aacsbr_template.c 57 KB
Newer Older
1 2 3 4 5
/*
 * AAC Spectral Band Replication decoding functions
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 *
6 7 8 9
 * Fixed point code
 * Copyright (c) 2013
 *      MIPS Technologies, Inc., California.
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC Spectral Band Replication decoding functions
 * @author Robert Swain ( rob opendot cl )
31 32
 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33 34
 */

35
av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
    static const struct {
        const void *sbr_codes, *sbr_bits;
        const unsigned int table_size, elem_size;
    } sbr_tmp[] = {
        SBR_VLC_ROW(t_huffman_env_1_5dB),
        SBR_VLC_ROW(f_huffman_env_1_5dB),
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(t_huffman_env_3_0dB),
        SBR_VLC_ROW(f_huffman_env_3_0dB),
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
    };

    // SBR VLC table initialization
    SBR_INIT_VLC_STATIC(0, 1098);
    SBR_INIT_VLC_STATIC(1, 1092);
    SBR_INIT_VLC_STATIC(2, 768);
    SBR_INIT_VLC_STATIC(3, 1026);
    SBR_INIT_VLC_STATIC(4, 1058);
    SBR_INIT_VLC_STATIC(5, 1052);
    SBR_INIT_VLC_STATIC(6, 544);
    SBR_INIT_VLC_STATIC(7, 544);
    SBR_INIT_VLC_STATIC(8, 592);
    SBR_INIT_VLC_STATIC(9, 512);

    aacsbr_tableinit();

67
    AAC_RENAME(ff_ps_init)();
68 69 70 71 72 73 74 75 76 77 78 79 80
}

/** Places SBR in pure upsampling mode. */
static void sbr_turnoff(SpectralBandReplication *sbr) {
    sbr->start = 0;
    // Init defults used in pure upsampling mode
    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
    sbr->m[1] = 0;
    // Reset values for first SBR header
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
}

81
av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr)
82 83 84 85 86 87 88 89 90 91
{
    if(sbr->mdct.mdct_bits)
        return;
    sbr->kx[0] = sbr->kx[1];
    sbr_turnoff(sbr);
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
     * and scale back down at synthesis. */
92 93
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
94
    AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
95
    AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
96 97 98
    aacsbr_func_ptr_init(&sbr->c);
}

99
av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
100
{
101 102
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
}

static int qsort_comparison_function_int16(const void *a, const void *b)
{
    return *(const int16_t *)a - *(const int16_t *)b;
}

static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
{
    int i;
    for (i = 0; i <= last_el; i++)
        if (table[i] == needle)
            return 1;
    return 0;
}

/// Limiter Frequency Band Table (14496-3 sp04 p198)
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
{
    int k;
    if (sbr->bs_limiter_bands > 0) {
124 125 126 127
        static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f),   //2^(0.49/1.2)
                                               Q23(1.18509277094158210129f),   //2^(0.49/2)
                                               Q23(1.11987160404675912501f) }; //2^(0.49/3)
        const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        int16_t patch_borders[7];
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;

        patch_borders[0] = sbr->kx[1];
        for (k = 1; k <= sbr->num_patches; k++)
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];

        memcpy(sbr->f_tablelim, sbr->f_tablelow,
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
        if (sbr->num_patches > 1)
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));

        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
              sizeof(sbr->f_tablelim[0]),
              qsort_comparison_function_int16);

        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
        while (out < sbr->f_tablelim + sbr->n_lim) {
147 148 149
#if USE_FIXED
            if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
#else
150
            if (*in >= *out * lim_bands_per_octave_warped) {
151
#endif /* USE_FIXED */
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                *++out = *in++;
            } else if (*in == *out ||
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
                in++;
                sbr->n_lim--;
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
                *out = *in++;
                sbr->n_lim--;
            } else {
                *++out = *in++;
            }
        }
    } else {
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
        sbr->n_lim = 1;
    }
}

static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
{
    unsigned int cnt = get_bits_count(gb);
    uint8_t bs_header_extra_1;
    uint8_t bs_header_extra_2;
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
    SpectrumParameters old_spectrum_params;

    sbr->start = 1;

