alsdec.c 63.8 KB
Newer Older
1 2
/*
 * MPEG-4 ALS decoder
3
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24
 * MPEG-4 ALS decoder
25
 * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26 27 28 29 30 31 32
 */

#include "avcodec.h"
#include "get_bits.h"
#include "unary.h"
#include "mpeg4audio.h"
#include "bytestream.h"
33
#include "bgmc.h"
34
#include "dsputil.h"
35
#include "internal.h"
36
#include "libavutil/samplefmt.h"
37
#include "libavutil/crc.h"
38

39 40 41
#include <stdint.h>

/** Rice parameters and corresponding index offsets for decoding the
42
 *  indices of scaled PARCOR values. The table chosen is set globally
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
 *  by the encoder and stored in ALSSpecificConfig.
 */
static const int8_t parcor_rice_table[3][20][2] = {
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
};


/** Scaled PARCOR values used for the first two PARCOR coefficients.
 *  To be indexed by the Rice coded indices.
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
 *  Actual values are divided by 32 in order to be stored in 16 bits.
 */
static const int16_t parcor_scaled_values[] = {
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
};


/** Gain values of p(0) for long-term prediction.
 *  To be indexed by the Rice coded indices.
 */
static const uint8_t ltp_gain_values [4][4] = {
    { 0,  8, 16,  24},
    {32, 40, 48,  56},
    {64, 70, 76,  82},
    {88, 92, 96, 100}
};

112

113 114 115 116 117 118 119 120 121 122 123
/** Inter-channel weighting factors for multi-channel correlation.
 *  To be indexed by the Rice coded indices.
 */
static const int16_t mcc_weightings[] = {
    204,  192,  179,  166,  153,  140,  128,  115,
    102,   89,   76,   64,   51,   38,   25,   12,
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
   -102, -115, -128, -140, -153, -166, -179, -192
};


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
 */
static const uint8_t tail_code[16][6] = {
    { 74, 44, 25, 13,  7, 3},
    { 68, 42, 24, 13,  7, 3},
    { 58, 39, 23, 13,  7, 3},
    {126, 70, 37, 19, 10, 5},
    {132, 70, 37, 20, 10, 5},
    {124, 70, 38, 20, 10, 5},
    {120, 69, 37, 20, 11, 5},
    {116, 67, 37, 20, 11, 5},
    {108, 66, 36, 20, 10, 5},
    {102, 62, 36, 20, 10, 5},
    { 88, 58, 34, 19, 10, 5},
    {162, 89, 49, 25, 13, 7},
    {156, 87, 49, 26, 14, 7},
    {150, 86, 47, 26, 14, 7},
    {142, 84, 47, 26, 14, 7},
    {131, 79, 46, 26, 14, 7}
};


146 147 148 149 150 151 152 153 154 155 156
enum RA_Flag {
    RA_FLAG_NONE,
    RA_FLAG_FRAMES,
    RA_FLAG_HEADER
};


typedef struct {
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
157
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    int frame_length;         ///< frame length for each frame (last frame may differ)
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
    int coef_table;           ///< table index of Rice code parameters
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
    int max_order;            ///< maximum prediction order (0..1023)
    int block_switching;      ///< number of block switching levels
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
    int sb_part;              ///< sub-block partition
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
    int chan_config;          ///< indicates that a chan_config_info field is present
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
    int *chan_pos;            ///< original channel positions
175
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
176 177 178
} ALSSpecificConfig;


179 180 181 182 183 184 185 186 187 188
typedef struct {
    int stop_flag;
    int master_channel;
    int time_diff_flag;
    int time_diff_sign;
    int time_diff_index;
    int weighting[6];
} ALSChannelData;


189 190 191 192
typedef struct {
    AVCodecContext *avctx;
    ALSSpecificConfig sconf;
    GetBitContext gb;
193 194 195 196
    DSPContext dsp;
    const AVCRC *crc_table;
    uint32_t crc_org;               ///< CRC value of the original input data
    uint32_t crc;                   ///< CRC value calculated from decoded data
197 198 199
    unsigned int cur_frame_length;  ///< length of the current frame to decode
    unsigned int frame_id;          ///< the frame ID / number of the current frame
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
200
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
201
    unsigned int num_blocks;        ///< number of blocks used in the current frame
202
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
203
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
204
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
205
    int ltp_lag_length;             ///< number of bits used for ltp lag value
206 207 208 209
    int *const_block;               ///< contains const_block flags for all channels
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
210 211 212 213
    int *use_ltp;                   ///< contains use_ltp flags for all channels
    int *ltp_lag;                   ///< contains ltp lag values for all channels
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
214 215 216 217
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
218
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
219 220 221
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
    int *reverted_channels;         ///< stores a flag for each reverted channel
222 223 224
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
    int32_t **raw_samples;          ///< decoded raw samples for each channel
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
225
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
226 227 228
} ALSDecContext;


229 230 231
typedef struct {
    unsigned int block_length;      ///< number of samples within the block
    unsigned int ra_block;          ///< if true, this is a random access block
232
    int          *const_block;      ///< if true, this is a constant value block
233
    int          js_blocks;         ///< true if this block contains a difference signal
234 235 236
    unsigned int *shift_lsbs;       ///< shift of values for this block
    unsigned int *opt_order;        ///< prediction order of this block
    int          *store_prev_samples;///< if true, carryover samples have to be stored
237 238 239 240 241 242 243 244 245 246 247
    int          *use_ltp;          ///< if true, long-term prediction is used
    int          *ltp_lag;          ///< lag value for long-term prediction
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
    int32_t      *quant_cof;        ///< quantized parcor coefficients
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
} ALSBlockData;


248 249 250 251 252 253
static av_cold void dprint_specific_config(ALSDecContext *ctx)
{
#ifdef DEBUG
    AVCodecContext *avctx    = ctx->avctx;
    ALSSpecificConfig *sconf = &ctx->sconf;

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    av_dlog(avctx, "resolution = %i\n",           sconf->resolution);
    av_dlog(avctx, "floating = %i\n",             sconf->floating);
    av_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
    av_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
    av_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
    av_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
    av_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
    av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
    av_dlog(avctx, "max_order = %i\n",            sconf->max_order);
    av_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
    av_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
    av_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
    av_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
    av_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
    av_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
    av_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
    av_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
    av_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
272 273 274 275
#endif
}


