huffyuvenc.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
 *
 * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
 * the algorithm used
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * huffyuv encoder
 */

#include "avcodec.h"
#include "huffyuv.h"
#include "huffman.h"
#include "put_bits.h"

static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
                                      uint8_t *src, int w, int left)
{
    int i;
    if (w < 32) {
        for (i = 0; i < w; i++) {
            const int temp = src[i];
            dst[i] = temp - left;
            left   = temp;
        }
        return left;
    } else {
        for (i = 0; i < 16; i++) {
            const int temp = src[i];
            dst[i] = temp - left;
            left   = temp;
        }
        s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
        return src[w-1];
    }
}

static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
                                             uint8_t *src, int w,
58 59
                                             int *red, int *green, int *blue,
                                             int *alpha)
60 61
{
    int i;
62
    int r, g, b, a;
63 64 65
    r = *red;
    g = *green;
    b = *blue;
66
    a = *alpha;
67 68 69 70 71

    for (i = 0; i < FFMIN(w, 4); i++) {
        const int rt = src[i * 4 + R];
        const int gt = src[i * 4 + G];
        const int bt = src[i * 4 + B];
72
        const int at = src[i * 4 + A];
73 74 75
        dst[i * 4 + R] = rt - r;
        dst[i * 4 + G] = gt - g;
        dst[i * 4 + B] = bt - b;
76
        dst[i * 4 + A] = at - a;
77 78 79
        r = rt;
        g = gt;
        b = bt;
80
        a = at;
81 82 83 84 85 86 87
    }

    s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);

    *red   = src[(w - 1) * 4 + R];
    *green = src[(w - 1) * 4 + G];
    *blue  = src[(w - 1) * 4 + B];
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    *alpha = src[(w - 1) * 4 + A];
}

static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
                                             uint8_t *src, int w,
                                             int *red, int *green, int *blue)
{
    int i;
    int r, g, b;
    r = *red;
    g = *green;
    b = *blue;
    for (i = 0; i < FFMIN(w, 16); i++) {
        const int rt = src[i * 3 + 0];
        const int gt = src[i * 3 + 1];
        const int bt = src[i * 3 + 2];
        dst[i * 3 + 0] = rt - r;
        dst[i * 3 + 1] = gt - g;
        dst[i * 3 + 2] = bt - b;
        r = rt;
        g = gt;
        b = bt;
    }

    s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);

    *red   = src[(w - 1) * 3 + 0];
    *green = src[(w - 1) * 3 + 1];
    *blue  = src[(w - 1) * 3 + 2];
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
{
    int i;
    int index = 0;

    for (i = 0; i < 256;) {
        int val = len[i];
        int repeat = 0;

        for (; i < 256 && len[i] == val && repeat < 255; i++)
            repeat++;

        assert(val < 32 && val >0 && repeat<256 && repeat>0);
        if ( repeat > 7) {
            buf[index++] = val;
            buf[index++] = repeat;
        } else {
            buf[index++] = val | (repeat << 5);
        }
    }

    return index;
}

static av_cold int encode_init(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;
    int i, j;

    ff_huffyuv_common_init(avctx);

    avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
    avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
    s->version = 2;

154 155 156 157 158 159
    avctx->coded_frame = av_frame_alloc();
    if (!avctx->coded_frame)
        return AVERROR(ENOMEM);

    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
    avctx->coded_frame->key_frame = 1;
160 161 162 163

    switch (avctx->pix_fmt) {
    case AV_PIX_FMT_YUV420P:
    case AV_PIX_FMT_YUV422P:
164 165 166 167 168
        if (s->width & 1) {
            av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
            return -1;
        }
        s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
169 170
        break;
    case AV_PIX_FMT_RGB32:
171 172 173
        s->bitstream_bpp = 32;
        break;
    case AV_PIX_FMT_RGB24:
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        s->bitstream_bpp = 24;
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "format not supported\n");
        return -1;
    }
    avctx->bits_per_coded_sample = s->bitstream_bpp;
    s->decorrelate = s->bitstream_bpp >= 24;
    s->predictor = avctx->prediction_method;
    s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
    if (avctx->context_model == 1) {
        s->context = avctx->context_model;
        if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
            av_log(avctx, AV_LOG_ERROR,
                   "context=1 is not compatible with "
                   "2 pass huffyuv encoding\n");
            return -1;
        }
    }else s->context= 0;