    // Save last spectrum parameters variables to compare to new ones
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));

    sbr->bs_amp_res_header              = get_bits1(gb);
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
                                          skip_bits(gb, 2); // bs_reserved

    bs_header_extra_1 = get_bits1(gb);
    bs_header_extra_2 = get_bits1(gb);

    if (bs_header_extra_1) {
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
    } else {
        sbr->spectrum_params.bs_freq_scale  = 2;
        sbr->spectrum_params.bs_alter_scale = 1;
        sbr->spectrum_params.bs_noise_bands = 2;
    }

    // Check if spectrum parameters changed
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
        sbr->reset = 1;

    if (bs_header_extra_2) {
        sbr->bs_limiter_bands  = get_bits(gb, 2);
        sbr->bs_limiter_gains  = get_bits(gb, 2);
        sbr->bs_interpol_freq  = get_bits1(gb);
        sbr->bs_smoothing_mode = get_bits1(gb);
    } else {
        sbr->bs_limiter_bands  = 2;
        sbr->bs_limiter_gains  = 2;
        sbr->bs_interpol_freq  = 1;
        sbr->bs_smoothing_mode = 1;
    }

    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
        sbr_make_f_tablelim(sbr);

    return get_bits_count(gb) - cnt;
}

static int array_min_int16(const int16_t *array, int nel)
{
    int i, min = array[0];
    for (i = 1; i < nel; i++)
        min = FFMIN(array[i], min);
    return min;
}

static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
{
    // Requirements (14496-3 sp04 p205)
    if (n_master <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
        return -1;
    }
    if (bs_xover_band >= n_master) {
        av_log(avctx, AV_LOG_ERROR,
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
               bs_xover_band);
        return -1;
    }
    return 0;
}

/// Master Frequency Band Table (14496-3 sp04 p194)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
                             SpectrumParameters *spectrum)
{
    unsigned int temp, max_qmf_subbands = 0;
    unsigned int start_min, stop_min;
    int k;
    const int8_t *sbr_offset_ptr;
    int16_t stop_dk[13];

    if (sbr->sample_rate < 32000) {
        temp = 3000;
    } else if (sbr->sample_rate < 64000) {
        temp = 4000;
    } else
        temp = 5000;

    switch (sbr->sample_rate) {
    case 16000:
        sbr_offset_ptr = sbr_offset[0];
        break;
    case 22050:
        sbr_offset_ptr = sbr_offset[1];
        break;
    case 24000:
        sbr_offset_ptr = sbr_offset[2];
        break;
    case 32000:
        sbr_offset_ptr = sbr_offset[3];
        break;
    case 44100: case 48000: case 64000:
        sbr_offset_ptr = sbr_offset[4];
        break;
    case 88200: case 96000: case 128000: case 176400: case 192000:
        sbr_offset_ptr = sbr_offset[5];
        break;
    default:
        av_log(ac->avctx, AV_LOG_ERROR,
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
        return -1;
    }

    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];

    if (spectrum->bs_stop_freq < 14) {
        sbr->k[2] = stop_min;
        make_bands(stop_dk, stop_min, 64, 13);
        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
        for (k = 0; k < spectrum->bs_stop_freq; k++)
            sbr->k[2] += stop_dk[k];
    } else if (spectrum->bs_stop_freq == 14) {
        sbr->k[2] = 2*sbr->k[0];
    } else if (spectrum->bs_stop_freq == 15) {
        sbr->k[2] = 3*sbr->k[0];
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
        return -1;
    }
    sbr->k[2] = FFMIN(64, sbr->k[2]);

    // Requirements (14496-3 sp04 p205)
    if (sbr->sample_rate <= 32000) {
        max_qmf_subbands = 48;
    } else if (sbr->sample_rate == 44100) {
        max_qmf_subbands = 35;
    } else if (sbr->sample_rate >= 48000)
        max_qmf_subbands = 32;
    else
        av_assert0(0);

