aacdec.c 104 KB
Newer Older
1 2 3 4 5
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 *
6 7
 * AAC LATM decoder
 * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
8
 * Copyright (c) 2010      Janne Grunau <janne-libav@jannau.net>
9
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
28
 * @file
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 * AAC decoder
 * @author Oded Shimon  ( ods15 ods15 dyndns org )
 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 */

/*
 * supported tools
 *
 * Support?             Name
 * N (code in SoC repo) gain control
 * Y                    block switching
 * Y                    window shapes - standard
 * N                    window shapes - Low Delay
 * Y                    filterbank - standard
 * N (code in SoC repo) filterbank - Scalable Sample Rate
 * Y                    Temporal Noise Shaping
45
 * Y                    Long Term Prediction
46 47
 * Y                    intensity stereo
 * Y                    channel coupling
48
 * Y                    frequency domain prediction
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * Y                    Perceptual Noise Substitution
 * Y                    Mid/Side stereo
 * N                    Scalable Inverse AAC Quantization
 * N                    Frequency Selective Switch
 * N                    upsampling filter
 * Y                    quantization & coding - AAC
 * N                    quantization & coding - TwinVQ
 * N                    quantization & coding - BSAC
 * N                    AAC Error Resilience tools
 * N                    Error Resilience payload syntax
 * N                    Error Protection tool
 * N                    CELP
 * N                    Silence Compression
 * N                    HVXC
 * N                    HVXC 4kbits/s VR
 * N                    Structured Audio tools
 * N                    Structured Audio Sample Bank Format
 * N                    MIDI
 * N                    Harmonic and Individual Lines plus Noise
 * N                    Text-To-Speech Interface
69
 * Y                    Spectral Band Replication
70 71 72 73
 * Y (not in this code) Layer-1
 * Y (not in this code) Layer-2
 * Y (not in this code) Layer-3
 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
74
 * Y                    Parametric Stereo
75 76 77 78 79 80 81
 * N                    Direct Stream Transfer
 *
 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
           Parametric Stereo.
 */

82
#include "libavutil/float_dsp.h"
83
#include "avcodec.h"
84
#include "internal.h"
85
#include "get_bits.h"
86
#include "dsputil.h"
87
#include "fft.h"
88
#include "fmtconvert.h"
89
#include "lpc.h"
90
#include "kbdwin.h"
91
#include "sinewin.h"
92 93 94

#include "aac.h"
#include "aactab.h"
95
#include "aacdectab.h"
96
#include "cbrt_tablegen.h"
97 98
#include "sbr.h"
#include "aacsbr.h"
99
#include "mpeg4audio.h"
100
#include "aacadtsdec.h"
101
#include "libavutil/intfloat.h"
102 103 104 105 106 107

#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>

108 109 110 111
#if ARCH_ARM
#   include "arm/aac.h"
#endif

112 113 114
static VLC vlc_scalefactors;
static VLC vlc_spectral[11];

115
#define overread_err "Input buffer exhausted before END element found\n"
116

117
static int count_channels(uint8_t (*layout)[3], int tags)
118
{
119 120 121 122 123 124
    int i, sum = 0;
    for (i = 0; i < tags; i++) {
        int syn_ele = layout[i][0];
        int pos     = layout[i][2];
        sum += (1 + (syn_ele == TYPE_CPE)) *
               (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC);
125 126 127 128
    }
    return sum;
}

129 130 131 132 133 134 135 136 137 138 139 140
/**
 * Check for the channel element in the current channel position configuration.
 * If it exists, make sure the appropriate element is allocated and map the
 * channel order to match the internal FFmpeg channel layout.
 *
 * @param   che_pos current channel position configuration
 * @param   type channel element type
 * @param   id channel element id
 * @param   channels count of the number of channels in the configuration
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
141
static av_cold int che_configure(AACContext *ac,
142
                                 enum ChannelPosition che_pos,
143
                                 int type, int id, int *channels)
144
{
145
    if (che_pos) {
146 147 148 149 150
        if (!ac->che[type][id]) {
            if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
                return AVERROR(ENOMEM);
            ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
        }
151
        if (type != TYPE_CCE) {
152
            if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
153 154 155
                av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
                return AVERROR_INVALIDDATA;
            }
156
            ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
157
            if (type == TYPE_CPE ||
158
                (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
159 160 161
                ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
            }
        }
162 163 164
    } else {
        if (ac->che[type][id])
            ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
165
        av_freep(&ac->che[type][id]);
166
    }
167 168 169
    return 0;
}

170 171 172 173 174 175 176 177
struct elem_to_channel {
    uint64_t av_position;
    uint8_t syn_ele;
    uint8_t elem_id;
    uint8_t aac_position;
};

static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
178
                       uint8_t (*layout_map)[3], int offset, uint64_t left,
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    uint64_t right, int pos)
{
    if (layout_map[offset][0] == TYPE_CPE) {
        e2c_vec[offset] = (struct elem_to_channel) {
            .av_position = left | right, .syn_ele = TYPE_CPE,
            .elem_id = layout_map[offset    ][1], .aac_position = pos };
        return 1;
    } else {
        e2c_vec[offset]   = (struct elem_to_channel) {
            .av_position = left, .syn_ele = TYPE_SCE,
            .elem_id = layout_map[offset    ][1], .aac_position = pos };
        e2c_vec[offset + 1] = (struct elem_to_channel) {
            .av_position = right, .syn_ele = TYPE_SCE,
            .elem_id = layout_map[offset + 1][1], .aac_position = pos };
        return 2;
    }
}

static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, int *current) {
    int num_pos_channels = 0;
    int first_cpe = 0;
    int sce_parity = 0;
    int i;
    for (i = *current; i < tags; i++) {
        if (layout_map[i][2] != pos)
            break;
        if (layout_map[i][0] == TYPE_CPE) {
            if (sce_parity) {
207
                if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                    sce_parity = 0;
                } else {
                    return -1;
                }
            }
            num_pos_channels += 2;
            first_cpe = 1;
        } else {
            num_pos_channels++;
            sce_parity ^= 1;
        }
    }
    if (sce_parity &&
        ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE))
            return -1;
    *current = i;
    return num_pos_channels;
}

static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
{
    int i, n, total_non_cc_elements;
230
    struct elem_to_channel e2c_vec[4*MAX_ELEM_ID] = {{ 0 }};
231 232 233
    int num_front_channels, num_side_channels, num_back_channels;
    uint64_t layout;

234
    if (FF_ARRAY_ELEMS(e2c_vec) < tags)
235 236
        return 0;

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    i = 0;
    num_front_channels =
        count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i);
    if (num_front_channels < 0)
        return 0;
    num_side_channels =
        count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i);
    if (num_side_channels < 0)
        return 0;
    num_back_channels =
        count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i);
    if (num_back_channels < 0)
        return 0;

    i = 0;
    if (num_front_channels & 1) {
        e2c_vec[i] = (struct elem_to_channel) {
            .av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE,
            .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT };
        i++;
        num_front_channels--;
    }
    if (num_front_channels >= 4) {
260
        i += assign_pair(e2c_vec, layout_map, i,
261 262 263 264 265 266
                         AV_CH_FRONT_LEFT_OF_CENTER,
                         AV_CH_FRONT_RIGHT_OF_CENTER,
                         AAC_CHANNEL_FRONT);
        num_front_channels -= 2;
    }
    if (num_front_channels >= 2) {
267
        i += assign_pair(e2c_vec, layout_map, i,
268 269 270 271 272 273
                         AV_CH_FRONT_LEFT,
                         AV_CH_FRONT_RIGHT,
                         AAC_CHANNEL_FRONT);
        num_front_channels -= 2;
    }
    while (num_front_channels >= 2) {
274
        i += assign_pair(e2c_vec, layout_map, i,
275 276 277 278 279 280 281
                         UINT64_MAX,
                         UINT64_MAX,
                         AAC_CHANNEL_FRONT);
        num_front_channels -= 2;
    }

    if (num_side_channels >= 2) {
282
        i += assign_pair(e2c_vec, layout_map, i,
283 284 285 286 287 288
                         AV_CH_SIDE_LEFT,
                         AV_CH_SIDE_RIGHT,
                         AAC_CHANNEL_FRONT);
        num_side_channels -= 2;
    }
    while (num_side_channels >= 2) {
289
        i += assign_pair(e2c_vec, layout_map, i,
290 291 292 293 294 295 296
                         UINT64_MAX,
                         UINT64_MAX,
                         AAC_CHANNEL_SIDE);
        num_side_channels -= 2;
    }

    while (num_back_channels >= 4) {
297
        i += assign_pair(e2c_vec, layout_map, i,
298 299 300 301 302 303
                         UINT64_MAX,
                         UINT64_MAX,
                         AAC_CHANNEL_BACK);
        num_back_channels -= 2;
    }
    if (num_back_channels >= 2) {
304
        i += assign_pair(e2c_vec, layout_map, i,
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                         AV_CH_BACK_LEFT,
                         AV_CH_BACK_RIGHT,
                         AAC_CHANNEL_BACK);
        num_back_channels -= 2;
    }
    if (num_back_channels) {
        e2c_vec[i] = (struct elem_to_channel) {
          .av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE,
          .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK };
        i++;
        num_back_channels--;
    }

    if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
        e2c_vec[i] = (struct elem_to_channel) {
          .av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE,
          .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
        i++;
    }
    while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
        e2c_vec[i] = (struct elem_to_channel) {
          .av_position = UINT64_MAX, .syn_ele = TYPE_LFE,
          .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
        i++;
    }

    // Must choose a stable sort
    total_non_cc_elements = n = i;
    do {
        int next_n = 0;
        for (i = 1; i < n; i++) {
            if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) {
                FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]);
                next_n = i;
            }
        }
        n = next_n;
    } while (n > 0);

    layout = 0;
    for (i = 0; i < total_non_cc_elements; i++) {
        layout_map[i][0] = e2c_vec[i].syn_ele;
        layout_map[i][1] = e2c_vec[i].elem_id;
        layout_map[i][2] = e2c_vec[i].aac_position;
        if (e2c_vec[i].av_position != UINT64_MAX) {
            layout |= e2c_vec[i].av_position;
        }
    }

    return layout;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * Save current output configuration if and only if it has been locked.
 */
static void push_output_configuration(AACContext *ac) {
    if (ac->oc[1].status == OC_LOCKED) {
        ac->oc[0] = ac->oc[1];
    }
    ac->oc[1].status = OC_NONE;
}

/**
 * Restore the previous output configuration if and only if the current
 * configuration is unlocked.
 */
static void pop_output_configuration(AACContext *ac) {
372
    if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) {
373 374
        ac->oc[1] = ac->oc[0];
        ac->avctx->channels = ac->oc[1].channels;
375
        ac->avctx->channel_layout = ac->oc[1].channel_layout;
376 377 378
    }
}

379 380 381 382 383
/**
 * Configure output channel order based on the current program configuration element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
384
static int output_configure(AACContext *ac,
385
                                    uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
386
                            enum OCStatus oc_type)
387
{
388
    AVCodecContext *avctx = ac->avctx;
389
    int i, channels = 0, ret;
390
    uint64_t layout = 0;
391

392 393 394
    if (ac->oc[1].layout_map != layout_map) {
        memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
        ac->oc[1].layout_map_tags = tags;
395
    }
396