    if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
        if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: YV12 is not supported by huffyuv; use "
                   "vcodec=ffvhuff or format=422p\n");
            return -1;
        }
        if (avctx->context_model) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: per-frame huffman tables are not supported "
                   "by huffyuv; use vcodec=ffvhuff\n");
            return -1;
        }
        if (s->interlaced != ( s->height > 288 ))
            av_log(avctx, AV_LOG_INFO,
                   "using huffyuv 2.2.0 or newer interlacing flag\n");
    }

    if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
        av_log(avctx, AV_LOG_ERROR,
               "Error: RGB is incompatible with median predictor\n");
        return -1;
    }

    ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
    ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
    ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
    if (s->context)
        ((uint8_t*)avctx->extradata)[2] |= 0x40;
    ((uint8_t*)avctx->extradata)[3] = 0;
    s->avctx->extradata_size = 4;

    if (avctx->stats_in) {
        char *p = avctx->stats_in;

        for (i = 0; i < 3; i++)
            for (j = 0; j < 256; j++)
                s->stats[i][j] = 1;

        for (;;) {
            for (i = 0; i < 3; i++) {
                char *next;

                for (j = 0; j < 256; j++) {
                    s->stats[i][j] += strtol(p, &next, 0);
                    if (next == p) return -1;
                    p = next;
                }
            }
            if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
        }
    } else {
        for (i = 0; i < 3; i++)
            for (j = 0; j < 256; j++) {
                int d = FFMIN(j, 256 - j);

                s->stats[i][j] = 100000000 / (d + 1);
            }
    }

    for (i = 0; i < 3; i++) {
        ff_huff_gen_len_table(s->len[i], s->stats[i]);

        if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
            return -1;
        }

        s->avctx->extradata_size +=
            store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
    }

    if (s->context) {
        for (i = 0; i < 3; i++) {
            int pels = s->width * s->height / (i ? 40 : 10);
            for (j = 0; j < 256; j++) {
                int d = FFMIN(j, 256 - j);
                s->stats[i][j] = pels/(d + 1);
            }
        }
    } else {
        for (i = 0; i < 3; i++)
            for (j = 0; j < 256; j++)
                s->stats[i][j]= 0;
    }

    ff_huffyuv_alloc_temp(s);

    s->picture_number=0;

    return 0;
}
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
{
    int i;
    const uint8_t *y = s->temp[0] + offset;
    const uint8_t *u = s->temp[1] + offset / 2;
    const uint8_t *v = s->temp[2] + offset / 2;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD4\
            int y0 = y[2 * i];\
            int y1 = y[2 * i + 1];\
            int u0 = u[i];\
            int v0 = v[i];

    count /= 2;

    if (s->flags & CODEC_FLAG_PASS1) {
        for(i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            s->stats[1][u0]++;
            s->stats[0][y1]++;
            s->stats[2][v0]++;
        }
    }
    if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
        return 0;
    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            s->stats[1][u0]++;
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            s->stats[0][y1]++;
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            s->stats[2][v0]++;
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    } else {
        for(i = 0; i < count; i++) {
            LOAD4;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    }
    return 0;
}

static int encode_gray_bitstream(HYuvContext *s, int count)
{
    int i;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD2\
            int y0 = s->temp[0][2 * i];\
            int y1 = s->temp[0][2 * i + 1];
#define STAT2\
            s->stats[0][y0]++;\
            s->stats[0][y1]++;
#define WRITE2\
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);

    count /= 2;

    if (s->flags & CODEC_FLAG_PASS1) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
        }
    }
    if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
        return 0;

    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
            WRITE2;
        }
    } else {
        for (i = 0; i < count; i++) {
            LOAD2;
            WRITE2;
        }
    }
    return 0;
}

