mdct_template.c 5.45 KB
Newer Older
1 2
/*
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard
4
 *
5 6 7
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

22 23 24
#include <stdlib.h>
#include <string.h>
#include "libavutil/common.h"
25
#include "libavutil/libm.h"
26 27
#include "libavutil/mathematics.h"
#include "fft.h"
Mans Rullgard's avatar
Mans Rullgard committed
28
#include "fft-internal.h"
29

Michael Niedermayer's avatar
Michael Niedermayer committed
30
/**
31
 * @file
Michael Niedermayer's avatar
Michael Niedermayer committed
32 33 34
 * MDCT/IMDCT transforms.
 */

35
#if FFT_FLOAT
36
#   define RSCALE(x, y) ((x) + (y))
Mans Rullgard's avatar
Mans Rullgard committed
37
#else
38
#if FFT_FIXED_32
39
#   define RSCALE(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
40
#else /* FFT_FIXED_32 */
41
#   define RSCALE(x, y) ((int)((x) + (unsigned)(y)) >> 1)
42
#endif /* FFT_FIXED_32 */
Mans Rullgard's avatar
Mans Rullgard committed
43 44
#endif

Michael Niedermayer's avatar
Michael Niedermayer committed
45 46
/**
 * init MDCT or IMDCT computation.
47
 */
48
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
49 50
{
    int n, n4, i;
51
    double alpha, theta;
52
    int tstep;
53 54 55

    memset(s, 0, sizeof(*s));
    n = 1 << nbits;
56 57
    s->mdct_bits = nbits;
    s->mdct_size = n;
58
    n4 = n >> 2;
59
    s->mdct_permutation = FF_MDCT_PERM_NONE;
60 61 62 63

    if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
        goto fail;

64
    s->tcos = av_malloc_array(n/2, sizeof(FFTSample));
65 66
    if (!s->tcos)
        goto fail;
67

68
    switch (s->mdct_permutation) {
69 70 71 72 73 74 75 76 77
    case FF_MDCT_PERM_NONE:
        s->tsin = s->tcos + n4;
        tstep = 1;
        break;
    case FF_MDCT_PERM_INTERLEAVE:
        s->tsin = s->tcos + 1;
        tstep = 2;
        break;
    default:
78
        goto fail;
79
    }
80

81 82
    theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
    scale = sqrt(fabs(scale));
83
    for(i=0;i<n4;i++) {
84
        alpha = 2 * M_PI * (i + theta) / n;
85
#if FFT_FIXED_32
86 87
        s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0);
        s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0);
88
#else
Mans Rullgard's avatar
Mans Rullgard committed
89 90
        s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
        s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
91
#endif
92 93 94
    }
    return 0;
 fail:
95
    ff_mdct_end(s);
96 97 98
    return -1;
}

Loren Merritt's avatar
Loren Merritt committed
99 100 101 102 103 104
/**
 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
 * thus excluding the parts that can be derived by symmetry
 * @param output N/2 samples
 * @param input N/2 samples
 */
105
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
106
{
Loren Merritt's avatar
Loren Merritt committed
107
    int k, n8, n4, n2, n, j;
108
    const uint16_t *revtab = s->revtab;
109 110 111
    const FFTSample *tcos = s->tcos;
    const FFTSample *tsin = s->tsin;
    const FFTSample *in1, *in2;
Loren Merritt's avatar
Loren Merritt committed
112
    FFTComplex *z = (FFTComplex *)output;
113

114
    n = 1 << s->mdct_bits;
115 116
    n2 = n >> 1;
    n4 = n >> 2;
Loren Merritt's avatar
Loren Merritt committed
117
    n8 = n >> 3;
118 119 120 121 122 123 124 125 126 127

    /* pre rotation */
    in1 = input;
    in2 = input + n2 - 1;
    for(k = 0; k < n4; k++) {
        j=revtab[k];
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
        in1 += 2;
        in2 -= 2;
    }
128
    s->fft_calc(s, z);
129 130

    /* post rotation + reordering */
Loren Merritt's avatar
Loren Merritt committed
131 132 133 134 135 136 137 138
    for(k = 0; k < n8; k++) {
        FFTSample r0, i0, r1, i1;
        CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
        CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
        z[n8-k-1].re = r0;
        z[n8-k-1].im = i0;
        z[n8+k  ].re = r1;
        z[n8+k  ].im = i1;
139
    }
Loren Merritt's avatar
Loren Merritt committed
140 141 142 143 144 145 146
}

/**
 * Compute inverse MDCT of size N = 2^nbits
 * @param output N samples
 * @param input N/2 samples
 */
147
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
Loren Merritt's avatar
Loren Merritt committed
148
{
Loren Merritt's avatar
Loren Merritt committed
149
    int k;
150
    int n = 1 << s->mdct_bits;
Loren Merritt's avatar
Loren Merritt committed
151 152
    int n2 = n >> 1;
    int n4 = n >> 2;
153

154
    ff_imdct_half_c(s, output+n4, input);
155

Loren Merritt's avatar
Loren Merritt committed
156 157 158
    for(k = 0; k < n4; k++) {
        output[k] = -output[n2-k-1];
        output[n-k-1] = output[n2+k];
Loren Merritt's avatar
Loren Merritt committed
159 160 161
    }
}

162 163 164 165 166
/**
 * Compute MDCT of size N = 2^nbits
 * @param input N samples
 * @param out N/2 samples
 */
167
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
168 169
{
    int i, j, n, n8, n4, n2, n3;
Mans Rullgard's avatar
Mans Rullgard committed
170
    FFTDouble re, im;
171
    const uint16_t *revtab = s->revtab;
172 173
    const FFTSample *tcos = s->tcos;
    const FFTSample *tsin = s->tsin;
Loren Merritt's avatar
Loren Merritt committed
174
    FFTComplex *x = (FFTComplex *)out;
175

176
    n = 1 << s->mdct_bits;
177 178 179 180 181 182 183
    n2 = n >> 1;
    n4 = n >> 2;
    n8 = n >> 3;
    n3 = 3 * n4;

    /* pre rotation */
    for(i=0;i<n8;i++) {
184 185
        re = RSCALE(-input[2*i+n3], - input[n3-1-2*i]);
        im = RSCALE(-input[n4+2*i], + input[n4-1-2*i]);
186 187 188
        j = revtab[i];
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);

189 190
        re = RSCALE( input[2*i]   , - input[n2-1-2*i]);
        im = RSCALE(-input[n2+2*i], - input[ n-1-2*i]);
191 192 193 194
        j = revtab[n8 + i];
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
    }

195
    s->fft_calc(s, x);
196

197
    /* post rotation */
Loren Merritt's avatar
Loren Merritt committed
198 199 200 201 202 203 204 205
    for(i=0;i<n8;i++) {
        FFTSample r0, i0, r1, i1;
        CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
        CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
        x[n8-i-1].re = r0;
        x[n8-i-1].im = i0;
        x[n8+i  ].re = r1;
        x[n8+i  ].im = i1;
206 207 208
    }
}

209
av_cold void ff_mdct_end(FFTContext *s)
210 211
{
    av_freep(&s->tcos);
212
    ff_fft_end(s);
213
}