g722.c 20.6 KB
Newer Older
1
/*
Martin Storsjö's avatar
Martin Storsjö committed
2
 * G.722 ADPCM audio encoder/decoder
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *
 * Copyright (c) CMU 1993 Computer Science, Speech Group
 *                        Chengxiang Lu and Alex Hauptmann
 * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
 * Copyright (c) 2009 Kenan Gillet
 * Copyright (c) 2010 Martin Storsjo
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * G.722 ADPCM audio codec
 *
 * This G.722 decoder is a bit-exact implementation of the ITU G.722
 * specification for all three specified bitrates - 64000bps, 56000bps
 * and 48000bps. It passes the ITU tests.
 *
 * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
 *       respectively of each byte are ignored.
 */

#include "avcodec.h"
#include "mathops.h"
#include "get_bits.h"

#define PREV_SAMPLES_BUF_SIZE 1024

45 46
#define FREEZE_INTERVAL 128

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
typedef struct {
    int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples
    int     prev_samples_pos;        ///< the number of values in prev_samples

    /**
     * The band[0] and band[1] correspond respectively to the lower band and higher band.
     */
    struct G722Band {
        int16_t s_predictor;         ///< predictor output value
        int32_t s_zero;              ///< previous output signal from zero predictor
        int8_t  part_reconst_mem[2]; ///< signs of previous partially reconstructed signals
        int16_t prev_qtzd_reconst;   ///< previous quantized reconstructed signal (internal value, using low_inv_quant4)
        int16_t pole_mem[2];         ///< second-order pole section coefficient buffer
        int32_t diff_mem[6];         ///< quantizer difference signal memory
        int16_t zero_mem[6];         ///< Seventh-order zero section coefficient buffer
        int16_t log_factor;          ///< delayed 2-logarithmic quantizer factor
        int16_t scale_factor;        ///< delayed quantizer scale factor
    } band[2];
65 66 67 68 69 70 71 72 73 74 75

    struct TrellisNode {
        struct G722Band state;
        uint32_t ssd;
        int path;
    } *node_buf[2], **nodep_buf[2];

    struct TrellisPath {
        int value;
        int prev;
    } *paths[2];
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
} G722Context;


static const int8_t sign_lookup[2] = { -1, 1 };

static const int16_t inv_log2_table[32] = {
    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
};
static const int16_t high_log_factor_step[2] = { 798, -214 };
static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 };
/**
 * low_log_factor_step[index] == wl[rl42[index]]
 */
static const int16_t low_log_factor_step[16] = {
     -60, 3042, 1198, 538, 334, 172,  58, -30,
    3042, 1198,  538, 334, 172,  58, -30, -60
};
static const int16_t low_inv_quant4[16] = {
       0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
    2557,  1612,  1121,   786,   530,   323,   150,     0
};
100 101 102 103 104 105 106 107 108 109
static const int16_t low_inv_quant6[64] = {
     -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
   -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
    -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
    -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
    3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
    1279,  1170,  1072,   982,   899,   822,   750,   682,
     618,   558,   501,   447,   396,   347,   300,   254,
     211,   170,   130,    91,    54,    17,   -54,   -17
};
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

/**
 * quadrature mirror filter (QMF) coefficients
 *
 * ITU-T G.722 Table 11
 */
static const int16_t qmf_coeffs[12] = {
    3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
};


/**
 * adaptive predictor
 *
 * @param cur_diff the dequantized and scaled delta calculated from the
 *                 current codeword
 */
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
{
    int sg[2], limit, i, cur_qtzd_reconst;

    const int cur_part_reconst = band->s_zero + cur_diff < 0;

    sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
    sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
    band->part_reconst_mem[1] = band->part_reconst_mem[0];
    band->part_reconst_mem[0] = cur_part_reconst;

    band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
                                (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);

    limit = 15360 - band->pole_mem[1];
    band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);


    if (cur_diff) {
        for (i = 0; i < 6; i++)
            band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
                                ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
    } else
        for (i = 0; i < 6; i++)
            band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;

    for (i = 5; i > 0; i--)
        band->diff_mem[i] = band->diff_mem[i-1];
    band->diff_mem[0] = av_clip_int16(cur_diff << 1);

    band->s_zero = 0;
    for (i = 5; i >= 0; i--)
        band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;


    cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
    band->s_predictor = av_clip_int16(band->s_zero +
                                      (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
                                      (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
    band->prev_qtzd_reconst = cur_qtzd_reconst;
}

static int inline linear_scale_factor(const int log_factor)
{
    const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
    const int shift = log_factor >> 11;
    return shift < 0 ? wd1 >> -shift : wd1 << shift;
}

static void update_low_predictor(struct G722Band *band, const int ilow)
{
    do_adaptive_prediction(band,
                           band->scale_factor * low_inv_quant4[ilow] >> 10);

