cllc.c 10 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Canopus Lossless Codec decoder
 *
 * Copyright (c) 2012 Derek Buitenhuis
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intreadwrite.h"
#include "dsputil.h"
#include "get_bits.h"
#include "avcodec.h"
27
#include "internal.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

typedef struct CLLCContext {
    DSPContext dsp;
    AVCodecContext *avctx;

    uint8_t *swapped_buf;
    int      swapped_buf_size;
} CLLCContext;

static int read_code_table(CLLCContext *ctx, GetBitContext *gb, VLC *vlc)
{
    uint8_t symbols[256];
    uint8_t bits[256];
    uint16_t codes[256];
    int num_lens, num_codes, num_codes_sum, prefix;
    int i, j, count;

    prefix        = 0;
    count         = 0;
    num_codes_sum = 0;

    num_lens = get_bits(gb, 5);

    for (i = 0; i < num_lens; i++) {
        num_codes      = get_bits(gb, 9);
        num_codes_sum += num_codes;

        if (num_codes_sum > 256) {
            vlc->table = NULL;

            av_log(ctx->avctx, AV_LOG_ERROR,
                   "Too many VLCs (%d) to be read.\n", num_codes_sum);
            return AVERROR_INVALIDDATA;
        }

        for (j = 0; j < num_codes; j++) {
            symbols[count] = get_bits(gb, 8);
            bits[count]    = i + 1;
            codes[count]   = prefix++;

            count++;
        }

        prefix <<= 1;
    }

    return ff_init_vlc_sparse(vlc, 7, count, bits, 1, 1,
                              codes, 2, 2, symbols, 1, 1, 0);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Unlike the RGB24 read/restore, which reads in a component at a time,
 * ARGB read/restore reads in ARGB quads.
 */
static int read_argb_line(CLLCContext *ctx, GetBitContext *gb, int *top_left,
                          VLC *vlc, uint8_t *outbuf)
{
    uint8_t *dst;
    int pred[4];
    int code;
    int i;

    OPEN_READER(bits, gb);

    dst     = outbuf;
    pred[0] = top_left[0];
    pred[1] = top_left[1];
    pred[2] = top_left[2];
    pred[3] = top_left[3];

    for (i = 0; i < ctx->avctx->width; i++) {
        /* Always get the alpha component */
        UPDATE_CACHE(bits, gb);
        GET_VLC(code, bits, gb, vlc[0].table, 7, 2);

        pred[0] += code;
        dst[0]   = pred[0];

        /* Skip the components if they are  entirely transparent */
        if (dst[0]) {
            /* Red */
            UPDATE_CACHE(bits, gb);
            GET_VLC(code, bits, gb, vlc[1].table, 7, 2);

            pred[1] += code;
            dst[1]   = pred[1];

            /* Green */
            UPDATE_CACHE(bits, gb);
            GET_VLC(code, bits, gb, vlc[2].table, 7, 2);

            pred[2] += code;
            dst[2]   = pred[2];

            /* Blue */
            UPDATE_CACHE(bits, gb);
            GET_VLC(code, bits, gb, vlc[3].table, 7, 2);

            pred[3] += code;
            dst[3]   = pred[3];
        } else {
            dst[1] = 0;
            dst[2] = 0;
            dst[3] = 0;
        }

        dst += 4;
    }

    CLOSE_READER(bits, gb);

    dst         -= 4 * ctx->avctx->width;
    top_left[0]  = dst[0];

    /* Only stash components if they are not transparent */
    if (top_left[0]) {
        top_left[1] = dst[1];
        top_left[2] = dst[2];
        top_left[3] = dst[3];
    }

    return 0;
}

152 153
static int read_rgb24_component_line(CLLCContext *ctx, GetBitContext *gb,
                                     int *top_left, VLC *vlc, uint8_t *outbuf)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
{
    uint8_t *dst;
    int pred, code;
    int i;