276
/** Read an ALSSpecificConfig from a buffer into the output struct.
277 278 279 280 281
 */
static av_cold int read_specific_config(ALSDecContext *ctx)
{
    GetBitContext gb;
    uint64_t ht_size;
282
    int i, config_offset;
283 284 285
    MPEG4AudioConfig m4ac;
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
286
    uint32_t als_id, header_size, trailer_size;
287
    int ret;
288

289 290
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
        return ret;
291

292
    config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
293
                                                 avctx->extradata_size * 8, 1);
294 295

    if (config_offset < 0)
296
        return AVERROR_INVALIDDATA;
297 298 299 300

    skip_bits_long(&gb, config_offset);

    if (get_bits_left(&gb) < (30 << 3))
301
        return AVERROR_INVALIDDATA;
302 303 304 305 306 307 308

    // read the fixed items
    als_id                      = get_bits_long(&gb, 32);
    avctx->sample_rate          = m4ac.sample_rate;
    skip_bits_long(&gb, 32); // sample rate already known
    sconf->samples              = get_bits_long(&gb, 32);
    avctx->channels             = m4ac.channels;
309
    skip_bits(&gb, 16);      // number of channels already known
310 311 312
    skip_bits(&gb, 3);       // skip file_type
    sconf->resolution           = get_bits(&gb, 3);
    sconf->floating             = get_bits1(&gb);
313
    sconf->msb_first            = get_bits1(&gb);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
    sconf->frame_length         = get_bits(&gb, 16) + 1;
    sconf->ra_distance          = get_bits(&gb, 8);
    sconf->ra_flag              = get_bits(&gb, 2);
    sconf->adapt_order          = get_bits1(&gb);
    sconf->coef_table           = get_bits(&gb, 2);
    sconf->long_term_prediction = get_bits1(&gb);
    sconf->max_order            = get_bits(&gb, 10);
    sconf->block_switching      = get_bits(&gb, 2);
    sconf->bgmc                 = get_bits1(&gb);
    sconf->sb_part              = get_bits1(&gb);
    sconf->joint_stereo         = get_bits1(&gb);
    sconf->mc_coding            = get_bits1(&gb);
    sconf->chan_config          = get_bits1(&gb);
    sconf->chan_sort            = get_bits1(&gb);
328
    sconf->crc_enabled          = get_bits1(&gb);
329 330 331 332 333 334 335
    sconf->rlslms               = get_bits1(&gb);
    skip_bits(&gb, 5);       // skip 5 reserved bits
    skip_bits1(&gb);         // skip aux_data_enabled


    // check for ALSSpecificConfig struct
    if (als_id != MKBETAG('A','L','S','\0'))
336
        return AVERROR_INVALIDDATA;
337 338 339 340 341 342 343 344 345 346 347 348 349 350

    ctx->cur_frame_length = sconf->frame_length;

    // read channel config
    if (sconf->chan_config)
        sconf->chan_config_info = get_bits(&gb, 16);
    // TODO: use this to set avctx->channel_layout


    // read channel sorting
    if (sconf->chan_sort && avctx->channels > 1) {
        int chan_pos_bits = av_ceil_log2(avctx->channels);
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
        if (get_bits_left(&gb) < bits_needed)
351
            return AVERROR_INVALIDDATA;
352 353 354 355

        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
            return AVERROR(ENOMEM);

356 357
        ctx->cs_switch = 1;

Paul B Mahol's avatar
Paul B Mahol committed
358
        for (i = 0; i < avctx->channels; i++) {
359 360 361 362
            int idx;

            idx = get_bits(&gb, chan_pos_bits);
            if (idx >= avctx->channels) {
363
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
364
                ctx->cs_switch = 0;
Paul B Mahol's avatar
Paul B Mahol committed
365 366
                break;
            }
367
            sconf->chan_pos[idx] = i;
Paul B Mahol's avatar
Paul B Mahol committed
368
        }
369 370 371 372 373 374 375 376

        align_get_bits(&gb);
    }


    // read fixed header and trailer sizes,
    // if size = 0xFFFFFFFF then there is no data field!
    if (get_bits_left(&gb) < 64)
377
        return AVERROR_INVALIDDATA;
378

379 380 381 382 383 384
    header_size  = get_bits_long(&gb, 32);
    trailer_size = get_bits_long(&gb, 32);
    if (header_size  == 0xFFFFFFFF)
        header_size  = 0;
    if (trailer_size == 0xFFFFFFFF)
        trailer_size = 0;
385

386
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
387 388 389 390


    // skip the header and trailer data
    if (get_bits_left(&gb) < ht_size)
391
        return AVERROR_INVALIDDATA;
392 393

    if (ht_size > INT32_MAX)
394
        return AVERROR_PATCHWELCOME;
395 396 397 398

    skip_bits_long(&gb, ht_size);


399 400
    // initialize CRC calculation
    if (sconf->crc_enabled) {
401
        if (get_bits_left(&gb) < 32)
402
            return AVERROR_INVALIDDATA;
403

404
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
405 406 407 408 409
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
            ctx->crc       = 0xFFFFFFFF;
            ctx->crc_org   = ~get_bits_long(&gb, 32);
        } else
            skip_bits_long(&gb, 32);
410 411 412 413 414 415 416 417 418 419 420
    }


    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)

    dprint_specific_config(ctx);

    return 0;
}


421
/** Check the ALSSpecificConfig for unsupported features.
422 423 424 425 426 427 428 429 430 431
 */
static int check_specific_config(ALSDecContext *ctx)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    int error = 0;

    // report unsupported feature and set error value
    #define MISSING_ERR(cond, str, errval)              \
    {                                                   \
        if (cond) {                                     \
432 433
            avpriv_report_missing_feature(ctx->avctx,   \
                                          str);         \
434 435 436 437
            error = errval;                             \
        }                                               \
    }

438 439
    MISSING_ERR(sconf->floating,  "Floating point decoding",     AVERROR_PATCHWELCOME);
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
440 441 442 443 444

    return error;
}


445
/** Parse the bs_info field to extract the block partitioning used in
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
 */
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
                          unsigned int div, unsigned int **div_blocks,
                          unsigned int *num_blocks)
{
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
        // if the level is valid and the investigated bit n is set
        // then recursively check both children at bits (2n+1) and (2n+2)
        n   *= 2;
        div += 1;
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
    } else {
        // else the bit is not set or the last level has been reached
        // (bit implicitly not set)
        **div_blocks = div;
        (*div_blocks)++;
        (*num_blocks)++;
    }
}