    // quantizer adaptation
    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
                                 low_log_factor_step[ilow], 0, 18432);
    band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
}

static void update_high_predictor(struct G722Band *band, const int dhigh,
                                  const int ihigh)
{
    do_adaptive_prediction(band, dhigh);

    // quantizer adaptation
    band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
                                 high_log_factor_step[ihigh&1], 0, 22528);
    band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
}

static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
{
    int i;

    *xout1 = 0;
    *xout2 = 0;
    for (i = 0; i < 12; i++) {
        MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
        MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
    }
}

static av_cold int g722_init(AVCodecContext * avctx)
{
    G722Context *c = avctx->priv_data;

    if (avctx->channels != 1) {
        av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
        return AVERROR_INVALIDDATA;
    }
218
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    switch (avctx->bits_per_coded_sample) {
    case 8:
    case 7:
    case 6:
        break;
    default:
        av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], "
                                      "assuming 8\n",
                                      avctx->bits_per_coded_sample);
    case 0:
        avctx->bits_per_coded_sample = 8;
        break;
    }

    c->band[0].scale_factor = 8;
    c->band[1].scale_factor = 2;
    c->prev_samples_pos = 22;

    if (avctx->lowres)
        avctx->sample_rate /= 2;

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    if (avctx->trellis) {
        int frontier = 1 << avctx->trellis;
        int max_paths = frontier * FREEZE_INTERVAL;
        int i;
        for (i = 0; i < 2; i++) {
            c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
            c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
            c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
        }
    }

    return 0;
}

static av_cold int g722_close(AVCodecContext *avctx)
{
    G722Context *c = avctx->priv_data;
    int i;
    for (i = 0; i < 2; i++) {
        av_freep(&c->paths[i]);
        av_freep(&c->node_buf[i]);
        av_freep(&c->nodep_buf[i]);
    }
264 265 266
    return 0;
}

Martin Storsjö's avatar
Martin Storsjö committed
267
#if CONFIG_ADPCM_G722_DECODER
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static const int16_t low_inv_quant5[32] = {
     -35,   -35, -2919, -2195, -1765, -1458, -1219, -1023,
    -858,  -714,  -587,  -473,  -370,  -276,  -190,  -110,
    2919,  2195,  1765,  1458,  1219,  1023,   858,   714,
     587,   473,   370,   276,   190,   110,    35,   -35
};

static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5,
                                 low_inv_quant4 };

static int g722_decode_frame(AVCodecContext *avctx, void *data,
                             int *data_size, AVPacket *avpkt)
{
    G722Context *c = avctx->priv_data;
    int16_t *out_buf = data;
    int j, out_len = 0;
    const int skip = 8 - avctx->bits_per_coded_sample;
    const int16_t *quantizer_table = low_inv_quants[skip];
    GetBitContext gb;

    init_get_bits(&gb, avpkt->data, avpkt->size * 8);

    for (j = 0; j < avpkt->size; j++) {
        int ilow, ihigh, rlow;

        ihigh = get_bits(&gb, 2);
        ilow = get_bits(&gb, 6 - skip);
        skip_bits(&gb, skip);

        rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10)
                      + c->band[0].s_predictor, -16384, 16383);

        update_low_predictor(&c->band[0], ilow >> (2 - skip));

        if (!avctx->lowres) {
            const int dhigh = c->band[1].scale_factor *
                              high_inv_quant[ihigh] >> 10;
            const int rhigh = av_clip(dhigh + c->band[1].s_predictor,
                                      -16384, 16383);
            int xout1, xout2;

            update_high_predictor(&c->band[1], dhigh, ihigh);

            c->prev_samples[c->prev_samples_pos++] = rlow + rhigh;
            c->prev_samples[c->prev_samples_pos++] = rlow - rhigh;
            apply_qmf(c->prev_samples + c->prev_samples_pos - 24,
                      &xout1, &xout2);
            out_buf[out_len++] = av_clip_int16(xout1 >> 12);
            out_buf[out_len++] = av_clip_int16(xout2 >> 12);
            if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
                memmove(c->prev_samples,
                        c->prev_samples + c->prev_samples_pos - 22,
                        22 * sizeof(c->prev_samples[0]));
                c->prev_samples_pos = 22;
            }
        } else
            out_buf[out_len++] = rlow;
    }
    *data_size = out_len << 1;
    return avpkt->size;
}

