
 */
static void gain_scale(G723_1_Context *p, int16_t * buf, int energy)
{
    int num, denom, gain, bits1, bits2;
    int i;

    num   = energy;
    denom = 0;
    for (i = 0; i < SUBFRAME_LEN; i++) {
540 541
        int temp = buf[i] >> 2;
        temp *= temp;
542
        denom = av_sat_dadd32(denom, temp);
543 544 545
    }

    if (num && denom) {
546 547
        bits1   = ff_g723_1_normalize_bits(num,   31);
        bits2   = ff_g723_1_normalize_bits(denom, 31);
548 549 550 551 552 553 554 555 556 557 558 559 560
        num     = num << bits1 >> 1;
        denom <<= bits2;

        bits2 = 5 + bits1 - bits2;
        bits2 = FFMAX(0, bits2);

        gain = (num >> 1) / (denom >> 16);
        gain = square_root(gain << 16 >> bits2);
    } else {
        gain = 1 << 12;
    }

    for (i = 0; i < SUBFRAME_LEN; i++) {
561
        p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
562 563 564 565 566 567 568 569 570 571
        buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
                                   (1 << 10)) >> 11);
    }
}

/**
 * Perform formant filtering.
 *
 * @param p   the context
 * @param lpc quantized lpc coefficients
572 573
 * @param buf input buffer
 * @param dst output buffer
574
 */
575 576
static void formant_postfilter(G723_1_Context *p, int16_t *lpc,
                               int16_t *buf, int16_t *dst)
577
{
578
    int16_t filter_coef[2][LPC_ORDER];
579 580 581
    int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
    int i, j, k;

582 583
    memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
    memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
584 585 586 587 588 589 590 591

    for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
        for (k = 0; k < LPC_ORDER; k++) {
            filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
                                 (1 << 14)) >> 15;
            filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
                                 (1 << 14)) >> 15;
        }
592
        iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i, 1);
593
        lpc += LPC_ORDER;
594 595 596 597 598
    }

    memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
    memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));

599
    buf += LPC_ORDER;
600 601
    signal_ptr = filter_signal + LPC_ORDER;
    for (i = 0; i < SUBFRAMES; i++) {
602
        int temp;
603 604 605 606
        int auto_corr[2];
        int scale, energy;

        /* Normalize */
607
        scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN);
608 609

        /* Compute auto correlation coefficients */
610 611
        auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
        auto_corr[1] = ff_g723_1_dot_product(dst, dst,     SUBFRAME_LEN);
612 613 614 615 616 617

        /* Compute reflection coefficient */
        temp = auto_corr[1] >> 16;
        if (temp) {
            temp = (auto_corr[0] >> 2) / temp;
        }
618
        p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
619
        temp = -p->reflection_coef >> 1 & ~3;
620 621 622

        /* Compensation filter */
        for (j = 0; j < SUBFRAME_LEN; j++) {
623
            dst[j] = av_sat_dadd32(signal_ptr[j],
624
                                   (signal_ptr[j - 1] >> 16) * temp) >> 16;
625 626 627 628 629 630 631 632 633
        }

        /* Compute normalized signal energy */
        temp = 2 * scale + 4;
        if (temp < 0) {
            energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
        } else
            energy = auto_corr[1] >> temp;

634
        gain_scale(p, dst, energy);
635

636
        buf        += SUBFRAME_LEN;
637
        signal_ptr += SUBFRAME_LEN;
638
        dst        += SUBFRAME_LEN;
639 640 641
    }
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static int sid_gain_to_lsp_index(int gain)
{
    if (gain < 0x10)
        return gain << 6;
    else if (gain < 0x20)
        return gain - 8 << 7;
    else
        return gain - 20 << 8;
}

static inline int cng_rand(int *state, int base)
{
    *state = (*state * 521 + 259) & 0xFFFF;
    return (*state & 0x7FFF) * base >> 15;
}