Måns Rullgård's avatar
Måns Rullgård committed
469
/** Read and decode a Rice codeword.
470 471 472
 */
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
{
473
    int max = get_bits_left(gb) - k;
474 475 476 477 478 479 480 481 482 483 484 485 486
    int q   = get_unary(gb, 0, max);
    int r   = k ? get_bits1(gb) : !(q & 1);

    if (k > 1) {
        q <<= (k - 1);
        q  += get_bits_long(gb, k - 1);
    } else if (!k) {
        q >>= 1;
    }
    return r ? q : ~q;
}


487
/** Convert PARCOR coefficient k to direct filter coefficient.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
 */
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
{
    int i, j;

    for (i = 0, j = k - 1; i < j; i++, j--) {
        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
        cof[i]  += tmp1;
    }
    if (i == j)
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);

    cof[k] = par[k];
}


Måns Rullgård's avatar
Måns Rullgård committed
505 506
/** Read block switching field if necessary and set actual block sizes.
 *  Also assure that the block sizes of the last frame correspond to the
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
 *  actual number of samples.
 */
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
                            uint32_t *bs_info)
{
    ALSSpecificConfig *sconf     = &ctx->sconf;
    GetBitContext *gb            = &ctx->gb;
    unsigned int *ptr_div_blocks = div_blocks;
    unsigned int b;

    if (sconf->block_switching) {
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
        *bs_info = get_bits_long(gb, bs_info_len);
        *bs_info <<= (32 - bs_info_len);
    }

    ctx->num_blocks = 0;
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);

    // The last frame may have an overdetermined block structure given in
    // the bitstream. In that case the defined block structure would need
    // more samples than available to be consistent.
    // The block structure is actually used but the block sizes are adapted
    // to fit the actual number of available samples.
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
    // This results in the actual block sizes:    2 2 1 0.
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    // This appears to happen in case of an odd number of samples in the last
    // frame which is actually not allowed by the block length switching part
    // of 14496-3.
    // The ALS conformance files feature an odd number of samples in the last
    // frame.

    for (b = 0; b < ctx->num_blocks; b++)
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];

    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
        unsigned int remaining = ctx->cur_frame_length;

        for (b = 0; b < ctx->num_blocks; b++) {
548
            if (remaining <= div_blocks[b]) {
549 550 551 552 553 554 555 556 557 558 559
                div_blocks[b] = remaining;
                ctx->num_blocks = b + 1;
                break;
            }

            remaining -= div_blocks[b];
        }
    }
}


560
/** Read the block data for a constant block
561
 */
562
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
563 564 565 566 567
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;

568
    if (bd->block_length <= 0)
569
        return AVERROR_INVALIDDATA;
570

571 572
    *bd->raw_samples = 0;
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
573
    bd->js_blocks    = get_bits1(gb);
574 575 576 577

    // skip 5 reserved bits
    skip_bits(gb, 5);

578
    if (*bd->const_block) {
579
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
580
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
581 582
    }

583
    // ensure constant block decoding by reusing this field
584
    *bd->const_block = 1;
585 586

    return 0;
587 588 589
}


590
/** Decode the block data for a constant block
591 592 593
 */
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
594 595 596
    int      smp = bd->block_length - 1;
    int32_t  val = *bd->raw_samples;
    int32_t *dst = bd->raw_samples + 1;
597

598
    // write raw samples into buffer
599 600
    for (; smp; smp--)
        *dst++ = val;
601 602 603
}


604
/** Read the block data for a non-constant block
605
 */
606
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
607 608 609 610 611 612
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;
    unsigned int k;
    unsigned int s[8];
613
    unsigned int sx[8];
614 615
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
    unsigned int start      = 0;
616 617 618
    unsigned int opt_order;
    int          sb;
    int32_t      *quant_cof = bd->quant_cof;
619
    int32_t      *current_res;
620

621 622

    // ensure variable block decoding by reusing this field
623
    *bd->const_block = 0;
624

625
    *bd->opt_order  = 1;
626 627
    bd->js_blocks   = get_bits1(gb);

628
    opt_order       = *bd->opt_order;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    // determine the number of subblocks for entropy decoding
    if (!sconf->bgmc && !sconf->sb_part) {
        log2_sub_blocks = 0;
    } else {
        if (sconf->bgmc && sconf->sb_part)
            log2_sub_blocks = get_bits(gb, 2);
        else
            log2_sub_blocks = 2 * get_bits1(gb);
    }

    sub_blocks = 1 << log2_sub_blocks;

    // do not continue in case of a damaged stream since
    // block_length must be evenly divisible by sub_blocks
644
    if (bd->block_length & (sub_blocks - 1)) {
645 646
        av_log(avctx, AV_LOG_WARNING,
               "Block length is not evenly divisible by the number of subblocks.\n");
647
        return AVERROR_INVALIDDATA;
648 649
    }

650
    sb_length = bd->block_length >> log2_sub_blocks;
651 652

    if (sconf->bgmc) {
653 654 655 656 657 658 659 660
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 2);

        for (k = 0; k < sub_blocks; k++) {
            sx[k]   = s[k] & 0x0F;
            s [k] >>= 4;
        }
661 662 663 664 665
    } else {
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 0);
    }
666
    for (k = 1; k < sub_blocks; k++)
667
        if (s[k] > 32) {
668
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
669
            return AVERROR_INVALIDDATA;
670
        }
671 672

    if (get_bits1(gb))
673
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
674

675
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
676 677 678 679


    if (!sconf->rlslms) {
        if (sconf->adapt_order) {
680
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
681
                                                2, sconf->max_order + 1));
682
            *bd->opt_order       = get_bits(gb, opt_order_length);
683
            if (*bd->opt_order > sconf->max_order) {
684
                *bd->opt_order = sconf->max_order;
685
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
686
                return AVERROR_INVALIDDATA;
687
            }
688
        } else {
689
            *bd->opt_order = sconf->max_order;
690
        }
691 692 693 694 695
        if (*bd->opt_order > bd->block_length) {
            *bd->opt_order = bd->block_length;
            av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
            return AVERROR_INVALIDDATA;
        }
696
        opt_order = *bd->opt_order;
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        if (opt_order) {
            int add_base;

            if (sconf->coef_table == 3) {
                add_base = 0x7F;

                // read coefficient 0
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficient 1
                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficients 2 to opt_order
                for (k = 2; k < opt_order; k++)
                    quant_cof[k] = get_bits(gb, 7);
            } else {
                int k_max;
                add_base = 1;