    OPEN_READER(bits, gb);

    dst  = outbuf;
    pred = *top_left;

    /* Simultaneously read and restore the line */
    for (i = 0; i < ctx->avctx->width; i++) {
        UPDATE_CACHE(bits, gb);
        GET_VLC(code, bits, gb, vlc->table, 7, 2);

        pred  += code;
        dst[0] = pred;
        dst   += 3;
    }

    CLOSE_READER(bits, gb);

    /* Stash the first pixel */
    *top_left = dst[-3 * ctx->avctx->width];

    return 0;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static int decode_argb_frame(CLLCContext *ctx, GetBitContext *gb, AVFrame *pic)
{
    AVCodecContext *avctx = ctx->avctx;
    uint8_t *dst;
    int pred[4];
    int ret;
    int i, j;
    VLC vlc[4];

    pred[0] = 0;
    pred[1] = 0x80;
    pred[2] = 0x80;
    pred[3] = 0x80;

    dst = pic->data[0];

    skip_bits(gb, 16);

    /* Read in code table for each plane */
    for (i = 0; i < 4; i++) {
        ret = read_code_table(ctx, gb, &vlc[i]);
        if (ret < 0) {
            for (j = 0; j <= i; j++)
                ff_free_vlc(&vlc[j]);

            av_log(ctx->avctx, AV_LOG_ERROR,
                   "Could not read code table %d.\n", i);
            return ret;
        }
    }

    /* Read in and restore every line */
    for (i = 0; i < avctx->height; i++) {
        read_argb_line(ctx, gb, pred, vlc, dst);

        dst += pic->linesize[0];
    }

    for (i = 0; i < 4; i++)
        ff_free_vlc(&vlc[i]);

    return 0;
}

226
static int decode_rgb24_frame(CLLCContext *ctx, GetBitContext *gb, AVFrame *pic)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
    AVCodecContext *avctx = ctx->avctx;
    uint8_t *dst;
    int pred[3];
    int ret;
    int i, j;
    VLC vlc[3];

    pred[0] = 0x80;
    pred[1] = 0x80;
    pred[2] = 0x80;

    dst = pic->data[0];

    skip_bits(gb, 16);

    /* Read in code table for each plane */
    for (i = 0; i < 3; i++) {
        ret = read_code_table(ctx, gb, &vlc[i]);
        if (ret < 0) {
            for (j = 0; j <= i; j++)
                ff_free_vlc(&vlc[j]);

            av_log(ctx->avctx, AV_LOG_ERROR,
                   "Could not read code table %d.\n", i);
            return ret;
        }
    }

    /* Read in and restore every line */
    for (i = 0; i < avctx->height; i++) {
        for (j = 0; j < 3; j++)
259
            read_rgb24_component_line(ctx, gb, &pred[j], &vlc[j], &dst[j]);
260 261 262 263 264 265 266 267 268 269 270 271 272 273

        dst += pic->linesize[0];
    }

    for (i = 0; i < 3; i++)
        ff_free_vlc(&vlc[i]);

    return 0;
}

static int cllc_decode_frame(AVCodecContext *avctx, void *data,
                             int *got_picture_ptr, AVPacket *avpkt)
{
    CLLCContext *ctx = avctx->priv_data;
274
    AVFrame *pic = data;
275 276
    uint8_t *src = avpkt->data;
    uint32_t info_tag, info_offset;
277
    int data_size;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    GetBitContext gb;
    int coding_type, ret;

    /* Skip the INFO header if present */
    info_offset = 0;
    info_tag    = AV_RL32(src);
    if (info_tag == MKTAG('I', 'N', 'F', 'O')) {
        info_offset = AV_RL32(src + 4);
        if (info_offset > UINT32_MAX - 8 || info_offset + 8 > avpkt->size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid INFO header offset: 0x%08X is too large.\n",
                   info_offset);
            return AVERROR_INVALIDDATA;
        }

        info_offset += 8;
        src         += info_offset;

        av_log(avctx, AV_LOG_DEBUG, "Skipping INFO chunk.\n");
    }

299 300 301 302 303 304 305 306 307 308
    data_size = (avpkt->size - info_offset) & ~1;