385
static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
386 387 388
{
    int i;

389 390
    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
        4 * planes * count) {
391 392 393 394
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
#define LOAD_GBRA                                                       \
    int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G];            \
    int b = s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g & 0xFF; \
    int r = s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g & 0xFF; \
    int a = s->temp[0][planes * i + A];

#define STAT_BGRA                                                       \
    s->stats[0][b]++;                                                   \
    s->stats[1][g]++;                                                   \
    s->stats[2][r]++;                                                   \
    if (planes == 4)                                                    \
        s->stats[2][a]++;

#define WRITE_GBRA                                                      \
    put_bits(&s->pb, s->len[1][g], s->bits[1][g]);                      \
    put_bits(&s->pb, s->len[0][b], s->bits[0][b]);                      \
    put_bits(&s->pb, s->len[2][r], s->bits[2][r]);                      \
    if (planes == 4)                                                    \
        put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
414 415 416 417

    if ((s->flags & CODEC_FLAG_PASS1) &&
        (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
        for (i = 0; i < count; i++) {
418 419
            LOAD_GBRA;
            STAT_BGRA;
420 421 422
        }
    } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
        for (i = 0; i < count; i++) {
423 424 425
            LOAD_GBRA;
            STAT_BGRA;
            WRITE_GBRA;
426 427 428
        }
    } else {
        for (i = 0; i < count; i++) {
429 430
            LOAD_GBRA;
            WRITE_GBRA;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        }
    }
    return 0;
}

static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                        const AVFrame *pict, int *got_packet)
{
    HYuvContext *s = avctx->priv_data;
    const int width = s->width;
    const int width2 = s->width>>1;
    const int height = s->height;
    const int fake_ystride = s->interlaced ? pict->linesize[0]*2  : pict->linesize[0];
    const int fake_ustride = s->interlaced ? pict->linesize[1]*2  : pict->linesize[1];
    const int fake_vstride = s->interlaced ? pict->linesize[2]*2  : pict->linesize[2];
446
    const AVFrame * const p = pict;
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    int i, j, size = 0, ret;

    if (!pkt->data &&
        (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
        return ret;
    }

    if (s->context) {
        for (i = 0; i < 3; i++) {
            ff_huff_gen_len_table(s->len[i], s->stats[i]);
            if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
                return -1;
            size += store_table(s, s->len[i], &pkt->data[size]);
        }

        for (i = 0; i < 3; i++)
            for (j = 0; j < 256; j++)
                s->stats[i][j] >>= 1;
    }

    init_put_bits(&s->pb, pkt->data + size, pkt->size - size);

    if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
        avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
        int lefty, leftu, leftv, y, cy;

        put_bits(&s->pb, 8, leftv = p->data[2][0]);
        put_bits(&s->pb, 8, lefty = p->data[0][1]);
        put_bits(&s->pb, 8, leftu = p->data[1][0]);
        put_bits(&s->pb, 8,         p->data[0][0]);

        lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
        leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
        leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);

        encode_422_bitstream(s, 2, width-2);

        if (s->predictor==MEDIAN) {
            int lefttopy, lefttopu, lefttopv;
            cy = y = 1;
            if (s->interlaced) {
                lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
                leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
                leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);

                encode_422_bitstream(s, 0, width);
                y++; cy++;
            }

            lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
            leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
            leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);

            encode_422_bitstream(s, 0, 4);

            lefttopy = p->data[0][3];
            lefttopu = p->data[1][1];
            lefttopv = p->data[2][1];
            s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
            s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
            s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
            encode_422_bitstream(s, 0, width - 4);
            y++; cy++;

            for (; y < height; y++,cy++) {
                uint8_t *ydst, *udst, *vdst;

                if (s->bitstream_bpp == 12) {
                    while (2 * cy > y) {
                        ydst = p->data[0] + p->linesize[0] * y;
                        s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                        encode_gray_bitstream(s, width);
                        y++;
                    }
                    if (y >= height) break;
                }
                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

                s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
                s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);

                encode_422_bitstream(s, 0, width);
            }
        } else {
            for (cy = y = 1; y < height; y++, cy++) {
                uint8_t *ydst, *udst, *vdst;