                // read coefficient 0 to 19
                k_max = FFMIN(opt_order, 20);
                for (k = 0; k < k_max; k++) {
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
724
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
725
                        av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range.\n", quant_cof[k]);
726 727
                        return AVERROR_INVALIDDATA;
                    }
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
                }

                // read coefficients 20 to 126
                k_max = FFMIN(opt_order, 127);
                for (; k < k_max; k++)
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);

                // read coefficients 127 to opt_order
                for (; k < opt_order; k++)
                    quant_cof[k] = decode_rice(gb, 1);

                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];

                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
            }

            for (k = 2; k < opt_order; k++)
                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
        }
    }

750 751
    // read LTP gain and lag values
    if (sconf->long_term_prediction) {
752
        *bd->use_ltp = get_bits1(gb);
753

754
        if (*bd->use_ltp) {
755 756
            int r, c;

757 758
            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
759

760
            r                 = get_unary(gb, 0, 3);
761 762
            c                 = get_bits(gb, 2);
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
763

764 765
            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
766

767 768
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
769 770
        }
    }
771 772

    // read first value and residuals in case of a random access block
773
    if (bd->ra_block) {
774
        if (opt_order)
775
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
776
        if (opt_order > 1)
777
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
778
        if (opt_order > 2)
779
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
780 781 782 783 784 785

        start = FFMIN(opt_order, 3);
    }

    // read all residuals
    if (sconf->bgmc) {
786
        int          delta[8];
787
        unsigned int k    [8];
788 789 790 791 792 793 794 795 796 797 798
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);

        // read most significant bits
        unsigned int high;
        unsigned int low;
        unsigned int value;

        ff_bgmc_decode_init(gb, &high, &low, &value);

        current_res = bd->raw_samples + start;

799
        for (sb = 0; sb < sub_blocks; sb++) {
800 801
            unsigned int sb_len  = sb_length - (sb ? 0 : start);

802 803 804
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
            delta[sb] = 5 - s[sb] + k[sb];

805
            ff_bgmc_decode(gb, sb_len, current_res,
806 807
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);

808
            current_res += sb_len;
809 810 811 812 813 814 815 816
        }

        ff_bgmc_decode_end(gb);


        // read least significant bits and tails
        current_res = bd->raw_samples + start;

817
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
818 819 820 821
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
            unsigned int cur_k         = k[sb];
            unsigned int cur_s         = s[sb];

822
            for (; start < sb_length; start++) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
                int32_t res = *current_res;

                if (res == cur_tail_code) {
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
                                          << (5 - delta[sb]);

                    res = decode_rice(gb, cur_s);

                    if (res >= 0) {
                        res += (max_msb    ) << cur_k;
                    } else {
                        res -= (max_msb - 1) << cur_k;
                    }
                } else {
                    if (res > cur_tail_code)
                        res--;

                    if (res & 1)
                        res = -res;

                    res >>= 1;

                    if (cur_k) {
                        res <<= cur_k;
                        res  |= get_bits_long(gb, cur_k);
                    }
                }

Thilo Borgmann's avatar
Thilo Borgmann committed
851
                *current_res++ = res;
852 853
            }
        }
854
    } else {
855
        current_res = bd->raw_samples + start;
856 857 858 859 860 861

        for (sb = 0; sb < sub_blocks; sb++, start = 0)
            for (; start < sb_length; start++)
                *current_res++ = decode_rice(gb, s[sb]);
     }

862 863 864 865 866 867 868
    if (!sconf->mc_coding || ctx->js_switch)
        align_get_bits(gb);

    return 0;
}


869
/** Decode the block data for a non-constant block
870 871 872 873 874 875 876
 */
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int block_length = bd->block_length;
    unsigned int smp = 0;
    unsigned int k;
877
    int opt_order             = *bd->opt_order;
878 879 880 881 882
    int sb;
    int64_t y;
    int32_t *quant_cof        = bd->quant_cof;
    int32_t *lpc_cof          = bd->lpc_cof;
    int32_t *raw_samples      = bd->raw_samples;
883
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
884
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
885

886
    // reverse long-term prediction
887
    if (*bd->use_ltp) {
888 889
        int ltp_smp;

890 891
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
            int center = ltp_smp - *bd->ltp_lag;
892 893 894 895 896 897 898 899
            int begin  = FFMAX(0, center - 2);
            int end    = center + 3;
            int tab    = 5 - (end - begin);
            int base;

            y = 1 << 6;

            for (base = begin; base < end; base++, tab++)
900
                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
901 902 903 904 905

            raw_samples[ltp_smp] += y >> 7;
        }
    }

906
    // reconstruct all samples from residuals
907
    if (bd->ra_block) {
908 909 910 911
        for (smp = 0; smp < opt_order; smp++) {
            y = 1 << 19;

            for (sb = 0; sb < smp; sb++)
912
                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
913

914
            *raw_samples++ -= y >> 20;
915 916 917 918 919 920 921
            parcor_to_lpc(smp, quant_cof, lpc_cof);
        }
    } else {
        for (k = 0; k < opt_order; k++)
            parcor_to_lpc(k, quant_cof, lpc_cof);

        // store previous samples in case that they have to be altered
922
        if (*bd->store_prev_samples)
923 924
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
925 926

        // reconstruct difference signal for prediction (joint-stereo)
927
        if (bd->js_blocks && bd->raw_other) {
928 929
            int32_t *left, *right;

930
            if (bd->raw_other > raw_samples) {  // D = R - L
931
                left  = raw_samples;
932
                right = bd->raw_other;
933
            } else {                                // D = R - L
934
                left  = bd->raw_other;
935 936 937 938 939 940 941 942
                right = raw_samples;
            }

            for (sb = -1; sb >= -sconf->max_order; sb--)
                raw_samples[sb] = right[sb] - left[sb];
        }

        // reconstruct shifted signal
943
        if (*bd->shift_lsbs)
944
            for (sb = -1; sb >= -sconf->max_order; sb--)
945
                raw_samples[sb] >>= *bd->shift_lsbs;
946 947
    }

948 949 950 951 952 953
    // reverse linear prediction coefficients for efficiency
    lpc_cof = lpc_cof + opt_order;

    for (sb = 0; sb < opt_order; sb++)
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];

954
    // reconstruct raw samples
955 956 957 958
    raw_samples = bd->raw_samples + smp;
    lpc_cof     = lpc_cof_reversed + opt_order;

    for (; raw_samples < raw_samples_end; raw_samples++) {
959 960
        y = 1 << 19;

