lls.c 3.97 KB
Newer Older
1 2 3 4 5
/*
 * linear least squares model
 *
 * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
 *
6 7 8
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
9 10
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14 15 16 17 18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 */

/**
 * @file lls.c
 * linear least squares model
 */

#include <math.h>
#include <string.h>

#include "lls.h"

void av_init_lls(LLSModel *m, int indep_count){
    memset(m, 0, sizeof(LLSModel));

    m->indep_count= indep_count;
}

void av_update_lls(LLSModel *m, double *var, double decay){
    int i,j;

    for(i=0; i<=m->indep_count; i++){
        for(j=i; j<=m->indep_count; j++){
            m->covariance[i][j] *= decay;
            m->covariance[i][j] += var[i]*var[j];
        }
    }
}

50
void av_solve_lls(LLSModel *m, double threshold, int min_order){
51
    int i,j,k;
52 53
    double (*factor)[MAX_VARS+1]= (void*)&m->covariance[1][0];
    double (*covar )[MAX_VARS+1]= (void*)&m->covariance[1][1];
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    double  *covar_y            =  m->covariance[0];
    int count= m->indep_count;

    for(i=0; i<count; i++){
        for(j=i; j<count; j++){
            double sum= covar[i][j];

            for(k=i-1; k>=0; k--)
                sum -= factor[i][k]*factor[j][k];

            if(i==j){
                if(sum < threshold)
                    sum= 1.0;
                factor[i][i]= sqrt(sum);
            }else
                factor[j][i]= sum / factor[i][i];
        }
    }
    for(i=0; i<count; i++){
        double sum= covar_y[i+1];
        for(k=i-1; k>=0; k--)
75 76
            sum -= factor[i][k]*m->coeff[0][k];
        m->coeff[0][i]= sum / factor[i][i];
77 78
    }

79 80 81 82 83 84 85
    for(j=count-1; j>=min_order; j--){
        for(i=j; i>=0; i--){
            double sum= m->coeff[0][i];
            for(k=i+1; k<=j; k++)
                sum -= factor[k][i]*m->coeff[j][k];
            m->coeff[j][i]= sum / factor[i][i];
        }
86

87 88 89 90 91 92 93
        m->variance[j]= covar_y[0];
        for(i=0; i<=j; i++){
            double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
            for(k=0; k<i; k++)
                sum += 2*m->coeff[j][k]*covar[k][i];
            m->variance[j] += m->coeff[j][i]*sum;
        }
94 95 96
    }
}

97
double av_evaluate_lls(LLSModel *m, double *param, int order){
98 99 100
    int i;
    double out= 0;

101 102
    for(i=0; i<=order; i++)
        out+= param[i]*m->coeff[order][i];
103 104 105 106 107 108 109 110 111

    return out;
}

#ifdef TEST

#include <stdlib.h>
#include <stdio.h>

Diego Biurrun's avatar
Diego Biurrun committed
112
int main(void){
113
    LLSModel m;
114
    int i, order;
115 116 117 118 119

    av_init_lls(&m, 3);

    for(i=0; i<100; i++){
        double var[4];
120
        double eval;
121
#if 0
122 123 124 125
        var[1] = rand() / (double)RAND_MAX;
        var[2] = rand() / (double)RAND_MAX;
        var[3] = rand() / (double)RAND_MAX;

126
        var[2]= var[1] + var[3]/2;
127 128

        var[0] = var[1] + var[2] + var[3] +  var[1]*var[2]/100;
129 130 131 132 133 134
#else
        var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
        var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
        var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
        var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
#endif
135
        av_update_lls(&m, var, 0.99);
136 137 138
        av_solve_lls(&m, 0.001, 0);
        for(order=0; order<3; order++){
            eval= av_evaluate_lls(&m, var+1, order);
139
            printf("real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n",
140 141 142
                var[0], order, eval, sqrt(m.variance[order] / (i+1)),
                m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
        }
143 144 145 146 147
    }
    return 0;
}

#endif