                /* encode a luma only line & y++ */
                if (s->bitstream_bpp == 12) {
                    ydst = p->data[0] + p->linesize[0] * y;

                    if (s->predictor == PLANE && s->interlaced < y) {
                        s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);

                        lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    } else {
                        lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    }
                    encode_gray_bitstream(s, width);
                    y++;
                    if (y >= height) break;
                }

                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

                if (s->predictor == PLANE && s->interlaced < cy) {
                    s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
                    s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
                    s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);

                    lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
                } else {
                    lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
                }

                encode_422_bitstream(s, 0, width);
            }
        }
    } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
580
        int leftr, leftg, leftb, lefta;
581

582
        put_bits(&s->pb, 8, lefta = data[A]);
583 584 585 586
        put_bits(&s->pb, 8, leftr = data[R]);
        put_bits(&s->pb, 8, leftg = data[G]);
        put_bits(&s->pb, 8, leftb = data[B]);

587 588 589
        sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
                                  &leftr, &leftg, &leftb, &lefta);
        encode_bgra_bitstream(s, width - 1, 4);
590 591 592 593 594

        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y*stride;
            if (s->predictor == PLANE && s->interlaced < y) {
                s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
                sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb, &lefta);
            } else {
                sub_left_prediction_bgr32(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb, &lefta);
            }
            encode_bgra_bitstream(s, width, 4);
        }
    } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
        int leftr, leftg, leftb;

        put_bits(&s->pb, 8, leftr = data[0]);
        put_bits(&s->pb, 8, leftg = data[1]);
        put_bits(&s->pb, 8, leftb = data[2]);
        put_bits(&s->pb, 8, 0);

        sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
                                  &leftr, &leftg, &leftb);
        encode_bgra_bitstream(s, width-1, 3);

        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y * stride;
            if (s->predictor == PLANE && s->interlaced < y) {
                s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
                                  width * 3);
                sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb);
626
            } else {
627 628
                sub_left_prediction_rgb24(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb);
629
            }
630
            encode_bgra_bitstream(s, width, 3);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        }
    } else {
        av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
    }
    emms_c();

    size += (put_bits_count(&s->pb) + 31) / 8;
    put_bits(&s->pb, 16, 0);
    put_bits(&s->pb, 15, 0);
    size /= 4;

    if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
        int j;
        char *p = avctx->stats_out;
        char *end = p + 1024*30;
        for (i = 0; i < 3; i++) {
            for (j = 0; j < 256; j++) {
                snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
                p += strlen(p);
                s->stats[i][j]= 0;
            }
            snprintf(p, end-p, "\n");
            p++;
        }
    } else
        avctx->stats_out[0] = '\0';
    if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
        flush_put_bits(&s->pb);
        s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
    }

    s->picture_number++;

    pkt->size   = size * 4;
    pkt->flags |= AV_PKT_FLAG_KEY;
    *got_packet = 1;

    return 0;
}

static av_cold int encode_end(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;

    ff_huffyuv_common_end(s);

    av_freep(&avctx->extradata);
    av_freep(&avctx->stats_out);

680 681
    av_frame_free(&avctx->coded_frame);

682 683 684 685 686 687
    return 0;
}

#if CONFIG_HUFFYUV_ENCODER
AVCodec ff_huffyuv_encoder = {
    .name           = "huffyuv",
688
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
689 690 691 692 693 694 695
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_HUFFYUV,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
    .pix_fmts       = (const enum AVPixelFormat[]){
696 697
        AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
698 699 700 701 702 703 704
    },
};
#endif

#if CONFIG_FFVHUFF_ENCODER
AVCodec ff_ffvhuff_encoder = {
    .name           = "ffvhuff",
705
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
706 707 708 709 710 711 712
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_FFVHUFF,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
    .pix_fmts       = (const enum AVPixelFormat[]){
713 714
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
715 716 717
    },
};
#endif