    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
        return -1;
    }

    if (!spectrum->bs_freq_scale) {
        int dk, k2diff;

        dk = spectrum->bs_alter_scale + 1;
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
            return -1;

        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] = dk;

        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
        if (k2diff < 0) {
            sbr->f_master[1]--;
            sbr->f_master[2]-= (k2diff < -1);
        } else if (k2diff) {
            sbr->f_master[sbr->n_master]++;
        }

        sbr->f_master[0] = sbr->k[0];
        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] += sbr->f_master[k - 1];

    } else {
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
        int two_regions, num_bands_0;
        int vdk0_max, vdk1_min;
        int16_t vk0[49];
357 358 359
#if USE_FIXED
        int tmp, nz = 0;
#endif /* USE_FIXED */
360 361 362 363 364 365 366 367 368

        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
            two_regions = 1;
            sbr->k[1] = 2 * sbr->k[0];
        } else {
            two_regions = 0;
            sbr->k[1] = sbr->k[2];
        }

369 370 371 372 373 374 375 376 377 378 379
#if USE_FIXED
        tmp = (sbr->k[1] << 23) / sbr->k[0];
        while (tmp < 0x40000000) {
          tmp <<= 1;
          nz++;
        }
        tmp = fixed_log(tmp - 0x80000000);
        tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
        tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
        num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
#else
380
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
381
#endif /* USE_FIXED */
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
            return -1;
        }

        vk0[0] = 0;

        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);

        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
        vdk0_max = vk0[num_bands_0];

        vk0[0] = sbr->k[0];
        for (k = 1; k <= num_bands_0; k++) {
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
                return -1;
            }
            vk0[k] += vk0[k-1];
        }

        if (two_regions) {
            int16_t vk1[49];
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#if USE_FIXED
            int num_bands_1;

            tmp = (sbr->k[2] << 23) / sbr->k[1];
            nz = 0;
            while (tmp < 0x40000000) {
              tmp <<= 1;
              nz++;
            }
            tmp = fixed_log(tmp - 0x80000000);
            tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
            tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
            if (spectrum->bs_alter_scale)
                tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
            num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
#else
422 423 424 425
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
                                                     : 1.0f; // bs_alter_scale = {0,1}
            int num_bands_1 = lrintf(half_bands * invwarp *
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
426
#endif /* USE_FIXED */
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);

            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);

            if (vdk1_min < vdk0_max) {
                int change;
                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
                vk1[1]           += change;
                vk1[num_bands_1] -= change;
            }

            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);

            vk1[0] = sbr->k[1];
            for (k = 1; k <= num_bands_1; k++) {
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
                    return -1;
                }
                vk1[k] += vk1[k-1];
            }

            sbr->n_master = num_bands_0 + num_bands_1;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(&sbr->f_master[0],               vk0,
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
                    num_bands_1      * sizeof(sbr->f_master[0]));

        } else {
            sbr->n_master = num_bands_0;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
        }
    }

    return 0;
}

/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
{
    int i, k, last_k = -1, last_msb = -1, sb = 0;
    int msb = sbr->k[0];
    int usb = sbr->kx[1];
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    sbr->num_patches = 0;

    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
    } else
        k = sbr->n_master;

    do {
        int odd = 0;
        if (k == last_k && msb == last_msb) {
            av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
            return AVERROR_INVALIDDATA;
        }
        last_k = k;
        last_msb = msb;
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
            sb = sbr->f_master[i];
            odd = (sb + sbr->k[0]) & 1;
        }

        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
        // After this check the final number of patches can still be six which is
        // illegal however the Coding Technologies decoder check stream has a final
        // count of 6 patches
        if (sbr->num_patches > 5) {
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
            return -1;
        }

        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];

