dither.c 13.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
 *
 * Triangular with Noise Shaping is based on opusfile.
 * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10 11 12 13
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15 16 17 18 19
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21 22 23 24 25 26 27 28 29 30 31 32 33
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Dithered Audio Sample Quantization
 *
 * Converts from dbl, flt, or s32 to s16 using dithering.
 */

#include <math.h>
#include <stdint.h>

34
#include "libavutil/attributes.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include "libavutil/common.h"
#include "libavutil/lfg.h"
#include "libavutil/mem.h"
#include "libavutil/samplefmt.h"
#include "audio_convert.h"
#include "dither.h"
#include "internal.h"

typedef struct DitherState {
    int mute;
    unsigned int seed;
    AVLFG lfg;
    float *noise_buf;
    int noise_buf_size;
    int noise_buf_ptr;
    float dither_a[4];
    float dither_b[4];
} DitherState;

struct DitherContext {
    DitherDSPContext  ddsp;
    enum AVResampleDitherMethod method;
57 58
    int apply_map;
    ChannelMapInfo *ch_map_info;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

    int mute_dither_threshold;  // threshold for disabling dither
    int mute_reset_threshold;   // threshold for resetting noise shaping
    const float *ns_coef_b;     // noise shaping coeffs
    const float *ns_coef_a;     // noise shaping coeffs

    int channels;
    DitherState *state;         // dither states for each channel

    AudioData *flt_data;        // input data in fltp
    AudioData *s16_data;        // dithered output in s16p
    AudioConvert *ac_in;        // converter for input to fltp
    AudioConvert *ac_out;       // converter for s16p to s16 (if needed)

    void (*quantize)(int16_t *dst, const float *src, float *dither, int len);
    int samples_align;
};

/* mute threshold, in seconds */
#define MUTE_THRESHOLD_SEC 0.000333

/* scale factor for 16-bit output.
   The signal is attenuated slightly to avoid clipping */
#define S16_SCALE 32753.0f

/* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */
#define LFG_SCALE (1.0f / (2.0f * INT32_MAX))

/* noise shaping coefficients */

static const float ns_48_coef_b[4] = {
    2.2374f, -0.7339f, -0.1251f, -0.6033f
};

static const float ns_48_coef_a[4] = {
    0.9030f, 0.0116f, -0.5853f, -0.2571f
};

static const float ns_44_coef_b[4] = {
    2.2061f, -0.4707f, -0.2534f, -0.6213f
};

static const float ns_44_coef_a[4] = {
    1.0587f, 0.0676f, -0.6054f, -0.2738f
};

static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
{
    int i;
    for (i = 0; i < len; i++)
        dst[i] = src[i] * LFG_SCALE;
}

static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
{
    int i;
    int *src1  = src0 + len;

    for (i = 0; i < len; i++) {
        float r = src0[i] * LFG_SCALE;
        r      += src1[i] * LFG_SCALE;
        dst[i]  = r;
    }
}

static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
{
    int i;
    for (i = 0; i < len; i++)
        dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i]));
}

#define SQRT_1_6 0.40824829046386301723f

static void dither_highpass_filter(float *src, int len)
{
    int i;

    /* filter is from libswresample in FFmpeg */
    for (i = 0; i < len - 2; i++)
        src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6;
}

static int generate_dither_noise(DitherContext *c, DitherState *state,
                                 int min_samples)
{
    int i;
    int nb_samples  = FFALIGN(min_samples, 16) + 16;
    int buf_samples = nb_samples *
                      (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2);
    unsigned int *noise_buf_ui;

    av_freep(&state->noise_buf);
    state->noise_buf_size = state->noise_buf_ptr = 0;

    state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf));
    if (!state->noise_buf)
        return AVERROR(ENOMEM);
    state->noise_buf_size = FFALIGN(min_samples, 16);
    noise_buf_ui          = (unsigned int *)state->noise_buf;

    av_lfg_init(&state->lfg, state->seed);
    for (i = 0; i < buf_samples; i++)
        noise_buf_ui[i] = av_lfg_get(&state->lfg);

    c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples);