    /* Make sure our bswap16'd buffer is big enough */
    av_fast_padded_malloc(&ctx->swapped_buf,
                          &ctx->swapped_buf_size, data_size);
    if (!ctx->swapped_buf) {
        av_log(avctx, AV_LOG_ERROR, "Could not allocate swapped buffer.\n");
        return AVERROR(ENOMEM);
    }

309 310
    /* bswap16 the buffer since CLLC's bitreader works in 16-bit words */
    ctx->dsp.bswap16_buf((uint16_t *) ctx->swapped_buf, (uint16_t *) src,
311
                         data_size / 2);
312

313
    init_get_bits(&gb, ctx->swapped_buf, data_size * 8);
314 315 316 317 318 319 320 321 322 323 324 325 326 327

    /*
     * Read in coding type. The types are as follows:
     *
     * 0 - YUY2
     * 1 - BGR24 (Triples)
     * 2 - BGR24 (Quads)
     * 3 - BGRA
     */
    coding_type = (AV_RL32(src) >> 8) & 0xFF;
    av_log(avctx, AV_LOG_DEBUG, "Frame coding type: %d\n", coding_type);

    switch (coding_type) {
    case 1:
328
    case 2:
329
        avctx->pix_fmt             = AV_PIX_FMT_RGB24;
330 331
        avctx->bits_per_raw_sample = 8;

332
        ret = ff_get_buffer(avctx, pic, 0);
333 334 335 336 337
        if (ret < 0) {
            av_log(avctx, AV_LOG_ERROR, "Could not allocate buffer.\n");
            return ret;
        }

338
        ret = decode_rgb24_frame(ctx, &gb, pic);
339 340 341
        if (ret < 0)
            return ret;

342 343
        break;
    case 3:
344
        avctx->pix_fmt             = AV_PIX_FMT_ARGB;
345 346
        avctx->bits_per_raw_sample = 8;

347
        ret = ff_get_buffer(avctx, pic, 0);
348 349 350 351 352 353 354 355 356
        if (ret < 0) {
            av_log(avctx, AV_LOG_ERROR, "Could not allocate buffer.\n");
            return ret;
        }

        ret = decode_argb_frame(ctx, &gb, pic);
        if (ret < 0)
            return ret;

357 358
        break;
    default:
359
        av_log(avctx, AV_LOG_ERROR, "Unknown coding type: %d.\n", coding_type);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        return AVERROR_INVALIDDATA;
    }

    pic->key_frame = 1;
    pic->pict_type = AV_PICTURE_TYPE_I;

    *got_picture_ptr = 1;

    return avpkt->size;
}

static av_cold int cllc_decode_close(AVCodecContext *avctx)
{
    CLLCContext *ctx = avctx->priv_data;

    av_freep(&ctx->swapped_buf);

    return 0;
}

static av_cold int cllc_decode_init(AVCodecContext *avctx)
{
    CLLCContext *ctx = avctx->priv_data;

    /* Initialize various context values */
    ctx->avctx            = avctx;
    ctx->swapped_buf      = NULL;
    ctx->swapped_buf_size = 0;

    ff_dsputil_init(&ctx->dsp, avctx);

    return 0;
}

AVCodec ff_cllc_decoder = {
    .name           = "cllc",
    .type           = AVMEDIA_TYPE_VIDEO,
397
    .id             = AV_CODEC_ID_CLLC,
398 399 400 401 402 403 404
    .priv_data_size = sizeof(CLLCContext),
    .init           = cllc_decode_init,
    .decode         = cllc_decode_frame,
    .close          = cllc_decode_close,
    .capabilities   = CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("Canopus Lossless Codec"),
};