397 398 399 400 401 402 403 404 405 406 407 408 409
    // Try to sniff a reasonable channel order, otherwise output the
    // channels in the order the PCE declared them.
    if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE)
        layout = sniff_channel_order(layout_map, tags);
    for (i = 0; i < tags; i++) {
        int type =     layout_map[i][0];
        int id =       layout_map[i][1];
        int position = layout_map[i][2];
        // Allocate or free elements depending on if they are in the
        // current program configuration.
        ret = che_configure(ac, position, type, id, &channels);
        if (ret < 0)
            return ret;
410
    }
411 412 413 414 415 416 417
    if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
        if (layout == AV_CH_FRONT_CENTER) {
            layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT;
        } else {
            layout = 0;
        }
    }
418

419
    memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
420
    if (layout) avctx->channel_layout = layout;
421
    ac->oc[1].channel_layout = layout;
422 423
    avctx->channels = ac->oc[1].channels = channels;
    ac->oc[1].status = oc_type;
424

425 426 427
    return 0;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static void flush(AVCodecContext *avctx)
{
    AACContext *ac= avctx->priv_data;
    int type, i, j;

    for (type = 3; type >= 0; type--) {
        for (i = 0; i < MAX_ELEM_ID; i++) {
            ChannelElement *che = ac->che[type][i];
            if (che) {
                for (j = 0; j <= 1; j++) {
                    memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
                }
            }
        }
    }
}

445 446 447 448 449 450
/**
 * Set up channel positions based on a default channel configuration
 * as specified in table 1.17.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
451
static int set_default_channel_config(AVCodecContext *avctx,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                                              uint8_t (*layout_map)[3],
                                              int *tags,
                                              int channel_config)
{
    if (channel_config < 1 || channel_config > 7) {
        av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
               channel_config);
        return -1;
    }
    *tags = tags_per_config[channel_config];
    memcpy(layout_map, aac_channel_layout_map[channel_config-1], *tags * sizeof(*layout_map));
    return 0;
}

static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
{
    // For PCE based channel configurations map the channels solely based on tags.
469
    if (!ac->oc[1].m4ac.chan_config) {
470 471
        return ac->tag_che_map[type][elem_id];
    }
472
    // Allow single CPE stereo files to be signalled with mono configuration.
473
    if (!ac->tags_mapped && type == TYPE_CPE && ac->oc[1].m4ac.chan_config == 1) {
474 475
        uint8_t layout_map[MAX_ELEM_ID*4][3];
        int layout_map_tags;
476
        push_output_configuration(ac);
477

478 479
        av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");

480 481 482 483
        if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
                                       2) < 0)
            return NULL;
        if (output_configure(ac, layout_map, layout_map_tags,
484
                             OC_TRIAL_FRAME) < 0)
485 486
            return NULL;

487
        ac->oc[1].m4ac.chan_config = 2;
488
        ac->oc[1].m4ac.ps = 0;
489 490
    }
    // And vice-versa
491
    if (!ac->tags_mapped && type == TYPE_SCE && ac->oc[1].m4ac.chan_config == 2) {
492 493 494 495
        uint8_t layout_map[MAX_ELEM_ID*4][3];
        int layout_map_tags;
        push_output_configuration(ac);

496 497
        av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");

498 499 500 501
        if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
                                       1) < 0)
            return NULL;
        if (output_configure(ac, layout_map, layout_map_tags,
502
                             OC_TRIAL_FRAME) < 0)
503 504 505
            return NULL;

        ac->oc[1].m4ac.chan_config = 1;
506 507
        if (ac->oc[1].m4ac.sbr)
            ac->oc[1].m4ac.ps = -1;
508
    }
509
    // For indexed channel configurations map the channels solely based on position.
510
    switch (ac->oc[1].m4ac.chan_config) {
511 512 513 514 515 516 517 518 519
    case 7:
        if (ac->tags_mapped == 3 && type == TYPE_CPE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
        }
    case 6:
        /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
           instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
           encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
520
        if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
521 522 523 524 525 526 527 528 529
            ac->tags_mapped++;
            return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
        }
    case 5:
        if (ac->tags_mapped == 2 && type == TYPE_CPE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
        }
    case 4:
530
        if (ac->tags_mapped == 2 && ac->oc[1].m4ac.chan_config == 4 && type == TYPE_SCE) {
531 532 533 534 535
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
        }
    case 3:
    case 2:
536
        if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && type == TYPE_CPE) {
537 538
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
539
        } else if (ac->oc[1].m4ac.chan_config == 2) {
540 541 542 543 544 545 546 547 548 549 550 551
            return NULL;
        }
    case 1:
        if (!ac->tags_mapped && type == TYPE_SCE) {
            ac->tags_mapped++;
            return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
        }
    default:
        return NULL;
    }
}

552 553 554 555 556
/**
 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 *
 * @param type speaker type/position for these channels
 */
557
static void decode_channel_map(uint8_t layout_map[][3],
558 559 560 561
                               enum ChannelPosition type,
                               GetBitContext *gb, int n)
{
    while (n--) {
562 563 564 565 566 567 568 569 570 571 572 573 574 575
        enum RawDataBlockType syn_ele;
        switch (type) {
        case AAC_CHANNEL_FRONT:
        case AAC_CHANNEL_BACK:
        case AAC_CHANNEL_SIDE:
            syn_ele = get_bits1(gb);
            break;
        case AAC_CHANNEL_CC:
            skip_bits1(gb);
            syn_ele = TYPE_CCE;
            break;
        case AAC_CHANNEL_LFE:
            syn_ele = TYPE_LFE;
            break;
576 577
        default:
            av_assert0(0);
578 579 580 581 582
        }
        layout_map[0][0] = syn_ele;
        layout_map[0][1] = get_bits(gb, 4);
        layout_map[0][2] = type;
        layout_map++;
583 584 585 586 587 588 589 590
    }
}

/**
 * Decode program configuration element; reference: table 4.2.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
591
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
592
                      uint8_t (*layout_map)[3],
593 594
                      GetBitContext *gb)
{
595
    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
596
    int comment_len;
597
    int tags;
598 599 600

    skip_bits(gb, 2);  // object_type

601
    sampling_index = get_bits(gb, 4);
602 603
    if (m4ac->sampling_index != sampling_index)
        av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
604

605 606 607 608 609 610 611
    num_front       = get_bits(gb, 4);
    num_side        = get_bits(gb, 4);
    num_back        = get_bits(gb, 4);
    num_lfe         = get_bits(gb, 2);
    num_assoc_data  = get_bits(gb, 3);
    num_cc          = get_bits(gb, 4);

612 613 614 615
    if (get_bits1(gb))
        skip_bits(gb, 4); // mono_mixdown_tag
    if (get_bits1(gb))
        skip_bits(gb, 4); // stereo_mixdown_tag
616

617 618
    if (get_bits1(gb))
        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
619

620
    if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
621
        av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
622 623
        return -1;
    }
624 625 626 627 628 629 630 631
    decode_channel_map(layout_map       , AAC_CHANNEL_FRONT, gb, num_front);
    tags = num_front;
    decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE,  gb, num_side);
    tags += num_side;
    decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK,  gb, num_back);
    tags += num_back;
    decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE,   gb, num_lfe);
    tags += num_lfe;
632 633 634

    skip_bits_long(gb, 4 * num_assoc_data);

635 636
    decode_channel_map(layout_map + tags, AAC_CHANNEL_CC,    gb, num_cc);
    tags += num_cc;
637 638 639 640

    align_get_bits(gb);

    /* comment field, first byte is length */
641 642
    comment_len = get_bits(gb, 8) * 8;
    if (get_bits_left(gb) < comment_len) {
643
        av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
644 645 646
        return -1;
    }
    skip_bits_long(gb, comment_len);
647
    return tags;
648
}
649

650 651 652
/**
 * Decode GA "General Audio" specific configuration; reference: table 4.1.
 *
653 654 655
 * @param   ac          pointer to AACContext, may be null
 * @param   avctx       pointer to AVCCodecContext, used for logging
 *
656 657
 * @return  Returns error status. 0 - OK, !0 - error
 */
658 659
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
                                     GetBitContext *gb,
660
                                     MPEG4AudioConfig *m4ac,
661 662
                                     int channel_config)
{
663
    int extension_flag, ret;
664 665
    uint8_t layout_map[MAX_ELEM_ID*4][3];
    int tags = 0;
666

667
    if (get_bits1(gb)) { // frameLengthFlag
668
        av_log_missing_feature(avctx, "960/120 MDCT window", 1);
669
        return AVERROR_PATCHWELCOME;
670 671 672 673 674 675
    }

    if (get_bits1(gb))       // dependsOnCoreCoder
        skip_bits(gb, 14);   // coreCoderDelay
    extension_flag = get_bits1(gb);

676 677
    if (m4ac->object_type == AOT_AAC_SCALABLE ||
        m4ac->object_type == AOT_ER_AAC_SCALABLE)
678 679 680 681
        skip_bits(gb, 3);     // layerNr

    if (channel_config == 0) {
        skip_bits(gb, 4);  // element_instance_tag
682 683 684
        tags = decode_pce(avctx, m4ac, layout_map, gb);
        if (tags < 0)
            return tags;
685
    } else {
686
        if ((ret = set_default_channel_config(avctx, layout_map, &tags, channel_config)))
687 688
            return ret;
    }
689

690
    if (count_channels(layout_map, tags) > 1) {
691 692 693 694
        m4ac->ps = 0;
    } else if (m4ac->sbr == 1 && m4ac->ps == -1)
        m4ac->ps = 1;

695
    if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR)))
696 697 698
        return ret;

    if (extension_flag) {
699
        switch (m4ac->object_type) {
700 701 702 703 704 705 706 707 708
        case AOT_ER_BSAC:
            skip_bits(gb, 5);    // numOfSubFrame
            skip_bits(gb, 11);   // layer_length
            break;
        case AOT_ER_AAC_LC:
        case AOT_ER_AAC_LTP:
        case AOT_ER_AAC_SCALABLE:
        case AOT_ER_AAC_LD:
            skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
709 710 711
                                    * aacScalefactorDataResilienceFlag
                                    * aacSpectralDataResilienceFlag
                                    */
712
            break;
713 714 715 716 717 718 719 720 721
        }
        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
    }
    return 0;
}

/**
 * Decode audio specific configuration; reference: table 1.13.
 *
722 723 724
 * @param   ac          pointer to AACContext, may be null
 * @param   avctx       pointer to AVCCodecContext, used for logging
 * @param   m4ac        pointer to MPEG4AudioConfig, used for parsing
725 726 727
 * @param   data        pointer to buffer holding an audio specific config
 * @param   bit_size    size of audio specific config or data in bits
 * @param   sync_extension look for an appended sync extension
728
 *
729
 * @return  Returns error status or number of consumed bits. <0 - error
730
 */
731
static int decode_audio_specific_config(AACContext *ac,
732 733
                                        AVCodecContext *avctx,
                                        MPEG4AudioConfig *m4ac,
734 735
                                        const uint8_t *data, int bit_size,
                                        int sync_extension)
736
{
737 738 739
    GetBitContext gb;
    int i;

740 741 742
    av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3);
    for (i = 0; i < bit_size >> 3; i++)
         av_dlog(avctx, "%02x ", data[i]);
743 744
    av_dlog(avctx, "\n");

745
    init_get_bits(&gb, data, bit_size);
746

747
    if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0)
748
        return -1;
749
    if (m4ac->sampling_index > 12) {
750
        av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
751 752 753 754 755
        return -1;
    }

    skip_bits_long(&gb, i);

756
    switch (m4ac->object_type) {
757
    case AOT_AAC_MAIN:
758
    case AOT_AAC_LC:
759
    case AOT_AAC_LTP:
760
        if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
761 762 763
            return -1;
        break;
    default:
764
        av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
765
               m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
766 767
        return -1;
    }
768

769 770 771 772
    av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
            m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
            m4ac->sample_rate, m4ac->sbr, m4ac->ps);