    if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP)
        dither_highpass_filter(state->noise_buf, nb_samples);

    return 0;
}

static void quantize_triangular_ns(DitherContext *c, DitherState *state,
                                   int16_t *dst, const float *src,
                                   int nb_samples)
{
    int i, j;
    float *dither = &state->noise_buf[state->noise_buf_ptr];

    if (state->mute > c->mute_reset_threshold)
        memset(state->dither_a, 0, sizeof(state->dither_a));

    for (i = 0; i < nb_samples; i++) {
        float err = 0;
        float sample = src[i] * S16_SCALE;

        for (j = 0; j < 4; j++) {
            err += c->ns_coef_b[j] * state->dither_b[j] -
                   c->ns_coef_a[j] * state->dither_a[j];
        }
        for (j = 3; j > 0; j--) {
            state->dither_a[j] = state->dither_a[j - 1];
            state->dither_b[j] = state->dither_b[j - 1];
        }
        state->dither_a[0] = err;
        sample -= err;

        if (state->mute > c->mute_dither_threshold) {
            dst[i]             = av_clip_int16(lrintf(sample));
            state->dither_b[0] = 0;
        } else {
            dst[i]             = av_clip_int16(lrintf(sample + dither[i]));
            state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f);
        }

        state->mute++;
        if (src[i])
            state->mute = 0;
    }
}

static int convert_samples(DitherContext *c, int16_t **dst, float * const *src,
                           int channels, int nb_samples)
{
    int ch, ret;
    int aligned_samples = FFALIGN(nb_samples, 16);

    for (ch = 0; ch < channels; ch++) {
        DitherState *state = &c->state[ch];

        if (state->noise_buf_size < aligned_samples) {
            ret = generate_dither_noise(c, state, nb_samples);
            if (ret < 0)
                return ret;
        } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) {
            state->noise_buf_ptr = 0;
        }

        if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
            quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples);
        } else {
            c->quantize(dst[ch], src[ch],
                        &state->noise_buf[state->noise_buf_ptr],
                        FFALIGN(nb_samples, c->samples_align));
        }

        state->noise_buf_ptr += aligned_samples;
    }

    return 0;
}

int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src)
{
    int ret;
    AudioData *flt_data;

    /* output directly to dst if it is planar */
    if (dst->sample_fmt == AV_SAMPLE_FMT_S16P)
        c->s16_data = dst;
    else {
        /* make sure s16_data is large enough for the output */
        ret = ff_audio_data_realloc(c->s16_data, src->nb_samples);
        if (ret < 0)
            return ret;
    }

257
    if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
258 259 260 261 262
        /* make sure flt_data is large enough for the input */
        ret = ff_audio_data_realloc(c->flt_data, src->nb_samples);
        if (ret < 0)
            return ret;
        flt_data = c->flt_data;
263
    }
264

265
    if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) {
266 267 268 269
        /* convert input samples to fltp and scale to s16 range */
        ret = ff_audio_convert(c->ac_in, flt_data, src);
        if (ret < 0)
            return ret;
270 271 272 273
    } else if (c->apply_map) {
        ret = ff_audio_data_copy(flt_data, src, c->ch_map_info);
        if (ret < 0)
            return ret;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    } else {
        flt_data = src;
    }

    /* check alignment and padding constraints */
    if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
        int ptr_align     = FFMIN(flt_data->ptr_align,     c->s16_data->ptr_align);
        int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align);
        int aligned_len   = FFALIGN(src->nb_samples, c->ddsp.samples_align);

        if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) {
            c->quantize      = c->ddsp.quantize;
            c->samples_align = c->ddsp.samples_align;
        } else {
            c->quantize      = quantize_c;
            c->samples_align = 1;
        }
    }

    ret = convert_samples(c, (int16_t **)c->s16_data->data,
                          (float * const *)flt_data->data, src->channels,
                          src->nb_samples);
    if (ret < 0)
        return ret;

    c->s16_data->nb_samples = src->nb_samples;