961 962
        for (sb = -opt_order; sb < 0; sb++)
            y += MUL64(lpc_cof[sb], raw_samples[sb]);
963

964
        *raw_samples -= y >> 20;
965 966
    }

967 968
    raw_samples = bd->raw_samples;

969
    // restore previous samples in case that they have been altered
970
    if (*bd->store_prev_samples)
971
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
972 973 974 975 976 977
               sizeof(*raw_samples) * sconf->max_order);

    return 0;
}


978
/** Read the block data.
979
 */
980
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
981
{
982
    int ret;
983 984
    GetBitContext *gb        = &ctx->gb;

985
    *bd->shift_lsbs = 0;
986 987
    // read block type flag and read the samples accordingly
    if (get_bits1(gb)) {
988
        ret = read_var_block_data(ctx, bd);
989
    } else {
990
        ret = read_const_block_data(ctx, bd);
991 992
    }

993
    return ret;
994
}
995 996


997
/** Decode the block data.
998 999 1000 1001
 */
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    unsigned int smp;
1002
    int ret = 0;
1003 1004

    // read block type flag and read the samples accordingly
1005
    if (*bd->const_block)
1006
        decode_const_block_data(ctx, bd);
1007 1008 1009 1010 1011
    else
        ret = decode_var_block_data(ctx, bd); // always return 0

    if (ret < 0)
        return ret;
1012 1013 1014

    // TODO: read RLSLMS extension data

1015
    if (*bd->shift_lsbs)
1016
        for (smp = 0; smp < bd->block_length; smp++)
1017
            bd->raw_samples[smp] <<= *bd->shift_lsbs;
1018 1019 1020 1021 1022

    return 0;
}


Måns Rullgård's avatar
Måns Rullgård committed
1023
/** Read and decode block data successively.
1024 1025 1026 1027 1028
 */
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    int ret;

1029
    if ((ret = read_block(ctx, bd)) < 0)
1030 1031
        return ret;

1032
    return decode_block(ctx, bd);
1033 1034 1035
}


1036
/** Compute the number of samples left to decode for the current frame and
1037 1038 1039 1040 1041 1042 1043 1044
 *  sets these samples to zero.
 */
static void zero_remaining(unsigned int b, unsigned int b_max,
                           const unsigned int *div_blocks, int32_t *buf)
{
    unsigned int count = 0;

    while (b < b_max)
1045
        count += div_blocks[b++];
1046

1047
    if (count)
Alex Converse's avatar
Alex Converse committed
1048
        memset(buf, 0, sizeof(*buf) * count);
1049 1050 1051
}


1052
/** Decode blocks independently.
1053 1054 1055 1056 1057
 */
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
                             unsigned int c, const unsigned int *div_blocks,
                             unsigned int *js_blocks)
{
1058
    int ret;
1059
    unsigned int b;
1060
    ALSBlockData bd = { 0 };
1061 1062

    bd.ra_block         = ra_frame;
1063 1064 1065 1066
    bd.const_block      = ctx->const_block;
    bd.shift_lsbs       = ctx->shift_lsbs;
    bd.opt_order        = ctx->opt_order;
    bd.store_prev_samples = ctx->store_prev_samples;
1067 1068 1069
    bd.use_ltp          = ctx->use_ltp;
    bd.ltp_lag          = ctx->ltp_lag;
    bd.ltp_gain         = ctx->ltp_gain[0];
1070 1071
    bd.quant_cof        = ctx->quant_cof[0];
    bd.lpc_cof          = ctx->lpc_cof[0];
1072 1073 1074
    bd.prev_raw_samples = ctx->prev_raw_samples;
    bd.raw_samples      = ctx->raw_samples[c];

1075 1076

    for (b = 0; b < ctx->num_blocks; b++) {
1077 1078
        bd.block_length     = div_blocks[b];

1079
        if ((ret = read_decode_block(ctx, &bd)) < 0) {
1080
            // damaged block, write zero for the rest of the frame
1081
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1082
            return ret;
1083
        }
1084 1085
        bd.raw_samples += div_blocks[b];
        bd.ra_block     = 0;
1086 1087 1088 1089 1090 1091
    }

    return 0;
}


1092
/** Decode blocks dependently.
1093 1094 1095 1096 1097 1098 1099 1100
 */
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
                         unsigned int c, const unsigned int *div_blocks,
                         unsigned int *js_blocks)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int offset = 0;
    unsigned int b;
1101
    int ret;
1102
    ALSBlockData bd[2] = { { 0 } };
1103 1104

    bd[0].ra_block         = ra_frame;
1105 1106 1107 1108
    bd[0].const_block      = ctx->const_block;
    bd[0].shift_lsbs       = ctx->shift_lsbs;
    bd[0].opt_order        = ctx->opt_order;
    bd[0].store_prev_samples = ctx->store_prev_samples;
1109 1110 1111
    bd[0].use_ltp          = ctx->use_ltp;
    bd[0].ltp_lag          = ctx->ltp_lag;
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1112 1113
    bd[0].quant_cof        = ctx->quant_cof[0];
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1114 1115 1116 1117
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
    bd[0].js_blocks        = *js_blocks;

    bd[1].ra_block         = ra_frame;
1118 1119 1120 1121
    bd[1].const_block      = ctx->const_block;
    bd[1].shift_lsbs       = ctx->shift_lsbs;
    bd[1].opt_order        = ctx->opt_order;
    bd[1].store_prev_samples = ctx->store_prev_samples;
1122 1123 1124
    bd[1].use_ltp          = ctx->use_ltp;
    bd[1].ltp_lag          = ctx->ltp_lag;
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1125 1126
    bd[1].quant_cof        = ctx->quant_cof[0];
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1127 1128
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
    bd[1].js_blocks        = *(js_blocks + 1);
1129 1130 1131 1132

    // decode all blocks
    for (b = 0; b < ctx->num_blocks; b++) {
        unsigned int s;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

        bd[0].block_length = div_blocks[b];
        bd[1].block_length = div_blocks[b];

        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;

        bd[0].raw_other    = bd[1].raw_samples;
        bd[1].raw_other    = bd[0].raw_samples;

1143 1144 1145
        if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
            (ret = read_decode_block(ctx, &bd[1])) < 0)
            goto fail;
1146 1147