        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
            usb = sb;
            msb = sb;
            sbr->num_patches++;
        } else
            msb = sbr->kx[1];

        if (sbr->f_master[k] - sb < 3)
            k = sbr->n_master;
    } while (sb != sbr->kx[1] + sbr->m[1]);

    if (sbr->num_patches > 1 &&
        sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
        sbr->num_patches--;

    return 0;
}

/// Derived Frequency Band Tables (14496-3 sp04 p197)
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
{
    int k, temp;
531 532 533
#if USE_FIXED
    int nz = 0;
#endif /* USE_FIXED */
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
    sbr->n[0] = (sbr->n[1] + 1) >> 1;

    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
    sbr->kx[1] = sbr->f_tablehigh[0];

    // Requirements (14496-3 sp04 p205)
    if (sbr->kx[1] + sbr->m[1] > 64) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
        return -1;
    }
    if (sbr->kx[1] > 32) {
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
        return -1;
    }

    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
    temp = sbr->n[1] & 1;
    for (k = 1; k <= sbr->n[0]; k++)
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
558 559 560 561 562 563 564 565 566
#if USE_FIXED
    temp = (sbr->k[2] << 23) / sbr->kx[1];
    while (temp < 0x40000000) {
        temp <<= 1;
        nz++;
    }
    temp = fixed_log(temp - 0x80000000);
    temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
    temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
567

568 569 570 571
    sbr->n_q = (temp + 0x400000) >> 23;
    if (sbr->n_q < 1)
        sbr->n_q = 1;
#else
572 573
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
574 575
#endif /* USE_FIXED */

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    if (sbr->n_q > 5) {
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
        return -1;
    }

    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
    temp = 0;
    for (k = 1; k <= sbr->n_q; k++) {
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
    }

    if (sbr_hf_calc_npatches(ac, sbr) < 0)
        return -1;

    sbr_make_f_tablelim(sbr);

    sbr->data[0].f_indexnoise = 0;
    sbr->data[1].f_indexnoise = 0;

    return 0;
}

static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
                                              int elements)
{
    int i;
    for (i = 0; i < elements; i++) {
        vec[i] = get_bits1(gb);
    }
}

/** ceil(log2(index+1)) */
static const int8_t ceil_log2[] = {
    0, 1, 2, 2, 3, 3,
};

static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
                         GetBitContext *gb, SBRData *ch_data)
{
    int i;
    int bs_pointer = 0;
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
    int abs_bord_trail = 16;
    int num_rel_lead, num_rel_trail;
    unsigned bs_num_env_old = ch_data->bs_num_env;

    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];

    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
    case FIXFIX:
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
        num_rel_lead                        = ch_data->bs_num_env - 1;
        if (ch_data->bs_num_env == 1)
            ch_data->bs_amp_res = 0;

        if (ch_data->bs_num_env > 4) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
                   ch_data->bs_num_env;
        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;

        ch_data->bs_freq_res[1] = get_bits1(gb);
        for (i = 1; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
        break;
    case FIXVAR:
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_trail + 1;
        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        for (i = 0; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
        break;
    case VARFIX:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + 1;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    case VARVAR:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;

        if (ch_data->bs_num_env > 5) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    }

    av_assert0(bs_pointer >= 0);
    if (bs_pointer > ch_data->bs_num_env + 1) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
               bs_pointer);
        return -1;
    }

    for (i = 1; i <= ch_data->bs_num_env; i++) {
        if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
            av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
            return -1;
        }
    }

    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;

    ch_data->t_q[0]                     = ch_data->t_env[0];
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
    if (ch_data->bs_num_noise > 1) {
        int idx;
        if (ch_data->bs_frame_class == FIXFIX) {
            idx = ch_data->bs_num_env >> 1;
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
        } else { // VARFIX
            if (!bs_pointer)
                idx = 1;
            else if (bs_pointer == 1)
                idx = ch_data->bs_num_env - 1;
            else // bs_pointer > 1
                idx = bs_pointer - 1;
        }
        ch_data->t_q[1] = ch_data->t_env[idx];
    }

    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
    ch_data->e_a[1] = -1;
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
        ch_data->e_a[1] = bs_pointer - 1;

    return 0;
}

static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
    //These variables are saved from the previous frame rather than copied
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);