773
    return get_bits_count(&gb);
774 775
}

776 777 778 779 780 781 782
/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
783
static av_always_inline int lcg_random(unsigned previous_val)
784
{
785 786 787
    return previous_val * 1664525 + 1013904223;
}

788
static av_always_inline void reset_predict_state(PredictorState *ps)
789 790 791
{
    ps->r0   = 0.0f;
    ps->r1   = 0.0f;
792 793 794 795 796 797
    ps->cor0 = 0.0f;
    ps->cor1 = 0.0f;
    ps->var0 = 1.0f;
    ps->var1 = 1.0f;
}

798 799
static void reset_all_predictors(PredictorState *ps)
{
800 801 802 803 804
    int i;
    for (i = 0; i < MAX_PREDICTORS; i++)
        reset_predict_state(&ps[i]);
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static int sample_rate_idx (int rate)
{
         if (92017 <= rate) return 0;
    else if (75132 <= rate) return 1;
    else if (55426 <= rate) return 2;
    else if (46009 <= rate) return 3;
    else if (37566 <= rate) return 4;
    else if (27713 <= rate) return 5;
    else if (23004 <= rate) return 6;
    else if (18783 <= rate) return 7;
    else if (13856 <= rate) return 8;
    else if (11502 <= rate) return 9;
    else if (9391  <= rate) return 10;
    else                    return 11;
}

821 822
static void reset_predictor_group(PredictorState *ps, int group_num)
{
823
    int i;
824
    for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
825 826 827
        reset_predict_state(&ps[i]);
}

828 829 830 831 832 833
#define AAC_INIT_VLC_STATIC(num, size) \
    INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
         ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
        ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
        size);

834
static av_cold int aac_decode_init(AVCodecContext *avctx)
835
{
836
    AACContext *ac = avctx->priv_data;
837
    float output_scale_factor;
838

839
    ac->avctx = avctx;
840
    ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
841

842 843 844 845 846 847 848 849
    if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
        avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
        output_scale_factor = 1.0 / 32768.0;
    } else {
        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
        output_scale_factor = 1.0;
    }

850
    if (avctx->extradata_size > 0) {
851
        if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
852
                                         avctx->extradata,
853
                                         avctx->extradata_size*8, 1) < 0)
854
            return -1;
855 856
    } else {
        int sr, i;
857 858
        uint8_t layout_map[MAX_ELEM_ID*4][3];
        int layout_map_tags;
859 860

        sr = sample_rate_idx(avctx->sample_rate);
861 862 863 864
        ac->oc[1].m4ac.sampling_index = sr;
        ac->oc[1].m4ac.channels = avctx->channels;
        ac->oc[1].m4ac.sbr = -1;
        ac->oc[1].m4ac.ps = -1;
865 866 867 868 869 870 871

        for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
            if (ff_mpeg4audio_channels[i] == avctx->channels)
                break;
        if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
            i = 0;
        }
872
        ac->oc[1].m4ac.chan_config = i;
873

874
        if (ac->oc[1].m4ac.chan_config) {
875
            int ret = set_default_channel_config(avctx, layout_map,
876
                &layout_map_tags, ac->oc[1].m4ac.chan_config);
877
            if (!ret)
878
                output_configure(ac, layout_map, layout_map_tags,
879
                                 OC_GLOBAL_HDR);
880
            else if (avctx->err_recognition & AV_EF_EXPLODE)
881
                return AVERROR_INVALIDDATA;
882
        }
883
    }
884

885 886 887 888 889 890 891 892 893 894 895
    AAC_INIT_VLC_STATIC( 0, 304);
    AAC_INIT_VLC_STATIC( 1, 270);
    AAC_INIT_VLC_STATIC( 2, 550);
    AAC_INIT_VLC_STATIC( 3, 300);
    AAC_INIT_VLC_STATIC( 4, 328);
    AAC_INIT_VLC_STATIC( 5, 294);
    AAC_INIT_VLC_STATIC( 6, 306);
    AAC_INIT_VLC_STATIC( 7, 268);
    AAC_INIT_VLC_STATIC( 8, 510);
    AAC_INIT_VLC_STATIC( 9, 366);
    AAC_INIT_VLC_STATIC(10, 462);
896

897 898
    ff_aac_sbr_init();

899
    ff_dsputil_init(&ac->dsp, avctx);
900
    ff_fmt_convert_init(&ac->fmt_conv, avctx);
901
    avpriv_float_dsp_init(&ac->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
902

903 904
    ac->random_state = 0x1f2e3d4c;

905
    ff_aac_tableinit();
906

907
    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
908 909 910
                    ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
                    ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
                    352);
911

912 913 914
    ff_mdct_init(&ac->mdct,       11, 1, output_scale_factor/1024.0);
    ff_mdct_init(&ac->mdct_small,  8, 1, output_scale_factor/128.0);
    ff_mdct_init(&ac->mdct_ltp,   11, 0, -2.0/output_scale_factor);
915 916 917
    // window initialization
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
918 919
    ff_init_ff_sine_windows(10);
    ff_init_ff_sine_windows( 7);
920

921
    cbrt_tableinit();
922

923 924 925
    avcodec_get_frame_defaults(&ac->frame);
    avctx->coded_frame = &ac->frame;

926 927 928
    return 0;
}

929 930 931
/**
 * Skip data_stream_element; reference: table 4.10.
 */
932
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
933
{
934 935 936 937 938 939
    int byte_align = get_bits1(gb);
    int count = get_bits(gb, 8);
    if (count == 255)
        count += get_bits(gb, 8);
    if (byte_align)
        align_get_bits(gb);
940 941

    if (get_bits_left(gb) < 8 * count) {
942
        av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
943 944
        return -1;
    }
945
    skip_bits_long(gb, 8 * count);
946
    return 0;
947 948
}

949 950 951
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
                             GetBitContext *gb)
{
952 953 954 955
    int sfb;
    if (get_bits1(gb)) {
        ics->predictor_reset_group = get_bits(gb, 5);
        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
956
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
957 958 959
            return -1;
        }
    }
960
    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
961 962 963 964 965
        ics->prediction_used[sfb] = get_bits1(gb);
    }
    return 0;
}

966 967 968
/**
 * Decode Long Term Prediction data; reference: table 4.xx.
 */
969
static void decode_ltp(LongTermPrediction *ltp,
970 971 972 973 974
                       GetBitContext *gb, uint8_t max_sfb)
{
    int sfb;

    ltp->lag  = get_bits(gb, 11);
975
    ltp->coef = ltp_coef[get_bits(gb, 3)];
976 977 978 979
    for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
        ltp->used[sfb] = get_bits1(gb);
}

980 981 982
/**
 * Decode Individual Channel Stream info; reference: table 4.6.
 */
983
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
984
                           GetBitContext *gb)
985
{
986
    if (get_bits1(gb)) {
987
        av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
988
        return AVERROR_INVALIDDATA;
989 990 991
    }
    ics->window_sequence[1] = ics->window_sequence[0];
    ics->window_sequence[0] = get_bits(gb, 2);
992 993 994 995
    ics->use_kb_window[1]   = ics->use_kb_window[0];
    ics->use_kb_window[0]   = get_bits1(gb);
    ics->num_window_groups  = 1;
    ics->group_len[0]       = 1;
996 997 998 999 1000
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        int i;
        ics->max_sfb = get_bits(gb, 4);
        for (i = 0; i < 7; i++) {
            if (get_bits1(gb)) {
1001
                ics->group_len[ics->num_window_groups - 1]++;
1002 1003
            } else {
                ics->num_window_groups++;
1004
                ics->group_len[ics->num_window_groups - 1] = 1;
1005 1006
            }
        }
1007
        ics->num_windows       = 8;
1008 1009 1010
        ics->swb_offset        =    ff_swb_offset_128[ac->oc[1].m4ac.sampling_index];
        ics->num_swb           =   ff_aac_num_swb_128[ac->oc[1].m4ac.sampling_index];
        ics->tns_max_bands     = ff_tns_max_bands_128[ac->oc[1].m4ac.sampling_index];
1011
        ics->predictor_present = 0;
1012
    } else {
1013 1014
        ics->max_sfb               = get_bits(gb, 6);
        ics->num_windows           = 1;
1015 1016 1017
        ics->swb_offset            =    ff_swb_offset_1024[ac->oc[1].m4ac.sampling_index];
        ics->num_swb               =   ff_aac_num_swb_1024[ac->oc[1].m4ac.sampling_index];
        ics->tns_max_bands         = ff_tns_max_bands_1024[ac->oc[1].m4ac.sampling_index];
1018
        ics->predictor_present     = get_bits1(gb);
1019 1020
        ics->predictor_reset_group = 0;
        if (ics->predictor_present) {
1021
            if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
1022
                if (decode_prediction(ac, ics, gb)) {
1023
                    goto fail;
1024
                }
1025
            } else if (ac->oc[1].m4ac.object_type == AOT_AAC_LC) {
1026
                av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
1027
                goto fail;
1028
            } else {
1029
                if ((ics->ltp.present = get_bits(gb, 1)))
1030
                    decode_ltp(&ics->ltp, gb, ics->max_sfb);
1031
            }
1032 1033 1034
        }
    }

1035
    if (ics->max_sfb > ics->num_swb) {
1036
        av_log(ac->avctx, AV_LOG_ERROR,
1037 1038
               "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
               ics->max_sfb, ics->num_swb);
1039
        goto fail;
1040 1041
    }

1042
    return 0;
1043 1044 1045
fail:
    ics->max_sfb = 0;
    return AVERROR_INVALIDDATA;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

/**
 * Decode band types (section_data payload); reference: table 4.46.
 *
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1056 1057 1058 1059
static int decode_band_types(AACContext *ac, enum BandType band_type[120],
                             int band_type_run_end[120], GetBitContext *gb,
                             IndividualChannelStream *ics)
{
1060 1061 1062 1063 1064
    int g, idx = 0;
    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
    for (g = 0; g < ics->num_window_groups; g++) {
        int k = 0;
        while (k < ics->max_sfb) {
1065
            uint8_t sect_end = k;
1066 1067 1068
            int sect_len_incr;
            int sect_band_type = get_bits(gb, 4);
            if (sect_band_type == 12) {
1069
                av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
1070 1071
                return -1;
            }
1072 1073
            do {
                sect_len_incr = get_bits(gb, bits);
1074
                sect_end += sect_len_incr;
1075
                if (get_bits_left(gb) < 0) {
1076
                    av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err);
1077 1078 1079 1080 1081 1082 1083 1084 1085
                    return -1;
                }
                if (sect_end > ics->max_sfb) {
                    av_log(ac->avctx, AV_LOG_ERROR,
                           "Number of bands (%d) exceeds limit (%d).\n",
                           sect_end, ics->max_sfb);
                    return -1;
                }
            } while (sect_len_incr == (1 << bits) - 1);
1086
            for (; k < sect_end; k++) {
1087
                band_type        [idx]   = sect_band_type;
1088
                band_type_run_end[idx++] = sect_end;
1089
            }
1090 1091 1092 1093
        }
    }
    return 0;
}
1094