        // reconstruct joint-stereo blocks
1148 1149
        if (bd[0].js_blocks) {
            if (bd[1].js_blocks)
1150
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1151 1152

            for (s = 0; s < div_blocks[b]; s++)
1153 1154
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
        } else if (bd[1].js_blocks) {
1155
            for (s = 0; s < div_blocks[b]; s++)
1156
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1157 1158 1159
        }

        offset  += div_blocks[b];
1160 1161
        bd[0].ra_block = 0;
        bd[1].ra_block = 0;
1162 1163 1164 1165 1166 1167 1168 1169 1170
    }

    // store carryover raw samples,
    // the others channel raw samples are stored by the calling function.
    memmove(ctx->raw_samples[c] - sconf->max_order,
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);

    return 0;
1171 1172 1173 1174 1175
fail:
    // damaged block, write zero for the rest of the frame
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
    return ret;
1176 1177
}

1178 1179 1180 1181 1182 1183
static inline int als_weighting(GetBitContext *gb, int k, int off)
{
    int idx = av_clip(decode_rice(gb, k) + off,
                      0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
    return mcc_weightings[idx];
}
1184

1185
/** Read the channel data.
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
  */
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
{
    GetBitContext *gb       = &ctx->gb;
    ALSChannelData *current = cd;
    unsigned int channels   = ctx->avctx->channels;
    int entries             = 0;

    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));

        if (current->master_channel >= channels) {
1198
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1199
            return AVERROR_INVALIDDATA;
1200 1201 1202 1203
        }

        if (current->master_channel != c) {
            current->time_diff_flag = get_bits1(gb);
1204 1205 1206
            current->weighting[0]   = als_weighting(gb, 1, 16);
            current->weighting[1]   = als_weighting(gb, 2, 14);
            current->weighting[2]   = als_weighting(gb, 1, 16);
1207 1208

            if (current->time_diff_flag) {
1209 1210 1211
                current->weighting[3] = als_weighting(gb, 1, 16);
                current->weighting[4] = als_weighting(gb, 1, 16);
                current->weighting[5] = als_weighting(gb, 1, 16);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

                current->time_diff_sign  = get_bits1(gb);
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
            }
        }

        current++;
        entries++;
    }

    if (entries == channels) {
1223
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1224
        return AVERROR_INVALIDDATA;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    }

    align_get_bits(gb);
    return 0;
}


/** Recursively reverts the inter-channel correlation for a block.
 */
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
                                       ALSChannelData **cd, int *reverted,
                                       unsigned int offset, int c)
{
    ALSChannelData *ch = cd[c];
    unsigned int   dep = 0;
    unsigned int channels = ctx->avctx->channels;

    if (reverted[c])
        return 0;

    reverted[c] = 1;

    while (dep < channels && !ch[dep].stop_flag) {
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
                                   ch[dep].master_channel);

        dep++;
    }

    if (dep == channels) {
1255
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1256
        return AVERROR_INVALIDDATA;
1257 1258
    }

1259 1260 1261 1262
    bd->const_block = ctx->const_block + c;
    bd->shift_lsbs  = ctx->shift_lsbs + c;
    bd->opt_order   = ctx->opt_order + c;
    bd->store_prev_samples = ctx->store_prev_samples + c;
1263 1264 1265 1266 1267 1268 1269
    bd->use_ltp     = ctx->use_ltp + c;
    bd->ltp_lag     = ctx->ltp_lag + c;
    bd->ltp_gain    = ctx->ltp_gain[c];
    bd->lpc_cof     = ctx->lpc_cof[c];
    bd->quant_cof   = ctx->quant_cof[c];
    bd->raw_samples = ctx->raw_samples[c] + offset;

1270
    for (dep = 0; !ch[dep].stop_flag; dep++) {
1271 1272 1273 1274 1275 1276
        unsigned int smp;
        unsigned int begin = 1;
        unsigned int end   = bd->block_length - 1;
        int64_t y;
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;

1277 1278 1279
        if (ch[dep].master_channel == c)
            continue;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        if (ch[dep].time_diff_flag) {
            int t = ch[dep].time_diff_index;

            if (ch[dep].time_diff_sign) {
                t      = -t;
                begin -= t;
            } else {
                end   -= t;
            }

            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);

                bd->raw_samples[smp] += y >> 7;
            }
        } else {
            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1]);

                bd->raw_samples[smp] += y >> 7;
            }
        }
    }

    return 0;
}


1317
/** Read the frame data.
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
 */
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb = &ctx->gb;
    unsigned int div_blocks[32];                ///< block sizes.
    unsigned int c;
    unsigned int js_blocks[2];
    uint32_t bs_info = 0;
1328
    int ret;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    // skip the size of the ra unit if present in the frame
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
        skip_bits_long(gb, 32);

    if (sconf->mc_coding && sconf->joint_stereo) {
        ctx->js_switch = get_bits1(gb);
        align_get_bits(gb);
    }

    if (!sconf->mc_coding || ctx->js_switch) {
        int independent_bs = !sconf->joint_stereo;

        for (c = 0; c < avctx->channels; c++) {
            js_blocks[0] = 0;
            js_blocks[1] = 0;

            get_block_sizes(ctx, div_blocks, &bs_info);

            // if joint_stereo and block_switching is set, independent decoding
            // is signaled via the first bit of bs_info
            if (sconf->joint_stereo && sconf->block_switching)
                if (bs_info >> 31)
                    independent_bs = 2;

            // if this is the last channel, it has to be decoded independently
            if (c == avctx->channels - 1)
                independent_bs = 1;

            if (independent_bs) {
1359 1360 1361 1362
                ret = decode_blocks_ind(ctx, ra_frame, c,
                                        div_blocks, js_blocks);
                if (ret < 0)
                    return ret;
1363 1364
                independent_bs--;
            } else {
1365 1366 1367
                ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
                if (ret < 0)
                    return ret;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

                c++;
            }

            // store carryover raw samples
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
        }
    } else { // multi-channel coding
1378
        ALSBlockData   bd = { 0 };
1379
        int            b, ret;
1380 1381 1382 1383 1384
        int            *reverted_channels = ctx->reverted_channels;
        unsigned int   offset             = 0;

        for (c = 0; c < avctx->channels; c++)
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1385
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1386
                return AVERROR_INVALIDDATA;
1387 1388 1389 1390 1391 1392 1393
            }

        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);

        bd.ra_block         = ra_frame;
        bd.prev_raw_samples = ctx->prev_raw_samples;

1394 1395
        get_block_sizes(ctx, div_blocks, &bs_info);