    //These variables are read from the bitstream and therefore copied
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
    dst->bs_num_env        = src->bs_num_env;
    dst->bs_amp_res        = src->bs_amp_res;
    dst->bs_num_noise      = src->bs_num_noise;
    dst->bs_frame_class    = src->bs_frame_class;
    dst->e_a[1]            = src->e_a[1];
}

/// Read how the envelope and noise floor data is delta coded
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
}

/// Read inverse filtering data
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    int i;

    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
    for (i = 0; i < sbr->n_q; i++)
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
}

static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
                              SBRData *ch_data, int ch)
{
    int bits;
    int i, j, k;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
    const int odd = sbr->n[1] & 1;

    if (sbr->bs_coupling && ch) {
        if (ch_data->bs_amp_res) {
            bits   = 5;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
        } else {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
        }
    } else {
        if (ch_data->bs_amp_res) {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
        } else {
            bits   = 7;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
        }
    }

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
#if USE_FIXED
    for (i = 0; i < ch_data->bs_num_env; i++) {
        if (ch_data->bs_df_env[i]) {
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                    ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
            } else if (ch_data->bs_freq_res[i + 1]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
                    ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            } else {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
                    ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            }
        } else {
            ch_data->env_facs[i + 1][0].mant = delta * get_bits(gb, bits); // bs_env_start_value_balance
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }
#else
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    for (i = 0; i < ch_data->bs_num_env; i++) {
        if (ch_data->bs_df_env[i]) {
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
            } else if (ch_data->bs_freq_res[i + 1]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            } else {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            }
        } else {
            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }
880
#endif /* USE_FIXED */
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

    //assign 0th elements of env_facs from last elements
    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
           sizeof(ch_data->env_facs[0]));
}

static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
                           SBRData *ch_data, int ch)
{
    int i, j;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;

    if (sbr->bs_coupling && ch) {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
    } else {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
    }

907 908 909 910 911 912 913 914 915 916 917 918
#if USE_FIXED
    for (i = 0; i < ch_data->bs_num_noise; i++) {
        if (ch_data->bs_df_noise[i]) {
            for (j = 0; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
        } else {
            ch_data->noise_facs[i + 1][0].mant = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
            for (j = 1; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }
#else
919 920 921 922 923 924 925 926 927 928
    for (i = 0; i < ch_data->bs_num_noise; i++) {
        if (ch_data->bs_df_noise[i]) {
            for (j = 0; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
        } else {
            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
            for (j = 1; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }
929
#endif /* USE_FIXED */
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

    //assign 0th elements of noise_facs from last elements
    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
           sizeof(ch_data->noise_facs[0]));
}

static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
                               GetBitContext *gb,
                               int bs_extension_id, int *num_bits_left)
{
    switch (bs_extension_id) {
    case EXTENSION_ID_PS:
        if (!ac->oc[1].m4ac.ps) {
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
        } else {
#if 1
948
            *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
            ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
#else
            avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
#endif
        }
        break;
    default:
        // some files contain 0-padding
        if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
            avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
        *num_bits_left = 0;
        break;
    }
}

static int read_sbr_single_channel_element(AACContext *ac,
                                            SpectralBandReplication *sbr,
                                            GetBitContext *gb)
{
    if (get_bits1(gb)) // bs_data_extra
        skip_bits(gb, 4); // bs_reserved

    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
        return -1;
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
    read_sbr_invf(sbr, gb, &sbr->data[0]);
    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
    read_sbr_noise(sbr, gb, &sbr->data[0], 0);

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static int read_sbr_channel_pair_element(AACContext *ac,
                                          SpectralBandReplication *sbr,
                                          GetBitContext *gb)
{
    if (get_bits1(gb))    // bs_data_extra
        skip_bits(gb, 8); // bs_reserved

    if ((sbr->bs_coupling = get_bits1(gb))) {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
            return -1;
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
    } else {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
            return -1;
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        read_sbr_invf(sbr, gb, &sbr->data[1]);
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
    }

