resample.c 22.3 KB
Newer Older
Michael Niedermayer's avatar
Michael Niedermayer committed
1 2
/*
 * audio resampling
3
 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
4
 * bessel function: Copyright (c) 2006 Xiaogang Zhang
Michael Niedermayer's avatar
Michael Niedermayer committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * audio resampling
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

29
#include "libavutil/avassert.h"
30
#include "resample.h"
Michael Niedermayer's avatar
Michael Niedermayer committed
31

32 33 34 35 36 37 38 39 40 41
static inline double eval_poly(const double *coeff, int size, double x) {
    double sum = coeff[size-1];
    int i;
    for (i = size-2; i >= 0; --i) {
        sum *= x;
        sum += coeff[i];
    }
    return sum;
}

Michael Niedermayer's avatar
Michael Niedermayer committed
42 43
/**
 * 0th order modified bessel function of the first kind.
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 * Algorithm taken from the Boost project, source:
 * https://searchcode.com/codesearch/view/14918379/
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0 (see notice below).
 * Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Michael Niedermayer's avatar
Michael Niedermayer committed
70 71
 */

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static double bessel(double x) {
// Modified Bessel function of the first kind of order zero
// minimax rational approximations on intervals, see
// Blair and Edwards, Chalk River Report AECL-4928, 1974
    static const double p1[] = {
        -2.2335582639474375249e+15,
        -5.5050369673018427753e+14,
        -3.2940087627407749166e+13,
        -8.4925101247114157499e+11,
        -1.1912746104985237192e+10,
        -1.0313066708737980747e+08,
        -5.9545626019847898221e+05,
        -2.4125195876041896775e+03,
        -7.0935347449210549190e+00,
        -1.5453977791786851041e-02,
        -2.5172644670688975051e-05,
        -3.0517226450451067446e-08,
        -2.6843448573468483278e-11,
        -1.5982226675653184646e-14,
        -5.2487866627945699800e-18,
    };
    static const double q1[] = {
        -2.2335582639474375245e+15,
         7.8858692566751002988e+12,
        -1.2207067397808979846e+10,
         1.0377081058062166144e+07,
        -4.8527560179962773045e+03,
99
         1.0,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    };
    static const double p2[] = {
        -2.2210262233306573296e-04,
         1.3067392038106924055e-02,
        -4.4700805721174453923e-01,
         5.5674518371240761397e+00,
        -2.3517945679239481621e+01,
         3.1611322818701131207e+01,
        -9.6090021968656180000e+00,
    };
    static const double q2[] = {
        -5.5194330231005480228e-04,
         3.2547697594819615062e-02,
        -1.1151759188741312645e+00,
         1.3982595353892851542e+01,
        -6.0228002066743340583e+01,
         8.5539563258012929600e+01,
        -3.1446690275135491500e+01,
118
        1.0,
119 120 121 122 123 124 125 126 127 128 129 130 131 132
    };
    double y, r, factor;
    if (x == 0)
        return 1.0;
    x = fabs(x);
    if (x <= 15) {
        y = x * x;
        return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
    }
    else {
        y = 1 / x - 1.0 / 15;
        r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
        factor = exp(x) / sqrt(x);
        return factor * r;
Michael Niedermayer's avatar
Michael Niedermayer committed
133 134 135 136 137 138 139
    }
}

/**
 * builds a polyphase filterbank.
 * @param factor resampling factor
 * @param scale wanted sum of coefficients for each filter
140 141
 * @param filter_type  filter type
 * @param kaiser_beta  kaiser window beta
Michael Niedermayer's avatar
Michael Niedermayer committed
142 143
 * @return 0 on success, negative on error
 */
144
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
145
                        int filter_type, double kaiser_beta){
Michael Niedermayer's avatar
Michael Niedermayer committed
146
    int ph, i;
147
    int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
148
    double x, y, w, t, s;
149
    double *tab = av_malloc_array(tap_count+1,  sizeof(*tab));
150
    double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
Michael Niedermayer's avatar
Michael Niedermayer committed
151
    const int center= (tap_count-1)/2;
152
    double norm = 0;
153
    int ret = AVERROR(ENOMEM);
Michael Niedermayer's avatar
Michael Niedermayer committed
154

155 156
    if (!tab || !sin_lut)
        goto fail;
Michael Niedermayer's avatar
Michael Niedermayer committed
157

158 159
    av_assert0(tap_count == 1 || tap_count % 2 == 0);

Michael Niedermayer's avatar
Michael Niedermayer committed
160 161 162 163
    /* if upsampling, only need to interpolate, no filter */
    if (factor > 1.0)
        factor = 1.0;