static int estimate_sid_gain(G723_1_Context *p)
{
    int i, shift, seg, seg2, t, val, val_add, x, y;

    shift = 16 - p->cur_gain * 2;
    if (shift > 0)
        t = p->sid_gain << shift;
    else
        t = p->sid_gain >> -shift;
    x = t * cng_filt[0] >> 16;

    if (x >= cng_bseg[2])
        return 0x3F;

    if (x >= cng_bseg[1]) {
        shift = 4;
        seg   = 3;
    } else {
        shift = 3;
        seg   = (x >= cng_bseg[0]);
    }
    seg2 = FFMIN(seg, 3);

    val     = 1 << shift;
    val_add = val >> 1;
    for (i = 0; i < shift; i++) {
        t = seg * 32 + (val << seg2);
        t *= t;
        if (x >= t)
            val += val_add;
        else
            val -= val_add;
        val_add >>= 1;
    }

    t = seg * 32 + (val << seg2);
    y = t * t - x;
    if (y <= 0) {
        t = seg * 32 + (val + 1 << seg2);
        t = t * t - x;
        val = (seg2 - 1 << 4) + val;
        if (t >= y)
            val++;
    } else {
        t = seg * 32 + (val - 1 << seg2);
        t = t * t - x;
        val = (seg2 - 1 << 4) + val;
        if (t >= y)
            val--;
    }

    return val;
}

static void generate_noise(G723_1_Context *p)
{
    int i, j, idx, t;
    int off[SUBFRAMES];
    int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
    int tmp[SUBFRAME_LEN * 2];
    int16_t *vector_ptr;
    int64_t sum;
    int b0, c, delta, x, shift;

    p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
    p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;

    for (i = 0; i < SUBFRAMES; i++) {
        p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
        p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
    }

    for (i = 0; i < SUBFRAMES / 2; i++) {
        t = cng_rand(&p->cng_random_seed, 1 << 13);
        off[i * 2]     =   t       & 1;
        off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
        t >>= 2;
        for (j = 0; j < 11; j++) {
            signs[i * 11 + j] = (t & 1) * 2 - 1 << 14;
            t >>= 1;
        }
    }

    idx = 0;
    for (i = 0; i < SUBFRAMES; i++) {
        for (j = 0; j < SUBFRAME_LEN / 2; j++)
            tmp[j] = j;
        t = SUBFRAME_LEN / 2;
        for (j = 0; j < pulses[i]; j++, idx++) {
            int idx2 = cng_rand(&p->cng_random_seed, t);

            pos[idx]  = tmp[idx2] * 2 + off[i];
            tmp[idx2] = tmp[--t];
        }
    }

    vector_ptr = p->audio + LPC_ORDER;
    memcpy(vector_ptr, p->prev_excitation,
           PITCH_MAX * sizeof(*p->excitation));
    for (i = 0; i < SUBFRAMES; i += 2) {
758 759 760 761 762 763 764
        ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr,
                                     p->pitch_lag[i >> 1], &p->subframe[i],
                                     p->cur_rate);
        ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
                                     vector_ptr + SUBFRAME_LEN,
                                     p->pitch_lag[i >> 1], &p->subframe[i + 1],
                                     p->cur_rate);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

        t = 0;
        for (j = 0; j < SUBFRAME_LEN * 2; j++)
            t |= FFABS(vector_ptr[j]);
        t = FFMIN(t, 0x7FFF);
        if (!t) {
            shift = 0;
        } else {
            shift = -10 + av_log2(t);
            if (shift < -2)
                shift = -2;
        }
        sum = 0;
        if (shift < 0) {
           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
               t      = vector_ptr[j] << -shift;
               sum   += t * t;
               tmp[j] = t;
           }
        } else {
           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
               t      = vector_ptr[j] >> shift;
               sum   += t * t;
               tmp[j] = t;
           }
        }

        b0 = 0;
        for (j = 0; j < 11; j++)
            b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
        b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11