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
                                  GetBitContext *gb, int id_aac)
{
    unsigned int cnt = get_bits_count(gb);

    sbr->id_aac = id_aac;

    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else if (id_aac == TYPE_CPE) {
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
        sbr_turnoff(sbr);
        return get_bits_count(gb) - cnt;
    }
    if (get_bits1(gb)) { // bs_extended_data
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
        if (num_bits_left == 15)
            num_bits_left += get_bits(gb, 8); // bs_esc_count

        num_bits_left <<= 3;
        while (num_bits_left > 7) {
            num_bits_left -= 2;
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
        }
        if (num_bits_left < 0) {
            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
        }
        if (num_bits_left > 0)
            skip_bits(gb, num_bits_left);
    }

    return get_bits_count(gb) - cnt;
}

static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
{
    int err;
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
    if (err >= 0)
        err = sbr_make_f_derived(ac, sbr);
    if (err < 0) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
        sbr_turnoff(sbr);
    }
}

/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
1093
int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
{
    unsigned int num_sbr_bits = 0, num_align_bits;
    unsigned bytes_read;
    GetBitContext gbc = *gb_host, *gb = &gbc;
    skip_bits_long(gb_host, cnt*8 - 4);

    sbr->reset = 0;

    if (!sbr->sample_rate)
        sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
    if (!ac->oc[1].m4ac.ext_sample_rate)
        ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;

    if (crc) {
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
        num_sbr_bits += 10;
    }

    //Save some state from the previous frame.
    sbr->kx[0] = sbr->kx[1];
    sbr->m[0] = sbr->m[1];
    sbr->kx_and_m_pushed = 1;

    num_sbr_bits++;
    if (get_bits1(gb)) // bs_header_flag
        num_sbr_bits += read_sbr_header(sbr, gb);

    if (sbr->reset)
        sbr_reset(ac, sbr);

    if (sbr->start)
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);

    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);

    if (bytes_read > cnt) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
    }
    return cnt;
}

/**
 * Analysis QMF Bank (14496-3 sp04 p206)
 *
 * @param   x       pointer to the beginning of the first sample window
 * @param   W       array of complex-valued samples split into subbands
 */
#ifndef sbr_qmf_analysis
1145 1146 1147
#if USE_FIXED
static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
#else
1148
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1149 1150 1151
#endif /* USE_FIXED */
                             SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
                             INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
{
    int i;
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
    memcpy(x+288, in,         1024*sizeof(x[0]));
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
                               // are not supported
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
        sbrdsp->sum64x5(z);
        sbrdsp->qmf_pre_shuffle(z);
        mdct->imdct_half(mdct, z, z+64);
        sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
        x += 32;
    }
}
#endif

/**
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
 * (14496-3 sp04 p206)
 */
#ifndef sbr_qmf_synthesis
static void sbr_qmf_synthesis(FFTContext *mdct,
1174 1175 1176
#if USE_FIXED
                              SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
#else
1177
                              SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1178 1179 1180 1181
#endif /* USE_FIXED */
                              INTFLOAT *out, INTFLOAT X[2][38][64],
                              INTFLOAT mdct_buf[2][64],
                              INTFLOAT *v0, int *v_off, const unsigned int div)
1182 1183
{
    int i, n;
1184
    const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1185
    const int step = 128 >> div;
1186
    INTFLOAT *v;
1187 1188 1189
    for (i = 0; i < 32; i++) {
        if (*v_off < step) {
            int saved_samples = (1280 - 128) >> div;
1190
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
        } else {
            *v_off -= step;
        }
        v = v0 + *v_off;
        if (div) {
            for (n = 0; n < 32; n++) {
                X[0][i][   n] = -X[0][i][n];
                X[0][i][32+n] =  X[1][i][31-n];
            }
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
        } else {
            sbrdsp->neg_odd_64(X[1][i]);
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
        }
        dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
        out += 64 >> div;
    }
}
#endif