164
    if (factor == 1.0) {
165
        for (ph = 0; ph < ph_nb; ph++)
166
            sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
167
    }
168
    for(ph = 0; ph < ph_nb; ph++) {
169
        s = sin_lut[ph];
170
        for(i=0;i<tap_count;i++) {
Michael Niedermayer's avatar
Michael Niedermayer committed
171 172
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
            if (x == 0) y = 1.0;
173 174 175 176
            else if (factor == 1.0)
                y = s / x;
            else
                y = sin(x) / x;
177 178
            switch(filter_type){
            case SWR_FILTER_TYPE_CUBIC:{
Michael Niedermayer's avatar
Michael Niedermayer committed
179 180 181 182 183
                const float d= -0.5; //first order derivative = -0.5
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
                break;}
184
            case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
185 186
                w = 2.0*x / (factor*tap_count);
                t = -cos(w);
187
                y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
Michael Niedermayer's avatar
Michael Niedermayer committed
188
                break;
189
            case SWR_FILTER_TYPE_KAISER:
Michael Niedermayer's avatar
Michael Niedermayer committed
190
                w = 2.0*x / (factor*tap_count*M_PI);
191
                y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
Michael Niedermayer's avatar
Michael Niedermayer committed
192
                break;
193 194
            default:
                av_assert0(0);
Michael Niedermayer's avatar
Michael Niedermayer committed
195 196 197
            }

            tab[i] = y;
198
            s = -s;
199
            if (!ph)
200
                norm += y;
Michael Niedermayer's avatar
Michael Niedermayer committed
201 202 203
        }

        /* normalize so that an uniform color remains the same */
204
        switch(c->format){
205
        case AV_SAMPLE_FMT_S16P:
206
            for(i=0;i<tap_count;i++)
207
                ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
208
            if (phase_count % 2) break;
209 210
            for (i = 0; i < tap_count; i++)
                ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
211
            break;
212
        case AV_SAMPLE_FMT_S32P:
213
            for(i=0;i<tap_count;i++)
214
                ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
215
            if (phase_count % 2) break;
216 217
            for (i = 0; i < tap_count; i++)
                ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
218
            break;
219
        case AV_SAMPLE_FMT_FLTP:
220
            for(i=0;i<tap_count;i++)
221
                ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
222
            if (phase_count % 2) break;
223 224
            for (i = 0; i < tap_count; i++)
                ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
225
            break;
226
        case AV_SAMPLE_FMT_DBLP:
227
            for(i=0;i<tap_count;i++)
228
                ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
229
            if (phase_count % 2) break;
230 231
            for (i = 0; i < tap_count; i++)
                ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
232
            break;
Michael Niedermayer's avatar
Michael Niedermayer committed
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        }
    }
#if 0
    {
#define LEN 1024
        int j,k;
        double sine[LEN + tap_count];
        double filtered[LEN];
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
        for(i=0; i<LEN; i++){
            double ss=0, sf=0, ff=0;
            for(j=0; j<LEN+tap_count; j++)
                sine[j]= cos(i*j*M_PI/LEN);
            for(j=0; j<LEN; j++){
                double sum=0;
                ph=0;
                for(k=0; k<tap_count; k++)
                    sum += filter[ph * tap_count + k] * sine[k+j];
                filtered[j]= sum / (1<<FILTER_SHIFT);
                ss+= sine[j + center] * sine[j + center];
                ff+= filtered[j] * filtered[j];
                sf+= sine[j + center] * filtered[j];
            }
            ss= sqrt(2*ss/LEN);
            ff= sqrt(2*ff/LEN);
            sf= 2*sf/LEN;
            maxff= FFMAX(maxff, ff);
            minff= FFMIN(minff, ff);
            maxsf= FFMAX(maxsf, sf);
            minsf= FFMIN(minsf, sf);
            if(i%11==0){
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
                minff=minsf= 2;
                maxff=maxsf= -2;
            }
        }
    }
#endif

272
    ret = 0;
273
fail:
Michael Niedermayer's avatar
Michael Niedermayer committed
274
    av_free(tab);
275
    av_free(sin_lut);
276
    return ret;
Michael Niedermayer's avatar
Michael Niedermayer committed
277 278
}

279 280 281 282 283 284 285 286
static void resample_free(ResampleContext **cc){
    ResampleContext *c = *cc;
    if(!c)
        return;
    av_freep(&c->filter_bank);
    av_freep(cc);
}

287
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
288
                                    double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
289
                                    double precision, int cheby, int exact_rational)
290
{
291
    double cutoff = cutoff0? cutoff0 : 0.97;
Michael Niedermayer's avatar
Michael Niedermayer committed
292 293
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
    int phase_count= 1<<phase_shift;
294
    int phase_count_compensation = phase_count;
295 296 297 298
    int filter_length = FFMAX((int)ceil(filter_size/factor), 1);

    if (filter_length > 1)
        filter_length = FFALIGN(filter_length, 2);
Michael Niedermayer's avatar
Michael Niedermayer committed
299