1095 1096
/**
 * Decode scalefactors; reference: table 4.47.
1097 1098 1099 1100 1101 1102 1103 1104
 *
 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 * @param   sf                  array of scalefactors or intensity stereo positions
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1105 1106 1107 1108 1109 1110
static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
                               unsigned int global_gain,
                               IndividualChannelStream *ics,
                               enum BandType band_type[120],
                               int band_type_run_end[120])
{
1111
    int g, i, idx = 0;
1112 1113
    int offset[3] = { global_gain, global_gain - 90, 0 };
    int clipped_offset;
1114 1115 1116 1117 1118
    int noise_flag = 1;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            if (band_type[idx] == ZERO_BT) {
1119
                for (; i < run_end; i++, idx++)
1120
                    sf[idx] = 0.;
1121 1122
            } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                for (; i < run_end; i++, idx++) {
1123
                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1124 1125 1126 1127 1128 1129
                    clipped_offset = av_clip(offset[2], -155, 100);
                    if (offset[2] != clipped_offset) {
                        av_log_ask_for_sample(ac->avctx, "Intensity stereo "
                                "position clipped (%d -> %d).\nIf you heard an "
                                "audible artifact, there may be a bug in the "
                                "decoder. ", offset[2], clipped_offset);
1130
                    }
1131
                    sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
1132
                }
1133 1134 1135
            } else if (band_type[idx] == NOISE_BT) {
                for (; i < run_end; i++, idx++) {
                    if (noise_flag-- > 0)
1136 1137 1138
                        offset[1] += get_bits(gb, 9) - 256;
                    else
                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1139
                    clipped_offset = av_clip(offset[1], -100, 155);
1140
                    if (offset[1] != clipped_offset) {
1141 1142 1143 1144
                        av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
                                "(%d -> %d).\nIf you heard an audible "
                                "artifact, there may be a bug in the decoder. ",
                                offset[1], clipped_offset);
1145
                    }
1146
                    sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
1147
                }
1148 1149
            } else {
                for (; i < run_end; i++, idx++) {
1150
                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1151
                    if (offset[0] > 255U) {
1152
                        av_log(ac->avctx, AV_LOG_ERROR,
1153
                               "Scalefactor (%d) out of range.\n", offset[0]);
1154 1155
                        return -1;
                    }
1156
                    sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
                }
            }
        }
    }
    return 0;
}

/**
 * Decode pulse data; reference: table 4.7.
 */
1167 1168 1169
static int decode_pulses(Pulse *pulse, GetBitContext *gb,
                         const uint16_t *swb_offset, int num_swb)
{
1170
    int i, pulse_swb;
1171
    pulse->num_pulse = get_bits(gb, 2) + 1;
1172 1173 1174 1175
    pulse_swb        = get_bits(gb, 6);
    if (pulse_swb >= num_swb)
        return -1;
    pulse->pos[0]    = swb_offset[pulse_swb];
1176
    pulse->pos[0]   += get_bits(gb, 5);
1177 1178
    if (pulse->pos[0] > 1023)
        return -1;
1179 1180
    pulse->amp[0]    = get_bits(gb, 4);
    for (i = 1; i < pulse->num_pulse; i++) {
1181
        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
1182 1183
        if (pulse->pos[i] > 1023)
            return -1;
1184
        pulse->amp[i] = get_bits(gb, 4);
1185
    }
1186
    return 0;
1187 1188
}

1189 1190 1191 1192 1193
/**
 * Decode Temporal Noise Shaping data; reference: table 4.48.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1194 1195 1196
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
                      GetBitContext *gb, const IndividualChannelStream *ics)
{
1197 1198
    int w, filt, i, coef_len, coef_res, coef_compress;
    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
1199
    const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
1200
    for (w = 0; w < ics->num_windows; w++) {
1201
        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1202 1203
            coef_res = get_bits1(gb);

1204 1205
            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                int tmp2_idx;
1206
                tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
1207

1208
                if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
1209
                    av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
1210 1211 1212 1213
                           tns->order[w][filt], tns_max_order);
                    tns->order[w][filt] = 0;
                    return -1;
                }
1214
                if (tns->order[w][filt]) {
1215 1216 1217
                    tns->direction[w][filt] = get_bits1(gb);
                    coef_compress = get_bits1(gb);
                    coef_len = coef_res + 3 - coef_compress;
1218
                    tmp2_idx = 2 * coef_compress + coef_res;
1219

1220 1221
                    for (i = 0; i < tns->order[w][filt]; i++)
                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
1222
                }
1223
            }
1224
        }
1225 1226 1227 1228
    }
    return 0;
}

1229 1230 1231 1232 1233 1234 1235
/**
 * Decode Mid/Side data; reference: table 4.54.
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
1236 1237 1238
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
                                   int ms_present)
{
1239 1240 1241 1242 1243
    int idx;
    if (ms_present == 1) {
        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
            cpe->ms_mask[idx] = get_bits1(gb);
    } else if (ms_present == 2) {
1244
        memset(cpe->ms_mask, 1,  sizeof(cpe->ms_mask[0]) * cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb);
1245 1246
    }
}
1247

1248
#ifndef VMUL2
1249 1250 1251 1252 1253 1254 1255 1256
static inline float *VMUL2(float *dst, const float *v, unsigned idx,
                           const float *scale)
{
    float s = *scale;
    *dst++ = v[idx    & 15] * s;
    *dst++ = v[idx>>4 & 15] * s;
    return dst;
}
1257
#endif
1258

1259
#ifndef VMUL4
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static inline float *VMUL4(float *dst, const float *v, unsigned idx,
                           const float *scale)
{
    float s = *scale;
    *dst++ = v[idx    & 3] * s;
    *dst++ = v[idx>>2 & 3] * s;
    *dst++ = v[idx>>4 & 3] * s;
    *dst++ = v[idx>>6 & 3] * s;
    return dst;
}
1270
#endif
1271

1272
#ifndef VMUL2S
1273 1274 1275
static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
                            unsigned sign, const float *scale)
{
1276
    union av_intfloat32 s0, s1;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    s0.f = s1.f = *scale;
    s0.i ^= sign >> 1 << 31;
    s1.i ^= sign      << 31;

    *dst++ = v[idx    & 15] * s0.f;
    *dst++ = v[idx>>4 & 15] * s1.f;

    return dst;
}
1287
#endif
1288

1289
#ifndef VMUL4S
1290 1291 1292 1293
static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
                            unsigned sign, const float *scale)
{
    unsigned nz = idx >> 12;
1294 1295
    union av_intfloat32 s = { .f = *scale };
    union av_intfloat32 t;
1296

1297
    t.i = s.i ^ (sign & 1U<<31);
1298 1299 1300
    *dst++ = v[idx    & 3] * t.f;

    sign <<= nz & 1; nz >>= 1;
1301
    t.i = s.i ^ (sign & 1U<<31);
1302 1303 1304
    *dst++ = v[idx>>2 & 3] * t.f;

    sign <<= nz & 1; nz >>= 1;
1305
    t.i = s.i ^ (sign & 1U<<31);
1306 1307
    *dst++ = v[idx>>4 & 3] * t.f;

1308
    sign <<= nz & 1;
1309
    t.i = s.i ^ (sign & 1U<<31);
1310 1311 1312 1313
    *dst++ = v[idx>>6 & 3] * t.f;

    return dst;
}
1314
#endif
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * Decode spectral data; reference: table 4.50.
 * Dequantize and scale spectral data; reference: 4.6.3.3.
 *
 * @param   coef            array of dequantized, scaled spectral data
 * @param   sf              array of scalefactors or intensity stereo positions
 * @param   pulse_present   set if pulses are present
 * @param   pulse           pointer to pulse data struct
 * @param   band_type       array of the used band type
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1328
static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
1329
                                       GetBitContext *gb, const float sf[120],
1330 1331 1332 1333
                                       int pulse_present, const Pulse *pulse,
                                       const IndividualChannelStream *ics,
                                       enum BandType band_type[120])
{
1334
    int i, k, g, idx = 0;
1335 1336
    const int c = 1024 / ics->num_windows;
    const uint16_t *offsets = ics->swb_offset;
1337 1338 1339
    float *coef_base = coef;

    for (g = 0; g < ics->num_windows; g++)
1340
        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
1341 1342

    for (g = 0; g < ics->num_window_groups; g++) {
1343 1344
        unsigned g_len = ics->group_len[g];

1345
        for (i = 0; i < ics->max_sfb; i++, idx++) {
1346 1347 1348
            const unsigned cbt_m1 = band_type[idx] - 1;
            float *cfo = coef + offsets[i];
            int off_len = offsets[i + 1] - offsets[i];
1349
            int group;
1350 1351 1352 1353

            if (cbt_m1 >= INTENSITY_BT2 - 1) {
                for (group = 0; group < g_len; group++, cfo+=128) {
                    memset(cfo, 0, off_len * sizeof(float));
1354
                }
1355 1356
            } else if (cbt_m1 == NOISE_BT - 1) {
                for (group = 0; group < g_len; group++, cfo+=128) {
1357
                    float scale;
1358
                    float band_energy;
1359

1360
                    for (k = 0; k < off_len; k++) {
1361
                        ac->random_state  = lcg_random(ac->random_state);
1362
                        cfo[k] = ac->random_state;
1363
                    }
1364

1365
                    band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
1366
                    scale = sf[idx] / sqrtf(band_energy);
1367
                    ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
1368
                }
1369
            } else {
1370 1371 1372
                const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
                const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
                VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
1373
                OPEN_READER(re, gb);
1374

1375 1376 1377 1378 1379
                switch (cbt_m1 >> 1) {
                case 0:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;
1380

1381
                        do {
1382
                            int code;
1383 1384
                            unsigned cb_idx;

1385 1386 1387
                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
1388 1389
                            cf = VMUL4(cf, vq, cb_idx, sf + idx);
                        } while (len -= 4);
1390 1391 1392 1393 1394 1395 1396 1397
                    }
                    break;

                case 1:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

1398
                        do {
1399
                            int code;
1400 1401 1402 1403
                            unsigned nnz;
                            unsigned cb_idx;
                            uint32_t bits;

1404 1405 1406
                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
1407
                            nnz = cb_idx >> 8 & 15;
1408
                            bits = nnz ? GET_CACHE(re, gb) : 0;
1409
                            LAST_SKIP_BITS(re, gb, nnz);
1410 1411
                            cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
                        } while (len -= 4);
1412 1413 1414 1415 1416 1417 1418 1419
                    }
                    break;

                case 2:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

1420
                        do {
1421
                            int code;
1422 1423
                            unsigned cb_idx;

1424 1425 1426
                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
1427 1428
                            cf = VMUL2(cf, vq, cb_idx, sf + idx);
                        } while (len -= 2);
1429 1430 1431 1432 1433 1434 1435 1436 1437
                    }
                    break;

                case 3:
                case 4:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        int len = off_len;

1438
                        do {
1439
                            int code;
1440 1441 1442 1443
                            unsigned nnz;
                            unsigned cb_idx;
                            unsigned sign;

1444 1445 1446
                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);
                            cb_idx = cb_vector_idx[code];
1447
                            nnz = cb_idx >> 8 & 15;
1448
                            sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
1449
                            LAST_SKIP_BITS(re, gb, nnz);
1450 1451
                            cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
                        } while (len -= 2);
1452 1453 1454 1455 1456 1457 1458 1459 1460
                    }
                    break;

                default:
                    for (group = 0; group < g_len; group++, cfo+=128) {
                        float *cf = cfo;
                        uint32_t *icf = (uint32_t *) cf;
                        int len = off_len;

1461
                        do {
1462
                            int code;
1463 1464 1465 1466 1467
                            unsigned nzt, nnz;
                            unsigned cb_idx;
                            uint32_t bits;
                            int j;

1468 1469 1470 1471
                            UPDATE_CACHE(re, gb);
                            GET_VLC(code, re, gb, vlc_tab, 8, 2);

                            if (!code) {
1472 1473
                                *icf++ = 0;
                                *icf++ = 0;
1474 1475 1476
                                continue;
                            }

1477
                            cb_idx = cb_vector_idx[code];
1478 1479
                            nnz = cb_idx >> 12;
                            nzt = cb_idx >> 8;
1480 1481
                            bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
                            LAST_SKIP_BITS(re, gb, nnz);
1482 1483 1484