    /* interleave output to dst if needed */
    if (dst->sample_fmt == AV_SAMPLE_FMT_S16) {
        ret = ff_audio_convert(c->ac_out, dst, c->s16_data);
        if (ret < 0)
            return ret;
    } else
        c->s16_data = NULL;

    return 0;
}

void ff_dither_free(DitherContext **cp)
{
    DitherContext *c = *cp;
    int ch;

    if (!c)
        return;
    ff_audio_data_free(&c->flt_data);
    ff_audio_data_free(&c->s16_data);
    ff_audio_convert_free(&c->ac_in);
    ff_audio_convert_free(&c->ac_out);
    for (ch = 0; ch < c->channels; ch++)
        av_free(c->state[ch].noise_buf);
    av_free(c->state);
    av_freep(cp);
}

329 330
static av_cold void dither_init(DitherDSPContext *ddsp,
                                enum AVResampleDitherMethod method)
331 332 333 334 335 336 337 338 339
{
    ddsp->quantize      = quantize_c;
    ddsp->ptr_align     = 1;
    ddsp->samples_align = 1;

    if (method == AV_RESAMPLE_DITHER_RECTANGULAR)
        ddsp->dither_int_to_float = dither_int_to_float_rectangular_c;
    else
        ddsp->dither_int_to_float = dither_int_to_float_triangular_c;
340 341 342

    if (ARCH_X86)
        ff_dither_init_x86(ddsp, method);
343 344 345 346 347
}

DitherContext *ff_dither_alloc(AVAudioResampleContext *avr,
                               enum AVSampleFormat out_fmt,
                               enum AVSampleFormat in_fmt,
348
                               int channels, int sample_rate, int apply_map)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
{
    AVLFG seed_gen;
    DitherContext *c;
    int ch;

    if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 ||
        av_get_bytes_per_sample(in_fmt) <= 2) {
        av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n",
               av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt));
        return NULL;
    }

    c = av_mallocz(sizeof(*c));
    if (!c)
        return NULL;

365 366 367 368
    c->apply_map = apply_map;
    if (apply_map)
        c->ch_map_info = &avr->ch_map_info;

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS &&
        sample_rate != 48000 && sample_rate != 44100) {
        av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz "
               "for triangular_ns dither. using triangular_hp instead.\n");
        avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP;
    }
    c->method = avr->dither_method;
    dither_init(&c->ddsp, c->method);

    if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) {
        if (sample_rate == 48000) {
            c->ns_coef_b = ns_48_coef_b;
            c->ns_coef_a = ns_48_coef_a;
        } else {
            c->ns_coef_b = ns_44_coef_b;
            c->ns_coef_a = ns_44_coef_a;
        }
    }

    /* Either s16 or s16p output format is allowed, but s16p is used
       internally, so we need to use a temp buffer and interleave if the output
       format is s16 */
    if (out_fmt != AV_SAMPLE_FMT_S16P) {
        c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P,
                                          "dither s16 buffer");
        if (!c->s16_data)
            goto fail;

        c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P,
398
                                           channels, sample_rate, 0);
399 400 401 402
        if (!c->ac_out)
            goto fail;
    }

403
    if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
404 405 406 407
        c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP,
                                          "dither flt buffer");
        if (!c->flt_data)
            goto fail;
408 409
    }
    if (in_fmt != AV_SAMPLE_FMT_FLTP) {
410
        c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt,
411
                                          channels, sample_rate, c->apply_map);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        if (!c->ac_in)
            goto fail;
    }

    c->state = av_mallocz(channels * sizeof(*c->state));
    if (!c->state)
        goto fail;
    c->channels = channels;

    /* calculate thresholds for turning off dithering during periods of
       silence to avoid replacing digital silence with quiet dither noise */
    c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC);
    c->mute_reset_threshold  = c->mute_dither_threshold * 4;

    /* initialize dither states */
    av_lfg_init(&seed_gen, 0xC0FFEE);
    for (ch = 0; ch < channels; ch++) {
        DitherState *state = &c->state[ch];
        state->mute = c->mute_reset_threshold + 1;
        state->seed = av_lfg_get(&seed_gen);
        generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2));
    }

    return c;

fail:
    ff_dither_free(&c);
    return NULL;
}