300 301 302 303 304
    if (exact_rational) {
        int phase_count_exact, phase_count_exact_den;

        av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
        if (phase_count_exact <= phase_count) {
305
            phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
306 307 308 309 310
            phase_count = phase_count_exact;
        }
    }

    if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
311
           || c->filter_length != filter_length || c->format != format
312
           || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
313
        resample_free(&c);
314
        c = av_mallocz(sizeof(*c));
315 316 317
        if (!c)
            return NULL;

318 319
        c->format= format;

320 321
        c->felem_size= av_get_bytes_per_sample(c->format);

322
        switch(c->format){
323
        case AV_SAMPLE_FMT_S16P:
324 325
            c->filter_shift = 15;
            break;
326
        case AV_SAMPLE_FMT_S32P:
327 328
            c->filter_shift = 30;
            break;
329 330
        case AV_SAMPLE_FMT_FLTP:
        case AV_SAMPLE_FMT_DBLP:
331 332
            c->filter_shift = 0;
            break;
333 334
        default:
            av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
335
            av_assert0(0);
336 337
        }

338 339 340 341 342
        if (filter_size/factor > INT32_MAX/256) {
            av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
            goto error;
        }

343
        c->phase_count   = phase_count;
344 345
        c->linear        = linear;
        c->factor        = factor;
346
        c->filter_length = filter_length;
347
        c->filter_alloc  = FFALIGN(c->filter_length, 8);
348
        c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
349 350
        c->filter_type   = filter_type;
        c->kaiser_beta   = kaiser_beta;
351
        c->phase_count_compensation = phase_count_compensation;
352 353
        if (!c->filter_bank)
            goto error;
354
        if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
355
            goto error;
356 357
        memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
        memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
Michael Niedermayer's avatar
Michael Niedermayer committed
358 359 360
    }

    c->compensation_distance= 0;
361 362
    if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
        goto error;
363 364 365 366
    while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
        c->dst_incr *= 2;
        c->src_incr *= 2;
    }
367 368 369
    c->ideal_dst_incr = c->dst_incr;
    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;
370

Michael Niedermayer's avatar
Michael Niedermayer committed
371 372 373
    c->index= -phase_count*((c->filter_length-1)/2);
    c->frac= 0;

374
    swri_resample_dsp_init(c);
375

Michael Niedermayer's avatar
Michael Niedermayer committed
376 377
    return c;
error:
378
    av_freep(&c->filter_bank);
Michael Niedermayer's avatar
Michael Niedermayer committed
379 380 381 382
    av_free(c);
    return NULL;
}

383 384 385 386 387 388 389 390 391 392
static int rebuild_filter_bank_with_compensation(ResampleContext *c)
{
    uint8_t *new_filter_bank;
    int new_src_incr, new_dst_incr;
    int phase_count = c->phase_count_compensation;
    int ret;

    if (phase_count == c->phase_count)
        return 0;

393
    av_assert0(!c->frac && !c->dst_incr_mod);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
    if (!new_filter_bank)
        return AVERROR(ENOMEM);

    ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
                       phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
    if (ret < 0) {
        av_freep(&new_filter_bank);
        return ret;
    }
    memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
    memcpy(new_filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);

    if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
                   c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
    {
        av_freep(&new_filter_bank);
        return AVERROR(EINVAL);
    }

    c->src_incr = new_src_incr;
    c->dst_incr = new_dst_incr;
    while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
        c->dst_incr *= 2;
        c->src_incr *= 2;
    }
    c->ideal_dst_incr = c->dst_incr;
    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;
    c->index         *= phase_count / c->phase_count;
    c->phase_count    = phase_count;
    av_freep(&c->filter_bank);
    c->filter_bank = new_filter_bank;
    return 0;
}

431
static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
432 433
    int ret;

434
    if (compensation_distance && sample_delta) {
435 436 437 438 439
        ret = rebuild_filter_bank_with_compensation(c);
        if (ret < 0)
            return ret;
    }

Michael Niedermayer's avatar
Michael Niedermayer committed
440
    c->compensation_distance= compensation_distance;
441 442 443 444
    if (compensation_distance)
        c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
    else
        c->dst_incr = c->ideal_dst_incr;
445 446 447 448

    c->dst_incr_div   = c->dst_incr / c->src_incr;
    c->dst_incr_mod   = c->dst_incr % c->src_incr;