/// Generate the subband filtered lowband
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1226
                      INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
                      int buf_idx)
{
    int i, k;
    const int t_HFGen = 8;
    const int i_f = 32;
    memset(X_low, 0, 32*sizeof(*X_low));
    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
            X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
            X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
        }
    }
    buf_idx = 1-buf_idx;
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < t_HFGen; i++) {
            X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
            X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
        }
    }
    return 0;
}

/// High Frequency Generator (14496-3 sp04 p215)
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1251 1252 1253
                      INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
                      const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
                      const INTFLOAT bw_array[5], const uint8_t *t_env,
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
                      int bs_num_env)
{
    int j, x;
    int g = 0;
    int k = sbr->kx[1];
    for (j = 0; j < sbr->num_patches; j++) {
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
            const int p = sbr->patch_start_subband[j] + x;
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
                g++;
            g--;

            if (g < 0) {
                av_log(ac->avctx, AV_LOG_ERROR,
                       "ERROR : no subband found for frequency %d\n", k);
                return -1;
            }

            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
                            alpha0[p], alpha1[p], bw_array[g],
                            2 * t_env[0], 2 * t_env[bs_num_env]);
        }
    }
    if (k < sbr->m[1] + sbr->kx[1])
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));

    return 0;
}

/// Generate the subband filtered lowband
1285 1286 1287
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
                     const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
                     const INTFLOAT X_low[32][40][2], int ch)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
{
    int k, i;
    const int i_f = 32;
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
    memset(X, 0, 2*sizeof(*X));
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = Y0[i + i_f][k][0];
            X[1][i][k] = Y0[i + i_f][k][1];
        }
    }

    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = i_Temp; i < 38; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
        for (i = i_Temp; i < i_f; i++) {
            X[0][i][k] = Y1[i][k][0];
            X[1][i][k] = Y1[i][k][1];
        }
    }
    return 0;
}

/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
 * (14496-3 sp04 p217)
 */
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
                        SBRData *ch_data, int e_a[2])
{
    int e, i, m;

    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
    for (e = 0; e < ch_data->bs_num_env; e++) {
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
        int k;

        if (sbr->kx[1] != table[0]) {
            av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
                   "Derived frequency tables were not regenerated.\n");
            sbr_turnoff(sbr);
            return AVERROR_BUG;
        }
        for (i = 0; i < ilim; i++)
            for (m = table[i]; m < table[i + 1]; m++)
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];

        // ch_data->bs_num_noise > 1 => 2 noise floors
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
        for (i = 0; i < sbr->n_q; i++)
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];

        for (i = 0; i < sbr->n[1]; i++) {
            if (ch_data->bs_add_harmonic_flag) {
                const unsigned int m_midpoint =
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;

                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
            }
        }

        for (i = 0; i < ilim; i++) {
            int additional_sinusoid_present = 0;
            for (m = table[i]; m < table[i + 1]; m++) {
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
                    additional_sinusoid_present = 1;
                    break;
                }
            }
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
        }
    }

    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
    return 0;
}

/// Estimation of current envelope (14496-3 sp04 p218)
1379
static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1380 1381 1382 1383 1384 1385 1386
                             SpectralBandReplication *sbr, SBRData *ch_data)
{
    int e, m;
    int kx1 = sbr->kx[1];

    if (sbr->bs_interpol_freq) {
        for (e = 0; e < ch_data->bs_num_env; e++) {
1387 1388 1389
#if USE_FIXED
            const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
#else
1390
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1391
#endif /* USE_FIXED */
1392 1393 1394 1395
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;

            for (m = 0; m < sbr->m[1]; m++) {
1396 1397 1398 1399
                AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
#if USE_FIXED
                e_curr[e][m] = av_mul_sf(sum, recip_env_size);
#else
1400
                e_curr[e][m] = sum * recip_env_size;
1401
#endif /* USE_FIXED */
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
            }
        }
    } else {
        int k, p;

        for (e = 0; e < ch_data->bs_num_env; e++) {
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;