        c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
        if (shift * 2 + 3 >= 0)
            c >>= shift * 2 + 3;
        else
            c <<= -(shift * 2 + 3);
        c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;

        delta = b0 * b0 * 2 - c;
        if (delta <= 0) {
            x = -b0;
        } else {
            delta = square_root(delta);
            x     = delta - b0;
            t     = delta + b0;
            if (FFABS(t) < FFABS(x))
                x = -t;
        }
        shift++;
        if (shift < 0)
           x >>= -shift;
        else
           x <<= shift;
        x = av_clip(x, -10000, 10000);

        for (j = 0; j < 11; j++) {
            idx = (i / 2) * 11 + j;
            vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
                                                 (x * signs[idx] >> 15));
        }

        /* copy decoded data to serve as a history for the next decoded subframes */
        memcpy(vector_ptr + PITCH_MAX, vector_ptr,
               sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
        vector_ptr += SUBFRAME_LEN * 2;
    }
    /* Save the excitation for the next frame */
    memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
           PITCH_MAX * sizeof(*p->excitation));
}

837
static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
838
                               int *got_frame_ptr, AVPacket *avpkt)
839 840
{
    G723_1_Context *p  = avctx->priv_data;
841
    AVFrame *frame     = data;
842 843 844 845 846 847 848 849
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    int dec_mode       = buf[0] & 3;

    PPFParam ppf[SUBFRAMES];
    int16_t cur_lsp[LPC_ORDER];
    int16_t lpc[SUBFRAMES * LPC_ORDER];
    int16_t acb_vector[SUBFRAME_LEN];
850
    int16_t *out;
851
    int bad_frame = 0, i, j, ret;
852
    int16_t *audio = p->audio;
853

854 855 856 857 858
    if (buf_size < frame_size[dec_mode]) {
        if (buf_size)
            av_log(avctx, AV_LOG_WARNING,
                   "Expected %d bytes, got %d - skipping packet\n",
                   frame_size[dec_mode], buf_size);
859
        *got_frame_ptr = 0;
860 861 862 863
        return buf_size;
    }

    if (unpack_bitstream(p, buf, buf_size) < 0) {
864 865 866 867 868
        bad_frame = 1;
        if (p->past_frame_type == ACTIVE_FRAME)
            p->cur_frame_type = ACTIVE_FRAME;
        else
            p->cur_frame_type = UNTRANSMITTED_FRAME;
869 870
    }

871
    frame->nb_samples = FRAME_LEN;
872 873
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;
874

875
    out = (int16_t *)frame->data[0];
876

877
    if (p->cur_frame_type == ACTIVE_FRAME) {
878
        if (!bad_frame)
879
            p->erased_frames = 0;
880
        else if (p->erased_frames != 3)
881 882
            p->erased_frames++;

883 884
        ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
        ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
885 886

        /* Save the lsp_vector for the next frame */
887
        memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
888 889

        /* Generate the excitation for the frame */
890 891
        memcpy(p->excitation, p->prev_excitation,
               PITCH_MAX * sizeof(*p->excitation));
892
        if (!p->erased_frames) {
893 894
            int16_t *vector_ptr = p->excitation + PITCH_MAX;

895 896 897 898
            /* Update interpolation gain memory */
            p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index +
                                            p->subframe[3].amp_index) >> 1];
            for (i = 0; i < SUBFRAMES; i++) {
899
                gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
900
                                   p->pitch_lag[i >> 1], i);
901 902 903 904
                ff_g723_1_gen_acb_excitation(acb_vector,
                                             &p->excitation[SUBFRAME_LEN * i],
                                             p->pitch_lag[i >> 1],
                                             &p->subframe[i], p->cur_rate);
905 906
                /* Get the total excitation */
                for (j = 0; j < SUBFRAME_LEN; j++) {
907 908
                    int v = av_clip_int16(vector_ptr[j] << 1);
                    vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
909 910 911 912 913 914 915 916 917
                }
                vector_ptr += SUBFRAME_LEN;
            }

            vector_ptr = p->excitation + PITCH_MAX;

            p->interp_index = comp_interp_index(p, p->pitch_lag[1],
                                                &p->sid_gain, &p->cur_gain);