330
AVCodec ff_adpcm_g722_decoder = {
331 332 333 334 335 336 337 338 339
    .name           = "g722",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = CODEC_ID_ADPCM_G722,
    .priv_data_size = sizeof(G722Context),
    .init           = g722_init,
    .decode         = g722_decode_frame,
    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
    .max_lowres     = 1,
};
Martin Storsjö's avatar
Martin Storsjö committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#endif

#if CONFIG_ADPCM_G722_ENCODER
static const int16_t low_quant[33] = {
      35,   72,  110,  150,  190,  233,  276,  323,
     370,  422,  473,  530,  587,  650,  714,  786,
     858,  940, 1023, 1121, 1219, 1339, 1458, 1612,
    1765, 1980, 2195, 2557, 2919
};

static inline void filter_samples(G722Context *c, const int16_t *samples,
                                  int *xlow, int *xhigh)
{
    int xout1, xout2;
    c->prev_samples[c->prev_samples_pos++] = samples[0];
    c->prev_samples[c->prev_samples_pos++] = samples[1];
    apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
    *xlow  = xout1 + xout2 >> 13;
    *xhigh = xout1 - xout2 >> 13;
    if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
        memmove(c->prev_samples,
                c->prev_samples + c->prev_samples_pos - 22,
                22 * sizeof(c->prev_samples[0]));
        c->prev_samples_pos = 22;
    }
}

static inline int encode_high(const struct G722Band *state, int xhigh)
{
    int diff = av_clip_int16(xhigh - state->s_predictor);
    int pred = 141 * state->scale_factor >> 8;
           /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
    return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
}

static inline int encode_low(const struct G722Band* state, int xlow)
{
    int diff  = av_clip_int16(xlow - state->s_predictor);
           /* = diff >= 0 ? diff : -(diff + 1) */
    int limit = diff ^ (diff >> (sizeof(diff)*8-1));
    int i = 0;
    limit = limit + 1 << 10;
    if (limit > low_quant[8] * state->scale_factor)
        i = 9;
    while (i < 29 && limit > low_quant[i] * state->scale_factor)
        i++;
    return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static int g722_encode_trellis(AVCodecContext *avctx,
                               uint8_t *dst, int buf_size, void *data)
{
    G722Context *c = avctx->priv_data;
    const int16_t *samples = data;
    int i, j, k;
    int frontier = 1 << avctx->trellis;
    struct TrellisNode **nodes[2];
    struct TrellisNode **nodes_next[2];
    int pathn[2] = {0, 0}, froze = -1;
    struct TrellisPath *p[2];

    for (i = 0; i < 2; i++) {
        nodes[i] = c->nodep_buf[i];
        nodes_next[i] = c->nodep_buf[i] + frontier;
        memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf));
        nodes[i][0] = c->node_buf[i] + frontier;
        nodes[i][0]->ssd = 0;
        nodes[i][0]->path = 0;
        nodes[i][0]->state = c->band[i];
    }

    for (i = 0; i < buf_size >> 1; i++) {
        int xlow, xhigh;
        struct TrellisNode *next[2];
        int heap_pos[2] = {0, 0};

        for (j = 0; j < 2; j++) {
            next[j] = c->node_buf[j] + frontier*(i & 1);
            memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
        }

        filter_samples(c, &samples[2*i], &xlow, &xhigh);

        for (j = 0; j < frontier && nodes[0][j]; j++) {
            /* Only k >> 2 affects the future adaptive state, therefore testing
             * small steps that don't change k >> 2 is useless, the orignal
             * value from encode_low is better than them. Since we step k
             * in steps of 4, make sure range is a multiple of 4, so that
             * we don't miss the original value from encode_low. */
            int range = j < frontier/2 ? 4 : 0;
            struct TrellisNode *cur_node = nodes[0][j];

            int ilow = encode_low(&cur_node->state, xlow);

            for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
                int decoded, dec_diff, pos;
                uint32_t ssd;
                struct TrellisNode* node;

                if (k < 0)
                    continue;

                decoded = av_clip((cur_node->state.scale_factor *
                                  low_inv_quant6[k] >> 10)
                                + cur_node->state.s_predictor, -16384, 16383);
                dec_diff = xlow - decoded;