                            for (j = 0; j < 2; j++) {
                                if (nzt & 1<<j) {
1485 1486
                                    uint32_t b;
                                    int n;
1487 1488
                                    /* The total length of escape_sequence must be < 22 bits according
                                       to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
1489 1490 1491 1492 1493
                                    UPDATE_CACHE(re, gb);
                                    b = GET_CACHE(re, gb);
                                    b = 31 - av_log2(~b);

                                    if (b > 8) {
1494
                                        av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
1495 1496
                                        return -1;
                                    }
1497 1498 1499 1500 1501

                                    SKIP_BITS(re, gb, b + 1);
                                    b += 4;
                                    n = (1 << b) + SHOW_UBITS(re, gb, b);
                                    LAST_SKIP_BITS(re, gb, b);
1502
                                    *icf++ = cbrt_tab[n] | (bits & 1U<<31);
1503 1504 1505
                                    bits <<= 1;
                                } else {
                                    unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
1506
                                    *icf++ = (bits & 1U<<31) | v;
1507
                                    bits <<= !!v;
1508
                                }
1509
                                cb_idx >>= 4;
1510
                            }
1511
                        } while (len -= 2);
1512

1513
                        ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
1514
                    }
1515
                }
1516 1517

                CLOSE_READER(re, gb);
1518 1519
            }
        }
1520
        coef += g_len << 7;
1521 1522 1523
    }

    if (pulse_present) {
1524
        idx = 0;
1525 1526 1527
        for (i = 0; i < pulse->num_pulse; i++) {
            float co = coef_base[ pulse->pos[i] ];
            while (offsets[idx + 1] <= pulse->pos[i])
1528 1529
                idx++;
            if (band_type[idx] != NOISE_BT && sf[idx]) {
1530 1531 1532 1533 1534 1535
                float ico = -pulse->amp[i];
                if (co) {
                    co /= sf[idx];
                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
                }
                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
1536
            }
1537 1538 1539 1540 1541
        }
    }
    return 0;
}

1542 1543
static av_always_inline float flt16_round(float pf)
{
1544
    union av_intfloat32 tmp;
1545 1546 1547
    tmp.f = pf;
    tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
    return tmp.f;
1548 1549
}

1550 1551
static av_always_inline float flt16_even(float pf)
{
1552
    union av_intfloat32 tmp;
1553
    tmp.f = pf;
1554
    tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
1555
    return tmp.f;
1556 1557
}

1558 1559
static av_always_inline float flt16_trunc(float pf)
{
1560
    union av_intfloat32 pun;
1561 1562 1563
    pun.f = pf;
    pun.i &= 0xFFFF0000U;
    return pun.f;
1564 1565
}

1566
static av_always_inline void predict(PredictorState *ps, float *coef,
1567
                                     int output_enable)
1568 1569 1570
{
    const float a     = 0.953125; // 61.0 / 64
    const float alpha = 0.90625;  // 29.0 / 32
1571 1572 1573
    float e0, e1;
    float pv;
    float k1, k2;
1574 1575 1576
    float   r0 = ps->r0,     r1 = ps->r1;
    float cor0 = ps->cor0, cor1 = ps->cor1;
    float var0 = ps->var0, var1 = ps->var1;
1577

1578 1579
    k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
    k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
1580

1581
    pv = flt16_round(k1 * r0 + k2 * r1);
1582
    if (output_enable)
1583
        *coef += pv;
1584

1585
    e0 = *coef;
1586
    e1 = e0 - k1 * r0;
1587

1588 1589 1590 1591
    ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
    ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
    ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
    ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
1592

1593
    ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
1594 1595 1596 1597 1598 1599
    ps->r0 = flt16_trunc(a * e0);
}

/**
 * Apply AAC-Main style frequency domain prediction.
 */
1600 1601
static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
{
1602 1603 1604
    int sfb, k;

    if (!sce->ics.predictor_initialized) {
1605
        reset_all_predictors(sce->predictor_state);
1606 1607 1608 1609
        sce->ics.predictor_initialized = 1;
    }

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1610
        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; sfb++) {
1611
            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
1612
                predict(&sce->predictor_state[k], &sce->coeffs[k],
1613
                        sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
1614 1615 1616
            }
        }
        if (sce->ics.predictor_reset_group)
1617
            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1618
    } else
1619
        reset_all_predictors(sce->predictor_state);
1620 1621
}

1622
/**
1623 1624 1625 1626 1627 1628 1629
 * Decode an individual_channel_stream payload; reference: table 4.44.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1630 1631 1632
static int decode_ics(AACContext *ac, SingleChannelElement *sce,
                      GetBitContext *gb, int common_window, int scale_flag)
{
1633
    Pulse pulse;
1634 1635 1636
    TemporalNoiseShaping    *tns = &sce->tns;
    IndividualChannelStream *ics = &sce->ics;
    float *out = sce->coeffs;
1637 1638
    int global_gain, pulse_present = 0;

1639 1640
    /* This assignment is to silence a GCC warning about the variable being used
     * uninitialized when in fact it always is.
1641 1642 1643 1644 1645 1646
     */
    pulse.num_pulse = 0;

    global_gain = get_bits(gb, 8);

    if (!common_window && !scale_flag) {
1647 1648
        if (decode_ics_info(ac, ics, gb) < 0)
            return AVERROR_INVALIDDATA;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    }

    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
        return -1;
    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
        return -1;

    pulse_present = 0;
    if (!scale_flag) {
        if ((pulse_present = get_bits1(gb))) {
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1660
                av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1661 1662
                return -1;
            }
1663
            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1664
                av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1665 1666
                return -1;
            }
1667 1668 1669 1670
        }
        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
            return -1;
        if (get_bits1(gb)) {
1671
            av_log_missing_feature(ac->avctx, "SSR", 1);
1672
            return AVERROR_PATCHWELCOME;
1673 1674 1675
        }
    }

1676
    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1677
        return -1;
1678

1679
    if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window)
1680 1681
        apply_prediction(ac, sce);

1682 1683 1684
    return 0;
}

1685 1686 1687
/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
1688
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
1689 1690
{
    const IndividualChannelStream *ics = &cpe->ch[0].ics;
1691 1692
    float *ch0 = cpe->ch[0].coeffs;
    float *ch1 = cpe->ch[1].coeffs;
1693
    int g, i, group, idx = 0;
1694
    const uint16_t *offsets = ics->swb_offset;
1695 1696 1697
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
1698
                    cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1699
                for (group = 0; group < ics->group_len[g]; group++) {
1700 1701 1702
                    ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
                                              ch1 + group * 128 + offsets[i],
                                              offsets[i+1] - offsets[i]);
1703 1704 1705
                }
            }
        }
1706 1707
        ch0 += ics->group_len[g] * 128;
        ch1 += ics->group_len[g] * 128;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
1718
static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
1719 1720 1721
{
    const IndividualChannelStream *ics = &cpe->ch[1].ics;
    SingleChannelElement         *sce1 = &cpe->ch[1];
1722
    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1723
    const uint16_t *offsets = ics->swb_offset;
1724
    int g, group, i, idx = 0;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    int c;
    float scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->sf[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
1737 1738 1739 1740
                        ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
                                                   coef0 + group * 128 + offsets[i],
                                                   scale,
                                                   offsets[i + 1] - offsets[i]);
1741 1742 1743 1744 1745 1746 1747
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
1748 1749
        coef0 += ics->group_len[g] * 128;
        coef1 += ics->group_len[g] * 128;
1750 1751 1752
    }
}

1753 1754 1755 1756 1757
/**
 * Decode a channel_pair_element; reference: table 4.4.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1758 1759
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
{
1760 1761 1762 1763
    int i, ret, common_window, ms_present = 0;

    common_window = get_bits1(gb);
    if (common_window) {
1764 1765
        if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
            return AVERROR_INVALIDDATA;
1766 1767 1768
        i = cpe->ch[1].ics.use_kb_window[0];
        cpe->ch[1].ics = cpe->ch[0].ics;
        cpe->ch[1].ics.use_kb_window[1] = i;
1769
        if (cpe->ch[1].ics.predictor_present && (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN))
1770
            if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
1771
                decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
1772
        ms_present = get_bits(gb, 2);
1773
        if (ms_present == 3) {
1774
            av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1775
            return -1;
1776
        } else if (ms_present)
1777 1778 1779 1780 1781 1782 1783
            decode_mid_side_stereo(cpe, gb, ms_present);
    }
    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
        return ret;
    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
        return ret;

1784 1785
    if (common_window) {
        if (ms_present)
1786
            apply_mid_side_stereo(ac, cpe);
1787
        if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
1788 1789 1790 1791
            apply_prediction(ac, &cpe->ch[0]);
            apply_prediction(ac, &cpe->ch[1]);
        }
    }
1792

1793
    apply_intensity_stereo(ac, cpe, ms_present);
1794 1795 1796
    return 0;
}

1797 1798 1799 1800 1801 1802 1803
static const float cce_scale[] = {
    1.09050773266525765921, //2^(1/8)
    1.18920711500272106672, //2^(1/4)
    M_SQRT2,
    2,
};

1804 1805 1806 1807 1808
/**
 * Decode coupling_channel_element; reference: table 4.8.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
1809 1810
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
{
1811
    int num_gain = 0;
1812
    int c, g, sfb, ret;
1813 1814
    int sign;
    float scale;
1815 1816
    SingleChannelElement *sce = &che->ch[0];
    ChannelCoupling     *coup = &che->coup;
1817

1818
    coup->coupling_point = 2 * get_bits1(gb);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    coup->num_coupled = get_bits(gb, 3);
    for (c = 0; c <= coup->num_coupled; c++) {
        num_gain++;
        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
        coup->id_select[c] = get_bits(gb, 4);
        if (coup->type[c] == TYPE_CPE) {
            coup->ch_select[c] = get_bits(gb, 2);
            if (coup->ch_select[c] == 3)
                num_gain++;
        } else
1829
            coup->ch_select[c] = 2;
1830
    }
1831
    coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
1832

1833
    sign  = get_bits(gb, 1);
1834
    scale = cce_scale[get_bits(gb, 2)];
1835 1836 1837 1838 1839

    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
        return ret;

    for (c = 0; c < num_gain; c++) {
1840 1841
        int idx  = 0;
        int cge  = 1;
1842 1843 1844 1845 1846
        int gain = 0;
        float gain_cache = 1.;
        if (c) {
            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1847
            gain_cache = powf(scale, -gain);
1848
        }
1849 1850 1851
        if (coup->coupling_point == AFTER_IMDCT) {
            coup->gain[c][0] = gain_cache;
        } else {
1852 1853 1854 1855 1856
            for (g = 0; g < sce->ics.num_window_groups; g++) {
                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
                    if (sce->band_type[idx] != ZERO_BT) {
                        if (!cge) {
                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1857
                            if (t) {
1858 1859 1860 1861 1862 1863
                                int s = 1;
                                t = gain += t;
                                if (sign) {
                                    s  -= 2 * (t & 0x1);
                                    t >>= 1;
                                }
1864
                                gain_cache = powf(scale, -t) * s;
1865 1866
                            }
                        }
1867
                        coup->gain[c][idx] = gain_cache;
1868 1869
                    }
                }
1870 1871
            }
        }
1872 1873 1874 1875 1876 1877 1878 1879 1880
    }
    return 0;
}