1396 1397
        for (b = 0; b < ctx->num_blocks; b++) {
            bd.block_length = div_blocks[b];
1398 1399 1400 1401 1402
            if (bd.block_length <= 0) {
                av_log(ctx->avctx, AV_LOG_WARNING,
                       "Invalid block length %d in channel data!\n", bd.block_length);
                continue;
            }
1403 1404

            for (c = 0; c < avctx->channels; c++) {
1405 1406 1407 1408
                bd.const_block = ctx->const_block + c;
                bd.shift_lsbs  = ctx->shift_lsbs + c;
                bd.opt_order   = ctx->opt_order + c;
                bd.store_prev_samples = ctx->store_prev_samples + c;
1409 1410 1411 1412 1413 1414 1415 1416
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                bd.raw_other   = NULL;

1417 1418 1419 1420
                if ((ret = read_block(ctx, &bd)) < 0)
                    return ret;
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
                    return ret;
1421 1422
            }

1423 1424 1425 1426 1427 1428
            for (c = 0; c < avctx->channels; c++) {
                ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
                                                 reverted_channels, offset, c);
                if (ret < 0)
                    return ret;
            }
1429
            for (c = 0; c < avctx->channels; c++) {
1430 1431 1432 1433
                bd.const_block = ctx->const_block + c;
                bd.shift_lsbs  = ctx->shift_lsbs + c;
                bd.opt_order   = ctx->opt_order + c;
                bd.store_prev_samples = ctx->store_prev_samples + c;
1434 1435 1436 1437 1438 1439
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
1440

1441 1442
                if ((ret = decode_block(ctx, &bd)) < 0)
                    return ret;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            }

            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
            offset      += div_blocks[b];
            bd.ra_block  = 0;
        }

        // store carryover raw samples
        for (c = 0; c < avctx->channels; c++)
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1455 1456 1457 1458 1459 1460 1461 1462
    }

    // TODO: read_diff_float_data

    return 0;
}


1463
/** Decode an ALS frame.
1464
 */
1465
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1466 1467 1468
                        AVPacket *avpkt)
{
    ALSDecContext *ctx       = avctx->priv_data;
1469
    AVFrame *frame           = data;
1470 1471 1472
    ALSSpecificConfig *sconf = &ctx->sconf;
    const uint8_t *buffer    = avpkt->data;
    int buffer_size          = avpkt->size;
1473
    int invalid_frame, ret;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    unsigned int c, sample, ra_frame, bytes_read, shift;

    init_get_bits(&ctx->gb, buffer, buffer_size * 8);

    // In the case that the distance between random access frames is set to zero
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    // For the first frame, if prediction is used, all samples used from the
    // previous frame are assumed to be zero.
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);

    // the last frame to decode might have a different length
    if (sconf->samples != 0xFFFFFFFF)
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
                                      sconf->frame_length);
    else
        ctx->cur_frame_length = sconf->frame_length;

    // decode the frame data
1492
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1493 1494 1495 1496 1497
        av_log(ctx->avctx, AV_LOG_WARNING,
               "Reading frame data failed. Skipping RA unit.\n");

    ctx->frame_id++;

1498
    /* get output buffer */
1499
    frame->nb_samples = ctx->cur_frame_length;
1500
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1501
        return ret;
1502 1503

    // transform decoded frame into output format
1504 1505
    #define INTERLEAVE_OUTPUT(bps)                                                   \
    {                                                                                \
1506
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1507
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1508
        if (!ctx->cs_switch) {                                                       \
1509 1510 1511
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
                for (c = 0; c < avctx->channels; c++)                                \
                    *dest++ = ctx->raw_samples[c][sample] << shift;                  \
Paul B Mahol's avatar
Paul B Mahol committed
1512 1513 1514 1515 1516
        } else {                                                                     \
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
                for (c = 0; c < avctx->channels; c++)                                \
                    *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
        }                                                                            \
1517 1518 1519 1520 1521 1522 1523 1524
    }

    if (ctx->avctx->bits_per_raw_sample <= 16) {
        INTERLEAVE_OUTPUT(16)
    } else {
        INTERLEAVE_OUTPUT(32)
    }

1525
    // update CRC
1526
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1527 1528 1529
        int swap = HAVE_BIGENDIAN != sconf->msb_first;

        if (ctx->avctx->bits_per_raw_sample == 24) {
1530
            int32_t *src = (int32_t *)frame->data[0];
1531 1532 1533 1534 1535 1536 1537

            for (sample = 0;
                 sample < ctx->cur_frame_length * avctx->channels;
                 sample++) {
                int32_t v;

                if (swap)
1538
                    v = av_bswap32(src[sample]);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                else
                    v = src[sample];
                if (!HAVE_BIGENDIAN)
                    v >>= 8;

                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
            }
        } else {
            uint8_t *crc_source;

            if (swap) {
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1551
                    int16_t *src  = (int16_t*) frame->data[0];
1552 1553 1554 1555
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
                    for (sample = 0;
                         sample < ctx->cur_frame_length * avctx->channels;
                         sample++)
1556
                        *dest++ = av_bswap16(src[sample]);
1557
                } else {
1558
                    ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
1559
                                       (uint32_t *)frame->data[0],
1560 1561 1562 1563
                                       ctx->cur_frame_length * avctx->channels);
                }
                crc_source = ctx->crc_buffer;
            } else {
1564
                crc_source = frame->data[0];
1565 1566
            }

1567 1568 1569
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
                              ctx->cur_frame_length * avctx->channels *
                              av_get_bytes_per_sample(avctx->sample_fmt));
1570 1571 1572 1573 1574 1575
        }


        // check CRC sums if this is the last frame
        if (ctx->cur_frame_length != sconf->frame_length &&
            ctx->crc_org != ctx->crc) {
1576
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1577 1578
            if (avctx->err_recognition & AV_EF_EXPLODE)
                return AVERROR_INVALIDDATA;
1579 1580 1581
        }
    }

1582
    *got_frame_ptr = 1;
1583

1584 1585 1586 1587 1588 1589 1590
    bytes_read = invalid_frame ? buffer_size :
                                 (get_bits_count(&ctx->gb) + 7) >> 3;

    return bytes_read;
}


1591
/** Uninitialize the ALS decoder.
1592 1593 1594 1595 1596 1597 1598
 */
static av_cold int decode_end(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    av_freep(&ctx->sconf.chan_pos);

1599 1600
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);