#define STORE_NODE(index, UPDATE, VALUE)\
                ssd = cur_node->ssd + dec_diff*dec_diff;\
                /* Check for wraparound. Using 64 bit ssd counters would \
                 * be simpler, but is slower on x86 32 bit. */\
                if (ssd < cur_node->ssd)\
                    continue;\
                if (heap_pos[index] < frontier) {\
                    pos = heap_pos[index]++;\
                    assert(pathn[index] < FREEZE_INTERVAL * frontier);\
                    node = nodes_next[index][pos] = next[index]++;\
                    node->path = pathn[index]++;\
                } else {\
                    /* Try to replace one of the leaf nodes with the new \
                     * one, but not always testing the same leaf position */\
                    pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
                    if (ssd >= nodes_next[index][pos]->ssd)\
                        continue;\
                    heap_pos[index]++;\
                    node = nodes_next[index][pos];\
                }\
                node->ssd = ssd;\
                node->state = cur_node->state;\
                UPDATE;\
                c->paths[index][node->path].value = VALUE;\
                c->paths[index][node->path].prev = cur_node->path;\
                /* Sift the newly inserted node up in the heap to restore \
                 * the heap property */\
                while (pos > 0) {\
                    int parent = (pos - 1) >> 1;\
                    if (nodes_next[index][parent]->ssd <= ssd)\
                        break;\
                    FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
                                                nodes_next[index][pos]);\
                    pos = parent;\
                }
                STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k);
            }
        }

        for (j = 0; j < frontier && nodes[1][j]; j++) {
            int ihigh;
            struct TrellisNode *cur_node = nodes[1][j];

            /* We don't try to get any initial guess for ihigh via
             * encode_high - since there's only 4 possible values, test
             * them all. Testing all of these gives a much, much larger
             * gain than testing a larger range around ilow. */
            for (ihigh = 0; ihigh < 4; ihigh++) {
                int dhigh, decoded, dec_diff, pos;
                uint32_t ssd;
                struct TrellisNode* node;

                dhigh = cur_node->state.scale_factor *
                        high_inv_quant[ihigh] >> 10;
                decoded = av_clip(dhigh + cur_node->state.s_predictor,
                                  -16384, 16383);
                dec_diff = xhigh - decoded;

                STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh);
            }
        }

        for (j = 0; j < 2; j++) {
            FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);

            if (nodes[j][0]->ssd > (1 << 16)) {
                for (k = 1; k < frontier && nodes[j][k]; k++)
                    nodes[j][k]->ssd -= nodes[j][0]->ssd;
                nodes[j][0]->ssd = 0;
            }
        }

        if (i == froze + FREEZE_INTERVAL) {
            p[0] = &c->paths[0][nodes[0][0]->path];
            p[1] = &c->paths[1][nodes[1][0]->path];
            for (j = i; j > froze; j--) {
                dst[j] = p[1]->value << 6 | p[0]->value;
                p[0] = &c->paths[0][p[0]->prev];
                p[1] = &c->paths[1][p[1]->prev];
            }
            froze = i;
            pathn[0] = pathn[1] = 0;
            memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
            memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
        }
    }

    p[0] = &c->paths[0][nodes[0][0]->path];
    p[1] = &c->paths[1][nodes[1][0]->path];
    for (j = i; j > froze; j--) {
        dst[j] = p[1]->value << 6 | p[0]->value;
        p[0] = &c->paths[0][p[0]->prev];
        p[1] = &c->paths[1][p[1]->prev];
    }
    c->band[0] = nodes[0][0]->state;
    c->band[1] = nodes[1][0]->state;

    return i;
}

Martin Storsjö's avatar
Martin Storsjö committed
547 548 549 550 551 552 553
static int g722_encode_frame(AVCodecContext *avctx,
                             uint8_t *dst, int buf_size, void *data)
{
    G722Context *c = avctx->priv_data;
    const int16_t *samples = data;
    int i;

554 555 556
    if (avctx->trellis)
        return g722_encode_trellis(avctx, dst, buf_size, data);

Martin Storsjö's avatar
Martin Storsjö committed
557 558 559 560 561 562 563 564 565 566 567 568 569
    for (i = 0; i < buf_size >> 1; i++) {
        int xlow, xhigh, ihigh, ilow;
        filter_samples(c, &samples[2*i], &xlow, &xhigh);
        ihigh = encode_high(&c->band[1], xhigh);
        ilow  = encode_low(&c->band[0], xlow);
        update_high_predictor(&c->band[1], c->band[1].scale_factor *
                              high_inv_quant[ihigh] >> 10, ihigh);
        update_low_predictor(&c->band[0], ilow >> 2);
        *dst++ = ihigh << 6 | ilow;
    }
    return i;
}

570
AVCodec ff_adpcm_g722_encoder = {
Martin Storsjö's avatar
Martin Storsjö committed
571 572 573 574 575
    .name           = "g722",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = CODEC_ID_ADPCM_G722,
    .priv_data_size = sizeof(G722Context),
    .init           = g722_init,
576
    .close          = g722_close,
Martin Storsjö's avatar
Martin Storsjö committed
577 578
    .encode         = g722_encode_frame,
    .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
579
    .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
Martin Storsjö's avatar
Martin Storsjö committed
580 581
};
#endif
582