/**
 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 *
 * @return  Returns number of bytes consumed.
 */
1881 1882 1883
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
                                         GetBitContext *gb)
{
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    int i;
    int num_excl_chan = 0;

    do {
        for (i = 0; i < 7; i++)
            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));

    return num_excl_chan / 7;
}

1895 1896 1897 1898 1899
/**
 * Decode dynamic range information; reference: table 4.52.
 *
 * @return  Returns number of bytes consumed.
 */
1900
static int decode_dynamic_range(DynamicRangeControl *che_drc,
1901
                                GetBitContext *gb)
1902 1903
{
    int n             = 1;
1904 1905 1906 1907
    int drc_num_bands = 1;
    int i;

    /* pce_tag_present? */
1908
    if (get_bits1(gb)) {
1909 1910 1911 1912 1913 1914
        che_drc->pce_instance_tag  = get_bits(gb, 4);
        skip_bits(gb, 4); // tag_reserved_bits
        n++;
    }

    /* excluded_chns_present? */
1915
    if (get_bits1(gb)) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        n += decode_drc_channel_exclusions(che_drc, gb);
    }

    /* drc_bands_present? */
    if (get_bits1(gb)) {
        che_drc->band_incr            = get_bits(gb, 4);
        che_drc->interpolation_scheme = get_bits(gb, 4);
        n++;
        drc_num_bands += che_drc->band_incr;
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->band_top[i] = get_bits(gb, 8);
            n++;
        }
    }

    /* prog_ref_level_present? */
    if (get_bits1(gb)) {
        che_drc->prog_ref_level = get_bits(gb, 7);
        skip_bits1(gb); // prog_ref_level_reserved_bits
        n++;
    }

    for (i = 0; i < drc_num_bands; i++) {
        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
        n++;
    }

    return n;
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int decode_fill(AACContext *ac, GetBitContext *gb, int len) {
    uint8_t buf[256];
    int i, major, minor;

    if (len < 13+7*8)
        goto unknown;

    get_bits(gb, 13); len -= 13;

    for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8)
        buf[i] = get_bits(gb, 8);

    buf[i] = 0;
    if (ac->avctx->debug & FF_DEBUG_PICT_INFO)
        av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf);

    if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){
        ac->avctx->internal->skip_samples = 1024;
    }

unknown:
    skip_bits_long(gb, len);

    return 0;
}

1973 1974 1975 1976 1977 1978 1979
/**
 * Decode extension data (incomplete); reference: table 4.51.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return Returns number of bytes consumed
 */
1980 1981
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
                                    ChannelElement *che, enum RawDataBlockType elem_type)
1982
{
1983 1984 1985
    int crc_flag = 0;
    int res = cnt;
    switch (get_bits(gb, 4)) { // extension type
1986 1987 1988
    case EXT_SBR_DATA_CRC:
        crc_flag++;
    case EXT_SBR_DATA:
1989
        if (!che) {
1990
            av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
1991
            return res;
1992
        } else if (!ac->oc[1].m4ac.sbr) {
1993
            av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
1994 1995
            skip_bits_long(gb, 8 * cnt - 4);
            return res;
1996
        } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) {
1997
            av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
1998 1999
            skip_bits_long(gb, 8 * cnt - 4);
            return res;
2000 2001 2002 2003
        } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) {
            ac->oc[1].m4ac.sbr = 1;
            ac->oc[1].m4ac.ps = 1;
            output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
2004
                             ac->oc[1].status);
2005
        } else {
2006
            ac->oc[1].m4ac.sbr = 1;
2007 2008
        }
        res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
2009 2010
        break;
    case EXT_DYNAMIC_RANGE:
2011
        res = decode_dynamic_range(&ac->che_drc, gb);
2012 2013
        break;
    case EXT_FILL:
2014 2015
        decode_fill(ac, gb, 8 * cnt - 4);
        break;
2016 2017 2018 2019 2020
    case EXT_FILL_DATA:
    case EXT_DATA_ELEMENT:
    default:
        skip_bits_long(gb, 8 * cnt - 4);
        break;
2021 2022 2023 2024
    };
    return res;
}

2025 2026 2027 2028 2029 2030
/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
2031 2032 2033 2034
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
                      IndividualChannelStream *ics, int decode)
{
    const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
Robert Swain's avatar
Robert Swain committed
2035
    int w, filt, m, i;
2036 2037
    int bottom, top, order, start, end, size, inc;
    float lpc[TNS_MAX_ORDER];
2038
    float tmp[TNS_MAX_ORDER+1];
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

2049 2050
            // tns_decode_coef
            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
2051

2052 2053 2054 2055 2056
            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
2057 2058
                inc = -1;
                start = end - 1;
2059 2060 2061 2062 2063
            } else {
                inc = 1;
            }
            start += w * 128;

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
            if (decode) {
                // ar filter
                for (m = 0; m < size; m++, start += inc)
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] -= coef[start - i * inc] * lpc[i - 1];
            } else {
                // ma filter
                for (m = 0; m < size; m++, start += inc) {
                    tmp[0] = coef[start];
                    for (i = 1; i <= FFMIN(m, order); i++)
                        coef[start] += tmp[i] * lpc[i - 1];
                    for (i = order; i > 0; i--)
                        tmp[i] = tmp[i - 1];
                }
            }
2079 2080 2081 2082
        }
    }
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
/**
 *  Apply windowing and MDCT to obtain the spectral
 *  coefficient from the predicted sample by LTP.
 */
static void windowing_and_mdct_ltp(AACContext *ac, float *out,
                                   float *in, IndividualChannelStream *ics)
{
    const float *lwindow      = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;

    if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
2096
        ac->fdsp.vector_fmul(in, in, lwindow_prev, 1024);
2097 2098
    } else {
        memset(in, 0, 448 * sizeof(float));
2099
        ac->fdsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
2100 2101 2102 2103 2104 2105 2106
    }
    if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
        ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
    } else {
        ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
        memset(in + 1024 + 576, 0, 448 * sizeof(float));
    }
2107
    ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
}

/**
 * Apply the long term prediction
 */
static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
{
    const LongTermPrediction *ltp = &sce->ics.ltp;
    const uint16_t *offsets = sce->ics.swb_offset;
    int i, sfb;

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
2120 2121
        float *predTime = sce->ret;
        float *predFreq = ac->buf_mdct;
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        int16_t num_samples = 2048;

        if (ltp->lag < 1024)
            num_samples = ltp->lag + 1024;
        for (i = 0; i < num_samples; i++)
            predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
        memset(&predTime[i], 0, (2048 - i) * sizeof(float));

        windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);

        if (sce->tns.present)
            apply_tns(predFreq, &sce->tns, &sce->ics, 0);

        for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
            if (ltp->used[sfb])
                for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
                    sce->coeffs[i] += predFreq[i];
    }
}

/**
 * Update the LTP buffer for next frame
 */
static void update_ltp(AACContext *ac, SingleChannelElement *sce)
{
    IndividualChannelStream *ics = &sce->ics;
    float *saved     = sce->saved;
    float *saved_ltp = sce->coeffs;
    const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    int i;

    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        memcpy(saved_ltp,       saved, 512 * sizeof(float));
        memset(saved_ltp + 576, 0,     448 * sizeof(float));
2157 2158 2159
        ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
2160 2161 2162
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(saved_ltp,       ac->buf_mdct + 512, 448 * sizeof(float));
        memset(saved_ltp + 576, 0,                  448 * sizeof(float));
2163 2164 2165
        ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960,     &swindow[64],      64);
        for (i = 0; i < 64; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
2166
    } else { // LONG_STOP or ONLY_LONG
2167 2168 2169
        ac->dsp.vector_fmul_reverse(saved_ltp,       ac->buf_mdct + 512,     &lwindow[512],     512);
        for (i = 0; i < 512; i++)
            saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
2170 2171
    }

2172 2173 2174
    memcpy(sce->ltp_state,      sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
    memcpy(sce->ltp_state+1024, sce->ret,            1024 * sizeof(*sce->ltp_state));
    memcpy(sce->ltp_state+2048, saved_ltp,           1024 * sizeof(*sce->ltp_state));
2175 2176
}

2177 2178 2179
/**
 * Conduct IMDCT and windowing.
 */
2180
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
    IndividualChannelStream *ics = &sce->ics;
    float *in    = sce->coeffs;
    float *out   = sce->ret;
    float *saved = sce->saved;
    const float *swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
    float *buf  = ac->buf_mdct;
    float *temp = ac->temp;
2191 2192
    int i;

2193
    // imdct
2194
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2195
        for (i = 0; i < 1024; i += 128)
2196
            ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
2197
    } else
2198
        ac->mdct.imdct_half(&ac->mdct, buf, in);
2199 2200 2201 2202 2203 2204 2205 2206

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
2207
            (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
2208
        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, 512);
2209
    } else {
2210
        memcpy(                        out,               saved,            448 * sizeof(float));
2211

2212
        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2213 2214 2215 2216 2217
            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, 64);
            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      64);
            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      64);
            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      64);
            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      64);
2218
            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
2219
        } else {
2220
            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, 64);
2221
            memcpy(                    out + 576,         buf + 64,         448 * sizeof(float));
2222 2223
        }
    }
2224

2225 2226
    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2227
        memcpy(                    saved,       temp + 64,         64 * sizeof(float));
2228 2229 2230
        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 64);
        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
2231
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
2232
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
2233 2234
        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
2235
    } else { // LONG_STOP or ONLY_LONG
2236
        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
2237 2238 2239
    }
}

2240 2241 2242 2243 2244
/**
 * Apply dependent channel coupling (applied before IMDCT).
 *
 * @param   index   index into coupling gain array
 */
2245 2246 2247 2248 2249 2250 2251 2252
static void apply_dependent_coupling(AACContext *ac,
                                     SingleChannelElement *target,
                                     ChannelElement *cce, int index)
{
    IndividualChannelStream *ics = &cce->ch[0].ics;
    const uint16_t *offsets = ics->swb_offset;
    float *dest = target->coeffs;
    const float *src = cce->ch[0].coeffs;
2253
    int g, i, group, k, idx = 0;
2254
    if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
2255
        av_log(ac->avctx, AV_LOG_ERROR,
2256 2257 2258 2259 2260
               "Dependent coupling is not supported together with LTP\n");
        return;
    }
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
2261
            if (cce->ch[0].band_type[idx] != ZERO_BT) {
2262
                const float gain = cce->coup.gain[index][idx];
2263
                for (group = 0; group < ics->group_len[g]; group++) {
2264
                    for (k = offsets[i]; k < offsets[i + 1]; k++) {
2265
                        // XXX dsputil-ize
2266
                        dest[group * 128 + k] += gain * src[group * 128 + k];
2267 2268 2269 2270
                    }
                }
            }
        }
2271 2272
        dest += ics->group_len[g] * 128;
        src  += ics->group_len[g] * 128;
2273 2274 2275 2276 2277 2278 2279 2280
    }
}

/**
 * Apply independent channel coupling (applied after IMDCT).
 *
 * @param   index   index into coupling gain array
 */
2281 2282 2283 2284
static void apply_independent_coupling(AACContext *ac,
                                       SingleChannelElement *target,
                                       ChannelElement *cce, int index)
{
2285
    int i;
2286
    const float gain = cce->coup.gain[index][0];
2287 2288
    const float *src = cce->ch[0].ret;
    float *dest = target->ret;
2289
    const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
2290

2291
    for (i = 0; i < len; i++)
2292
        dest[i] += gain * src[i];
2293 2294
}