1601 1602 1603 1604
    av_freep(&ctx->const_block);
    av_freep(&ctx->shift_lsbs);
    av_freep(&ctx->opt_order);
    av_freep(&ctx->store_prev_samples);
1605 1606 1607 1608
    av_freep(&ctx->use_ltp);
    av_freep(&ctx->ltp_lag);
    av_freep(&ctx->ltp_gain);
    av_freep(&ctx->ltp_gain_buffer);
1609 1610
    av_freep(&ctx->quant_cof);
    av_freep(&ctx->lpc_cof);
1611 1612
    av_freep(&ctx->quant_cof_buffer);
    av_freep(&ctx->lpc_cof_buffer);
1613
    av_freep(&ctx->lpc_cof_reversed_buffer);
1614 1615 1616
    av_freep(&ctx->prev_raw_samples);
    av_freep(&ctx->raw_samples);
    av_freep(&ctx->raw_buffer);
1617 1618 1619
    av_freep(&ctx->chan_data);
    av_freep(&ctx->chan_data_buffer);
    av_freep(&ctx->reverted_channels);
1620
    av_freep(&ctx->crc_buffer);
1621 1622 1623 1624 1625

    return 0;
}


1626
/** Initialize the ALS decoder.
1627 1628 1629 1630 1631
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    unsigned int c;
    unsigned int channel_size;
1632
    int num_buffers, ret;
1633 1634 1635 1636 1637
    ALSDecContext *ctx = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    ctx->avctx = avctx;

    if (!avctx->extradata) {
1638
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1639
        return AVERROR_INVALIDDATA;
1640 1641
    }

1642
    if ((ret = read_specific_config(ctx)) < 0) {
1643
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1644
        goto fail;
1645 1646
    }

1647 1648
    if ((ret = check_specific_config(ctx)) < 0) {
        goto fail;
1649 1650
    }

1651 1652 1653 1654 1655
    if (sconf->bgmc) {
        ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
        if (ret < 0)
            goto fail;
    }
1656
    if (sconf->floating) {
1657
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
1658 1659 1660
        avctx->bits_per_raw_sample = 32;
    } else {
        avctx->sample_fmt          = sconf->resolution > 1
1661
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
1662 1663 1664
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    }

1665 1666 1667 1668 1669
    // set maximum Rice parameter for progressive decoding based on resolution
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;

1670 1671 1672 1673
    // set lag value for long-term prediction
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
                              (avctx->sample_rate >= 192000);

1674 1675 1676
    // allocate quantized parcor coefficient buffer
    num_buffers = sconf->mc_coding ? avctx->channels : 1;

1677 1678 1679 1680 1681 1682
    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
                                      num_buffers * sconf->max_order);
    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                      num_buffers * sconf->max_order);
1683 1684
    ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                             sconf->max_order);
1685

1686 1687
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
1688
        !ctx->lpc_cof_reversed_buffer) {
1689
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1690 1691
        ret = AVERROR(ENOMEM);
        goto fail;
1692 1693 1694 1695 1696 1697 1698 1699
    }

    // assign quantized parcor coefficient buffers
    for (c = 0; c < num_buffers; c++) {
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    }

1700
    // allocate and assign lag and gain data buffer for ltp mode
1701 1702 1703 1704
    ctx->const_block     = av_malloc (sizeof(*ctx->const_block) * num_buffers);
    ctx->shift_lsbs      = av_malloc (sizeof(*ctx->shift_lsbs)  * num_buffers);
    ctx->opt_order       = av_malloc (sizeof(*ctx->opt_order)   * num_buffers);
    ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
1705 1706 1707 1708 1709 1710
    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
                                      num_buffers * 5);

1711 1712 1713
    if (!ctx->const_block || !ctx->shift_lsbs ||
        !ctx->opt_order || !ctx->store_prev_samples ||
        !ctx->use_ltp  || !ctx->ltp_lag ||
1714
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1715
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1716 1717
        ret = AVERROR(ENOMEM);
        goto fail;
1718 1719 1720 1721 1722
    }

    for (c = 0; c < num_buffers; c++)
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;

1723 1724 1725
    // allocate and assign channel data buffer for mcc mode
    if (sconf->mc_coding) {
        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
1726
                                           num_buffers * num_buffers);
1727
        ctx->chan_data         = av_malloc(sizeof(*ctx->chan_data) *
1728 1729 1730 1731 1732
                                           num_buffers);
        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
                                           num_buffers);

        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1733
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1734 1735
            ret = AVERROR(ENOMEM);
            goto fail;
1736 1737 1738
        }

        for (c = 0; c < num_buffers; c++)
1739
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1740 1741 1742 1743 1744 1745
    } else {
        ctx->chan_data         = NULL;
        ctx->chan_data_buffer  = NULL;
        ctx->reverted_channels = NULL;
    }

1746 1747 1748 1749 1750 1751 1752 1753
    channel_size      = sconf->frame_length + sconf->max_order;

    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);

    // allocate previous raw sample buffer
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1754
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1755 1756
        ret = AVERROR(ENOMEM);
        goto fail;
1757 1758 1759 1760 1761 1762 1763
    }

    // assign raw samples buffers
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    for (c = 1; c < avctx->channels; c++)
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;

1764 1765
    // allocate crc buffer
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1766
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1767 1768 1769
        ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
                                    ctx->cur_frame_length *
                                    avctx->channels *
1770
                                    av_get_bytes_per_sample(avctx->sample_fmt));
1771
        if (!ctx->crc_buffer) {
1772
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1773 1774
            ret = AVERROR(ENOMEM);
            goto fail;
1775 1776 1777
        }
    }

1778
    ff_dsputil_init(&ctx->dsp, avctx);
1779

1780
    return 0;
1781 1782 1783 1784

fail:
    decode_end(avctx);
    return ret;
1785 1786 1787
}


1788
/** Flush (reset) the frame ID after seeking.
1789 1790 1791 1792 1793 1794 1795 1796 1797
 */
static av_cold void flush(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    ctx->frame_id = 0;
}


1798
AVCodec ff_als_decoder = {
1799
    .name           = "als",
1800
    .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1801
    .type           = AVMEDIA_TYPE_AUDIO,
1802
    .id             = AV_CODEC_ID_MP4ALS,
1803 1804 1805 1806
    .priv_data_size = sizeof(ALSDecContext),
    .init           = decode_init,
    .close          = decode_end,
    .decode         = decode_frame,
1807 1808
    .flush          = flush,
    .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
1809
};