            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1414 1415 1416 1417 1418 1419 1420 1421
#if USE_FIXED
                SoftFloat sum = { 0, 0 };
                const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
                for (k = table[p]; k < table[p + 1]; k++) {
                    sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
                }
                sum = av_mul_sf(sum, den);
#else
1422 1423 1424 1425 1426 1427 1428
                float sum = 0.0f;
                const int den = env_size * (table[p + 1] - table[p]);

                for (k = table[p]; k < table[p + 1]; k++) {
                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
                }
                sum /= den;
1429
#endif /* USE_FIXED */
1430 1431 1432 1433 1434 1435 1436 1437
                for (k = table[p]; k < table[p + 1]; k++) {
                    e_curr[e][k - kx1] = sum;
                }
            }
        }
    }
}

1438 1439
void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
                  INTFLOAT* L, INTFLOAT* R)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
{
    int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
    int ch;
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
    int err;

    if (id_aac != sbr->id_aac) {
        av_log(ac->avctx, AV_LOG_ERROR,
            "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
        sbr_turnoff(sbr);
    }

    if (!sbr->kx_and_m_pushed) {
        sbr->kx[0] = sbr->kx[1];
        sbr->m[0] = sbr->m[1];
    } else {
        sbr->kx_and_m_pushed = 0;
    }

    if (sbr->start) {
        sbr_dequant(sbr, id_aac);
    }
    for (ch = 0; ch < nch; ch++) {
        /* decode channel */
        sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1465
                         (INTFLOAT*)sbr->qmf_filter_scratch,
1466 1467
                         sbr->data[ch].W, sbr->data[ch].Ypos);
        sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1468
                          (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1469 1470 1471 1472
                          sbr->data[ch].Ypos);
        sbr->data[ch].Ypos ^= 1;
        if (sbr->start) {
            sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1473
                                         (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1474 1475 1476
            sbr_chirp(sbr, &sbr->data[ch]);
            av_assert0(sbr->data[ch].bs_num_env > 0);
            sbr_hf_gen(ac, sbr, sbr->X_high,
1477 1478 1479
                       (const INTFLOAT (*)[40][2]) sbr->X_low,
                       (const INTFLOAT (*)[2]) sbr->alpha0,
                       (const INTFLOAT (*)[2]) sbr->alpha1,
1480 1481 1482 1483 1484 1485 1486 1487 1488
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
                       sbr->data[ch].bs_num_env);

            // hf_adj
            err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
            if (!err) {
                sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
                sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
                sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1489
                                (const INTFLOAT (*)[40][2]) sbr->X_high,
1490 1491 1492 1493 1494 1495 1496
                                sbr, &sbr->data[ch],
                                sbr->data[ch].e_a);
            }
        }

        /* synthesis */
        sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1497 1498 1499
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[  sbr->data[ch].Ypos],
                  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1500 1501 1502 1503
    }

    if (ac->oc[1].m4ac.ps == 1) {
        if (sbr->ps.start) {
1504
            AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        } else {
            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
        }
        nch = 2;
    }

    sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
                      L, sbr->X[0], sbr->qmf_filter_scratch,
                      sbr->data[0].synthesis_filterbank_samples,
                      &sbr->data[0].synthesis_filterbank_samples_offset,
                      downsampled);
    if (nch == 2)
        sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
                          R, sbr->X[1], sbr->qmf_filter_scratch,
                          sbr->data[1].synthesis_filterbank_samples,
                          &sbr->data[1].synthesis_filterbank_samples_offset,
                          downsampled);
}

static void aacsbr_func_ptr_init(AACSBRContext *c)
{
    c->sbr_lf_gen            = sbr_lf_gen;
    c->sbr_hf_assemble       = sbr_hf_assemble;
    c->sbr_x_gen             = sbr_x_gen;
    c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;

1531
#if !USE_FIXED
1532 1533
    if(ARCH_MIPS)
        ff_aacsbr_func_ptr_init_mips(c);
1534
#endif
1535
}