2295 2296 2297 2298 2299
/**
 * channel coupling transformation interface
 *
 * @param   apply_coupling_method   pointer to (in)dependent coupling function
 */
2300 2301 2302 2303
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
                                   enum RawDataBlockType type, int elem_id,
                                   enum CouplingPoint coupling_point,
                                   void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
2304
{
2305 2306 2307 2308 2309 2310 2311
    int i, c;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        ChannelElement *cce = ac->che[TYPE_CCE][i];
        int index = 0;

        if (cce && cce->coup.coupling_point == coupling_point) {
2312
            ChannelCoupling *coup = &cce->coup;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

            for (c = 0; c <= coup->num_coupled; c++) {
                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                    if (coup->ch_select[c] != 1) {
                        apply_coupling_method(ac, &cc->ch[0], cce, index);
                        if (coup->ch_select[c] != 0)
                            index++;
                    }
                    if (coup->ch_select[c] != 2)
                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
                } else
                    index += 1 + (coup->ch_select[c] == 3);
2325 2326 2327 2328 2329 2330 2331 2332
            }
        }
    }
}

/**
 * Convert spectral data to float samples, applying all supported tools as appropriate.
 */
2333 2334
static void spectral_to_sample(AACContext *ac)
{
2335 2336
    int i, type;
    for (type = 3; type >= 0; type--) {
2337
        for (i = 0; i < MAX_ELEM_ID; i++) {
2338
            ChannelElement *che = ac->che[type][i];
2339 2340
            if (che) {
                if (type <= TYPE_CPE)
2341
                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
2342
                if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
2343 2344 2345 2346 2347 2348 2349
                    if (che->ch[0].ics.predictor_present) {
                        if (che->ch[0].ics.ltp.present)
                            apply_ltp(ac, &che->ch[0]);
                        if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
                            apply_ltp(ac, &che->ch[1]);
                    }
                }
2350
                if (che->ch[0].tns.present)
2351
                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
2352
                if (che->ch[1].tns.present)
2353
                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
2354
                if (type <= TYPE_CPE)
2355
                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
2356
                if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
2357
                    imdct_and_windowing(ac, &che->ch[0]);
2358
                    if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2359
                        update_ltp(ac, &che->ch[0]);
Alex Converse's avatar
Alex Converse committed
2360
                    if (type == TYPE_CPE) {
2361
                        imdct_and_windowing(ac, &che->ch[1]);
2362
                        if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2363
                            update_ltp(ac, &che->ch[1]);
Alex Converse's avatar
Alex Converse committed
2364
                    }
2365
                    if (ac->oc[1].m4ac.sbr > 0) {
2366 2367
                        ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
                    }
2368
                }
2369
                if (type <= TYPE_CCE)
2370
                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
2371 2372 2373 2374 2375
            }
        }
    }
}

2376 2377
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
{
2378 2379
    int size;
    AACADTSHeaderInfo hdr_info;
2380 2381
    uint8_t layout_map[MAX_ELEM_ID*4][3];
    int layout_map_tags;
2382

2383
    size = avpriv_aac_parse_header(gb, &hdr_info);
2384
    if (size > 0) {
2385 2386 2387
        if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
            // This is 2 for "VLB " audio in NSV files.
            // See samples/nsv/vlb_audio.
2388
            av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame", 0);
2389
            ac->warned_num_aac_frames = 1;
2390 2391
        }
        push_output_configuration(ac);
2392
        if (hdr_info.chan_config) {
2393
            ac->oc[1].m4ac.chan_config = hdr_info.chan_config;
2394 2395
            if (set_default_channel_config(ac->avctx, layout_map,
                    &layout_map_tags, hdr_info.chan_config))
2396
                return -7;
2397
            if (output_configure(ac, layout_map, layout_map_tags,
2398
                                 FFMAX(ac->oc[1].status, OC_TRIAL_FRAME)))
2399
                return -7;
2400
        } else {
2401
            ac->oc[1].m4ac.chan_config = 0;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
            /**
             * dual mono frames in Japanese DTV can have chan_config 0
             * WITHOUT specifying PCE.
             *  thus, set dual mono as default.
             */
            if (ac->enable_jp_dmono && ac->oc[0].status == OC_NONE) {
                layout_map_tags = 2;
                layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
                layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
                layout_map[0][1] = 0;
                layout_map[1][1] = 1;
                if (output_configure(ac, layout_map, layout_map_tags,
2414
                                     OC_TRIAL_FRAME))
2415 2416
                    return -7;
            }
2417
        }
2418 2419 2420 2421 2422 2423 2424 2425
        ac->oc[1].m4ac.sample_rate     = hdr_info.sample_rate;
        ac->oc[1].m4ac.sampling_index  = hdr_info.sampling_index;
        ac->oc[1].m4ac.object_type     = hdr_info.object_type;
        if (ac->oc[0].status != OC_LOCKED ||
            ac->oc[0].m4ac.chan_config != hdr_info.chan_config ||
            ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) {
            ac->oc[1].m4ac.sbr = -1;
            ac->oc[1].m4ac.ps  = -1;
2426
        }
2427 2428
        if (!hdr_info.crc_absent)
            skip_bits(gb, 16);
2429
    }
2430 2431 2432
    return size;
}

2433
static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
2434
                                int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt)
2435
{
2436
    AACContext *ac = avctx->priv_data;
2437 2438
    ChannelElement *che = NULL, *che_prev = NULL;
    enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
2439
    int err, elem_id;
2440
    int samples = 0, multiplier, audio_found = 0, pce_found = 0;
2441 2442
    int is_dmono, sce_count = 0;
    float *tmp = NULL;
2443

2444 2445
    if (show_bits(gb, 12) == 0xfff) {
        if (parse_adts_frame_header(ac, gb) < 0) {
2446
            av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
2447 2448
            err = -1;
            goto fail;
2449
        }
2450 2451 2452 2453
        if (ac->oc[1].m4ac.sampling_index > 12) {
            av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index);
            err = -1;
            goto fail;
2454
        }
2455 2456
    }

2457
    ac->tags_mapped = 0;
2458
    // parse
2459 2460
    while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
        elem_id = get_bits(gb, 4);
2461

2462
        if (elem_type < TYPE_DSE) {
2463 2464 2465
            if (!(che=get_che(ac, elem_type, elem_id))) {
                av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
                       elem_type, elem_id);
2466 2467
                err = -1;
                goto fail;
2468
            }
2469
            samples = 1024;
2470
        }
2471

2472 2473 2474
        switch (elem_type) {

        case TYPE_SCE:
2475
            err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2476
            audio_found = 1;
2477
            sce_count++;
2478 2479 2480
            break;

        case TYPE_CPE:
2481
            err = decode_cpe(ac, gb, che);
2482
            audio_found = 1;
2483 2484 2485
            break;

        case TYPE_CCE:
2486
            err = decode_cce(ac, gb, che);
2487 2488 2489
            break;

        case TYPE_LFE:
2490
            err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2491
            audio_found = 1;
2492 2493 2494
            break;

        case TYPE_DSE:
2495
            err = skip_data_stream_element(ac, gb);
2496 2497
            break;

2498
        case TYPE_PCE: {
2499 2500
            uint8_t layout_map[MAX_ELEM_ID*4][3];
            int tags;
2501 2502
            push_output_configuration(ac);
            tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb);
2503 2504
            if (tags < 0) {
                err = tags;
2505
                break;
2506
            }
2507
            if (pce_found) {
2508 2509 2510 2511
                av_log(avctx, AV_LOG_ERROR,
                       "Not evaluating a further program_config_element as this construct is dubious at best.\n");
                pop_output_configuration(ac);
            } else {
2512
                err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE);
2513 2514 2515
                if (!err)
                    ac->oc[1].m4ac.chan_config = 0;
                pce_found = 1;
2516
            }
2517 2518 2519 2520 2521
            break;
        }

        case TYPE_FIL:
            if (elem_id == 15)
2522 2523
                elem_id += get_bits(gb, 8) - 1;
            if (get_bits_left(gb) < 8 * elem_id) {
2524
                    av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err);
2525 2526
                    err = -1;
                    goto fail;
2527
            }
2528
            while (elem_id > 0)
2529
                elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
2530 2531 2532 2533 2534 2535 2536 2537
            err = 0; /* FIXME */
            break;

        default:
            err = -1; /* should not happen, but keeps compiler happy */
            break;
        }

2538 2539 2540
        che_prev       = che;
        elem_type_prev = elem_type;

2541
        if (err)
2542
            goto fail;
2543

2544
        if (get_bits_left(gb) < 3) {
2545
            av_log(avctx, AV_LOG_ERROR, overread_err);
2546 2547
            err = -1;
            goto fail;
2548
        }
2549 2550 2551 2552
    }

    spectral_to_sample(ac);

2553
    multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0;
2554 2555
    samples <<= multiplier;

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
    /* for dual-mono audio (SCE + SCE) */
    is_dmono = ac->enable_jp_dmono && sce_count == 2 &&
               ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT);

    if (is_dmono) {
        if (ac->dmono_mode == 0) {
            tmp = ac->output_data[1];
            ac->output_data[1] = ac->output_data[0];
        } else if (ac->dmono_mode == 1) {
            tmp = ac->output_data[0];
            ac->output_data[0] = ac->output_data[1];
        }
    }

2570
    if (samples) {
2571 2572 2573 2574
        /* get output buffer */
        ac->frame.nb_samples = samples;
        if ((err = avctx->get_buffer(avctx, &ac->frame)) < 0) {
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
2575 2576
            err = -1;
            goto fail;
2577 2578
        }

2579
        if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
2580 2581
            ac->fmt_conv.float_interleave((float *)ac->frame.data[0],
                                          (const float **)ac->output_data,
2582 2583
                                          samples, avctx->channels);
        else
2584 2585
            ac->fmt_conv.float_to_int16_interleave((int16_t *)ac->frame.data[0],
                                                   (const float **)ac->output_data,
2586
                                                   samples, avctx->channels);
2587 2588

        *(AVFrame *)data = ac->frame;
2589
    }
2590
    *got_frame_ptr = !!samples;
2591

2592 2593 2594 2595 2596 2597 2598
    if (is_dmono) {
        if (ac->dmono_mode == 0)
            ac->output_data[1] = tmp;
        else if (ac->dmono_mode == 1)
            ac->output_data[0] = tmp;
    }

2599 2600 2601 2602 2603
    if (ac->oc[1].status && audio_found) {
        avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;
        avctx->frame_size = samples;
        ac->oc[1].status = OC_LOCKED;
    }
2604

2605 2606 2607 2608 2609 2610
    if (multiplier) {
        int side_size;
        uint32_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size);
        if (side && side_size>=4)
            AV_WL32(side, 2*AV_RL32(side));
    }
2611
    return 0;
2612 2613 2614
fail:
    pop_output_configuration(ac);
    return err;
2615 2616 2617
}

static int aac_decode_frame(AVCodecContext *avctx, void *data,
2618
                            int *got_frame_ptr, AVPacket *avpkt)
2619
{
2620
    AACContext *ac = avctx->priv_data;
2621 2622 2623 2624 2625 2626
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    GetBitContext gb;
    int buf_consumed;
    int buf_offset;
    int err;
2627 2628 2629 2630
    int new_extradata_size;
    const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
                                       AV_PKT_DATA_NEW_EXTRADATA,
                                       &new_extradata_size);
2631 2632 2633 2634
    int jp_dualmono_size;
    const uint8_t *jp_dualmono   = av_packet_get_side_data(avpkt,
                                       AV_PKT_DATA_JP_DUALMONO,
                                       &jp_dualmono_size);
2635

2636
    if (new_extradata && 0) {
2637 2638 2639 2640 2641 2642 2643
        av_free(avctx->extradata);
        avctx->extradata = av_mallocz(new_extradata_size +
                                      FF_INPUT_BUFFER_PADDING_SIZE);
        if (!avctx->extradata)
            return AVERROR(ENOMEM);
        avctx->extradata_size = new_extradata_size;
        memcpy(avctx->extradata, new_extradata, new_extradata_size);
2644 2645
        push_output_configuration(ac);
        if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
2646
                                         avctx->extradata,
2647 2648
                                         avctx->extradata_size*8, 1) < 0) {
            pop_output_configuration(ac);
2649
            return AVERROR_INVALIDDATA;
2650
        }
2651
    }
2652