918
            /* Perform pitch postfiltering */
919
            if (p->postfilter) {
920 921 922 923
                i = PITCH_MAX;
                for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
                    comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
                                   ppf + j, p->cur_rate);
924

925
                for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
926
                    ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
927 928 929 930 931
                                                 vector_ptr + i,
                                                 vector_ptr + i + ppf[j].index,
                                                 ppf[j].sc_gain,
                                                 ppf[j].opt_gain,
                                                 1 << 14, 15, SUBFRAME_LEN);
932 933 934
            } else {
                audio = vector_ptr - LPC_ORDER;
            }
935

936 937 938
            /* Save the excitation for the next frame */
            memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
                   PITCH_MAX * sizeof(*p->excitation));
939 940 941 942 943
        } else {
            p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
            if (p->erased_frames == 3) {
                /* Mute output */
                memset(p->excitation, 0,
944
                       (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
945 946
                memset(p->prev_excitation, 0,
                       PITCH_MAX * sizeof(*p->excitation));
947
                memset(frame->data[0], 0,
948
                       (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
949
            } else {
950 951
                int16_t *buf = p->audio + LPC_ORDER;

952
                /* Regenerate frame */
953
                residual_interp(p->excitation, buf, p->interp_index,
954
                                p->interp_gain, &p->random_seed);
955 956 957 958

                /* Save the excitation for the next frame */
                memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
                       PITCH_MAX * sizeof(*p->excitation));
959 960
            }
        }
961
        p->cng_random_seed = CNG_RANDOM_SEED;
962
    } else {
963 964
        if (p->cur_frame_type == SID_FRAME) {
            p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
965
            ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
966 967 968
        } else if (p->past_frame_type == ACTIVE_FRAME) {
            p->sid_gain = estimate_sid_gain(p);
        }
969

970 971 972 973 974
        if (p->past_frame_type == ACTIVE_FRAME)
            p->cur_gain = p->sid_gain;
        else
            p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
        generate_noise(p);
975
        ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
976 977
        /* Save the lsp_vector for the next frame */
        memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
978 979 980 981
    }

    p->past_frame_type = p->cur_frame_type;

982
    memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
983
    for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
984
        ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
985
                                    audio + i, SUBFRAME_LEN, LPC_ORDER,
986
                                    0, 1, 1 << 12);
987
    memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
988

989
    if (p->postfilter) {
990
        formant_postfilter(p, lpc, p->audio, out);
991 992
    } else { // if output is not postfiltered it should be scaled by 2
        for (i = 0; i < FRAME_LEN; i++)
993
            out[i] = av_clip_int16(p->audio[LPC_ORDER + i] << 1);
994
    }
995

996
    *got_frame_ptr = 1;
997 998 999 1000

    return frame_size[dec_mode];
}

1001 1002 1003 1004
#define OFFSET(x) offsetof(G723_1_Context, x)
#define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM

static const AVOption options[] = {
1005
    { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL,
1006
      { .i64 = 1 }, 0, 1, AD },
1007 1008 1009
    { NULL }
};

1010

1011 1012 1013 1014 1015 1016 1017
static const AVClass g723_1dec_class = {
    .class_name = "G.723.1 decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

1018 1019
AVCodec ff_g723_1_decoder = {
    .name           = "g723_1",
1020
    .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
1021
    .type           = AVMEDIA_TYPE_AUDIO,
1022
    .id             = AV_CODEC_ID_G723_1,
1023 1024 1025
    .priv_data_size = sizeof(G723_1_Context),
    .init           = g723_1_decode_init,
    .decode         = g723_1_decode_frame,
1026
    .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1027
    .priv_class     = &g723_1dec_class,
1028
};