449
    return 0;
Michael Niedermayer's avatar
Michael Niedermayer committed
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
    int i;
    int av_unused mm_flags = av_get_cpu_flags();
    int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
                    (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
    int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;

    if (c->compensation_distance)
        dst_size = FFMIN(dst_size, c->compensation_distance);
    src_size = FFMIN(src_size, max_src_size);

    *consumed = 0;

465
    if (c->filter_length == 1 && c->phase_count == 1) {
466
        int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
467
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
468
        int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
469

470
        dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
471 472 473 474 475 476 477 478 479 480 481 482
        if (dst_size > 0) {
            for (i = 0; i < dst->ch_count; i++) {
                c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
                if (i+1 == dst->ch_count) {
                    c->index += dst_size * c->dst_incr_div;
                    c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
                    av_assert2(c->index >= 0);
                    *consumed = c->index;
                    c->frac   = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
                    c->index = 0;
                }
            }
483 484
        }
    } else {
485
        int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
486 487
        int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
        int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
488 489
        int (*resample_func)(struct ResampleContext *c, void *dst,
                             const void *src, int n, int update_ctx);
490

491
        dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
492
        if (dst_size > 0) {
493 494
            /* resample_linear and resample_common should have same behavior
             * when frac and dst_incr_mod are zero */
495 496 497 498
            resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
                            c->dsp.resample_linear : c->dsp.resample_common;
            for (i = 0; i < dst->ch_count; i++)
                *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
499 500
        }
    }
501

502 503
    if(need_emms)
        emms_c();
504 505

    if (c->compensation_distance) {
506
        c->compensation_distance -= dst_size;
507 508 509 510 511
        if (!c->compensation_distance) {
            c->dst_incr     = c->ideal_dst_incr;
            c->dst_incr_div = c->dst_incr / c->src_incr;
            c->dst_incr_mod = c->dst_incr % c->src_incr;
        }
512 513
    }

514
    return dst_size;
Michael Niedermayer's avatar
Michael Niedermayer committed
515
}
516

517
static int64_t get_delay(struct SwrContext *s, int64_t base){
518
    ResampleContext *c = s->resample;
519
    int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
520
    num *= c->phase_count;
521 522 523
    num -= c->index;
    num *= c->src_incr;
    num -= c->frac;
524
    return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
525
}
526

527 528
static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
    ResampleContext *c = s->resample;
529
    // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
530
    // They also make it easier to proof that changes and optimizations do not
531
    // break the upper bound.
532
    int64_t num = s->in_buffer_count + 2LL + in_samples;
533
    num *= c->phase_count;
534
    num -= c->index;
535
    num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
536 537 538 539 540 541 542 543 544 545

    if (c->compensation_distance) {
        if (num > INT_MAX)
            return AVERROR(EINVAL);

        num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
    }
    return num;
}

546
static int resample_flush(struct SwrContext *s) {
547
    ResampleContext *c = s->resample;
548 549
    AudioData *a= &s->in_buffer;
    int i, j, ret;
550 551 552
    int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;

    if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
553 554 555
        return ret;
    av_assert0(a->planar);
    for(i=0; i<a->ch_count; i++){
556
        for(j=0; j<reflection; j++){
557 558 559 560
            memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
                a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
        }
    }
561
    s->in_buffer_count += reflection;
562 563 564
    return 0;
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// in fact the whole handle multiple ridiculously small buffers might need more thinking...
static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
                                 int in_count, int *out_idx, int *out_sz)
{
    int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;

    if (c->index >= 0)
        return 0;

    if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
        return res;

    // copy
    for (n = *out_sz; n < num; n++) {
        for (ch = 0; ch < src->ch_count; ch++) {
            memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                   src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
        }
    }

    // if not enough data is in, return and wait for more
    if (num < c->filter_length + 1) {
        *out_sz = num;
        *out_idx = c->filter_length;
        return INT_MAX;
    }

    // else invert
    for (n = 1; n <= c->filter_length; n++) {
        for (ch = 0; ch < src->ch_count; ch++) {
            memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
                   dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
                   c->felem_size);
        }
    }

    res = num - *out_sz;
602 603 604 605 606
    *out_idx = c->filter_length;
    while (c->index < 0) {
        --*out_idx;
        c->index += c->phase_count;
    }
607 608
    *out_sz = FFMAX(*out_sz + c->filter_length,
                    1 + c->filter_length * 2) - *out_idx;
609

610
    return FFMAX(res, 0);
611 612
}

613 614 615 616
struct Resampler const swri_resampler={
  resample_init,
  resample_free,
  multiple_resample,
617
  resample_flush,
618 619
  set_compensation,
  get_delay,
620
  invert_initial_buffer,
621
  get_out_samples,
622
};