2653 2654 2655 2656 2657
    ac->enable_jp_dmono = !!jp_dualmono;
    ac->dmono_mode = 0;
    if (jp_dualmono && jp_dualmono_size > 0)
        ac->dmono_mode = *jp_dualmono;

2658 2659
    init_get_bits(&gb, buf, buf_size * 8);

2660
    if ((err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt)) < 0)
2661 2662
        return err;

2663
    buf_consumed = (get_bits_count(&gb) + 7) >> 3;
2664 2665 2666 2667 2668
    for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
        if (buf[buf_offset])
            break;

    return buf_size > buf_offset ? buf_consumed : buf_size;
2669 2670
}

2671
static av_cold int aac_decode_close(AVCodecContext *avctx)
2672
{
2673
    AACContext *ac = avctx->priv_data;
2674
    int i, type;
2675

2676
    for (i = 0; i < MAX_ELEM_ID; i++) {
2677 2678 2679
        for (type = 0; type < 4; type++) {
            if (ac->che[type][i])
                ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
2680
            av_freep(&ac->che[type][i]);
2681
        }
2682 2683 2684 2685
    }

    ff_mdct_end(&ac->mdct);
    ff_mdct_end(&ac->mdct_small);
2686
    ff_mdct_end(&ac->mdct_ltp);
2687
    return 0;
2688 2689
}

2690 2691 2692 2693 2694

#define LOAS_SYNC_WORD   0x2b7       ///< 11 bits LOAS sync word

struct LATMContext {
    AACContext      aac_ctx;             ///< containing AACContext
2695
    int             initialized;         ///< initialized after a valid extradata was seen
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

    // parser data
    int             audio_mux_version_A; ///< LATM syntax version
    int             frame_length_type;   ///< 0/1 variable/fixed frame length
    int             frame_length;        ///< frame length for fixed frame length
};

static inline uint32_t latm_get_value(GetBitContext *b)
{
    int length = get_bits(b, 2);

    return get_bits_long(b, (length+1)*8);
}

static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
2711
                                             GetBitContext *gb, int asclen)
2712
{
2713 2714
    AACContext *ac        = &latmctx->aac_ctx;
    AVCodecContext *avctx = ac->avctx;
2715
    MPEG4AudioConfig m4ac = { 0 };
2716 2717 2718 2719 2720 2721 2722 2723 2724
    int config_start_bit  = get_bits_count(gb);
    int sync_extension    = 0;
    int bits_consumed, esize;

    if (asclen) {
        sync_extension = 1;
        asclen         = FFMIN(asclen, get_bits_left(gb));
    } else
        asclen         = get_bits_left(gb);
2725 2726

    if (config_start_bit % 8) {
2727 2728
        av_log_missing_feature(latmctx->aac_ctx.avctx,
                               "Non-byte-aligned audio-specific config", 1);
2729
        return AVERROR_PATCHWELCOME;
2730
    }
2731 2732
    if (asclen <= 0)
        return AVERROR_INVALIDDATA;
2733
    bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac,
2734
                                         gb->buffer + (config_start_bit / 8),
2735
                                         asclen, sync_extension);
2736

2737 2738 2739
    if (bits_consumed < 0)
        return AVERROR_INVALIDDATA;

2740 2741
    if (!latmctx->initialized ||
        ac->oc[1].m4ac.sample_rate != m4ac.sample_rate ||
2742
        ac->oc[1].m4ac.chan_config != m4ac.chan_config) {
2743

2744 2745 2746 2747 2748
        if(latmctx->initialized) {
            av_log(avctx, AV_LOG_INFO, "audio config changed\n");
        } else {
            av_log(avctx, AV_LOG_INFO, "initializing latmctx\n");
        }
2749
        latmctx->initialized = 0;
2750 2751 2752

        esize = (bits_consumed+7) / 8;

2753
        if (avctx->extradata_size < esize) {
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
            av_free(avctx->extradata);
            avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
            if (!avctx->extradata)
                return AVERROR(ENOMEM);
        }

        avctx->extradata_size = esize;
        memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
        memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
    }
2764
    skip_bits_long(gb, bits_consumed);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

    return bits_consumed;
}

static int read_stream_mux_config(struct LATMContext *latmctx,
                                  GetBitContext *gb)
{
    int ret, audio_mux_version = get_bits(gb, 1);

    latmctx->audio_mux_version_A = 0;
    if (audio_mux_version)
        latmctx->audio_mux_version_A = get_bits(gb, 1);

    if (!latmctx->audio_mux_version_A) {

        if (audio_mux_version)
            latm_get_value(gb);                 // taraFullness

        skip_bits(gb, 1);                       // allStreamSameTimeFraming
        skip_bits(gb, 6);                       // numSubFrames
        // numPrograms
        if (get_bits(gb, 4)) {                  // numPrograms
            av_log_missing_feature(latmctx->aac_ctx.avctx,
2788
                                   "Multiple programs", 1);
2789 2790 2791
            return AVERROR_PATCHWELCOME;
        }

2792
        // for each program (which there is only one in DVB)
2793

2794
        // for each layer (which there is only one in DVB)
2795 2796
        if (get_bits(gb, 3)) {                   // numLayer
            av_log_missing_feature(latmctx->aac_ctx.avctx,
2797
                                   "Multiple layers", 1);
2798 2799 2800 2801 2802
            return AVERROR_PATCHWELCOME;
        }

        // for all but first stream: use_same_config = get_bits(gb, 1);
        if (!audio_mux_version) {
2803
            if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
2804 2805 2806
                return ret;
        } else {
            int ascLen = latm_get_value(gb);
2807
            if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
                return ret;
            ascLen -= ret;
            skip_bits_long(gb, ascLen);
        }

        latmctx->frame_length_type = get_bits(gb, 3);
        switch (latmctx->frame_length_type) {
        case 0:
            skip_bits(gb, 8);       // latmBufferFullness
            break;
        case 1:
            latmctx->frame_length = get_bits(gb, 9);
            break;
        case 3:
        case 4:
        case 5:
            skip_bits(gb, 6);       // CELP frame length table index
            break;
        case 6:
        case 7:
            skip_bits(gb, 1);       // HVXC frame length table index
            break;
        }

        if (get_bits(gb, 1)) {                  // other data
            if (audio_mux_version) {
                latm_get_value(gb);             // other_data_bits
            } else {
                int esc;
                do {
                    esc = get_bits(gb, 1);
                    skip_bits(gb, 8);
                } while (esc);
            }
        }

        if (get_bits(gb, 1))                     // crc present
            skip_bits(gb, 8);                    // config_crc
    }

    return 0;
}

static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
{
    uint8_t tmp;

    if (ctx->frame_length_type == 0) {
        int mux_slot_length = 0;
        do {
            tmp = get_bits(gb, 8);
            mux_slot_length += tmp;
        } while (tmp == 255);
        return mux_slot_length;
    } else if (ctx->frame_length_type == 1) {
        return ctx->frame_length;
    } else if (ctx->frame_length_type == 3 ||
               ctx->frame_length_type == 5 ||
               ctx->frame_length_type == 7) {
        skip_bits(gb, 2);          // mux_slot_length_coded
    }
    return 0;
}

static int read_audio_mux_element(struct LATMContext *latmctx,
                                  GetBitContext *gb)
{
    int err;
    uint8_t use_same_mux = get_bits(gb, 1);
    if (!use_same_mux) {
        if ((err = read_stream_mux_config(latmctx, gb)) < 0)
            return err;
    } else if (!latmctx->aac_ctx.avctx->extradata) {
        av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
               "no decoder config found\n");
        return AVERROR(EAGAIN);
    }
    if (latmctx->audio_mux_version_A == 0) {
        int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
        if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
            av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
            return AVERROR_INVALIDDATA;
        } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
            av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
                   "frame length mismatch %d << %d\n",
                   mux_slot_length_bytes * 8, get_bits_left(gb));
            return AVERROR_INVALIDDATA;
        }
    }
    return 0;
}


2901 2902
static int latm_decode_frame(AVCodecContext *avctx, void *out,
                             int *got_frame_ptr, AVPacket *avpkt)
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
{
    struct LATMContext *latmctx = avctx->priv_data;
    int                 muxlength, err;
    GetBitContext       gb;

    init_get_bits(&gb, avpkt->data, avpkt->size * 8);

    // check for LOAS sync word
    if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
        return AVERROR_INVALIDDATA;

2914
    muxlength = get_bits(&gb, 13) + 3;
2915
    // not enough data, the parser should have sorted this out
2916
    if (muxlength > avpkt->size)
2917 2918 2919 2920 2921 2922 2923
        return AVERROR_INVALIDDATA;

    if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
        return err;

    if (!latmctx->initialized) {
        if (!avctx->extradata) {
2924
            *got_frame_ptr = 0;
2925 2926
            return avpkt->size;
        } else {
2927
            push_output_configuration(&latmctx->aac_ctx);
2928
            if ((err = decode_audio_specific_config(
2929 2930 2931
                    &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac,
                    avctx->extradata, avctx->extradata_size*8, 1)) < 0) {
                pop_output_configuration(&latmctx->aac_ctx);
2932
                return err;
2933
            }
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
            latmctx->initialized = 1;
        }
    }

    if (show_bits(&gb, 12) == 0xfff) {
        av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
               "ADTS header detected, probably as result of configuration "
               "misparsing\n");
        return AVERROR_INVALIDDATA;
    }

2945
    if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0)
2946 2947 2948 2949 2950
        return err;

    return muxlength;
}

2951
static av_cold int latm_decode_init(AVCodecContext *avctx)
2952 2953
{
    struct LATMContext *latmctx = avctx->priv_data;
2954
    int ret = aac_decode_init(avctx);
2955

2956
    if (avctx->extradata_size > 0)
2957 2958 2959 2960 2961 2962
        latmctx->initialized = !ret;

    return ret;
}


2963
AVCodec ff_aac_decoder = {
2964 2965
    .name            = "aac",
    .type            = AVMEDIA_TYPE_AUDIO,
2966
    .id              = AV_CODEC_ID_AAC,
2967 2968 2969 2970
    .priv_data_size  = sizeof(AACContext),
    .init            = aac_decode_init,
    .close           = aac_decode_close,
    .decode          = aac_decode_frame,
2971
    .long_name       = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
2972
    .sample_fmts     = (const enum AVSampleFormat[]) {
2973
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
2974
    },
2975
    .capabilities    = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
2976
    .channel_layouts = aac_channel_layout,
2977
    .flush = flush,
2978
};
2979 2980 2981 2982 2983 2984

/*
    Note: This decoder filter is intended to decode LATM streams transferred
    in MPEG transport streams which only contain one program.
    To do a more complex LATM demuxing a separate LATM demuxer should be used.
*/
2985
AVCodec ff_aac_latm_decoder = {
2986 2987
    .name            = "aac_latm",
    .type            = AVMEDIA_TYPE_AUDIO,
2988
    .id              = AV_CODEC_ID_AAC_LATM,
2989 2990 2991 2992
    .priv_data_size  = sizeof(struct LATMContext),
    .init            = latm_decode_init,
    .close           = aac_decode_close,
    .decode          = latm_decode_frame,
2993
    .long_name       = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"),
2994
    .sample_fmts     = (const enum AVSampleFormat[]) {
2995
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
2996
    },
2997
    .capabilities    = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
2998
    .channel_layouts = aac_channel_layout,
2999
    .flush = flush,
3000
};