vp9dsp.c 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

21
#include <math.h>
22 23
#include <string.h>
#include "checkasm.h"
24
#include "libavcodec/vp9data.h"
25
#include "libavcodec/vp9.h"
26 27 28
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
29
#include "libavutil/mathematics.h"
30 31 32

static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };
#define SIZEOF_PIXEL ((bit_depth + 7) / 8)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

#define randomize_buffers()                                        \
    do {                                                           \
        uint32_t mask = pixel_mask[(bit_depth - 8) >> 1];          \
        int k;                                                     \
        for (k = -4;  k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \
            uint32_t r = rnd() & mask;                             \
            AV_WN32A(a + k, r);                                    \
        }                                                          \
        for (k = 0; k < size * SIZEOF_PIXEL; k += 4) {             \
            uint32_t r = rnd() & mask;                             \
            AV_WN32A(l + k, r);                                    \
        }                                                          \
    } while (0)

static void check_ipred(void)
{
    LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]);
    uint8_t *a = &a_buf[32 * 2];
    LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
    VP9DSPContext dsp;
    int tx, mode, bit_depth;
57 58
    declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride,
                      const uint8_t *left, const uint8_t *top);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    static const char *const mode_names[N_INTRA_PRED_MODES] = {
        [VERT_PRED] = "vert",
        [HOR_PRED] = "hor",
        [DC_PRED] = "dc",
        [DIAG_DOWN_LEFT_PRED] = "diag_downleft",
        [DIAG_DOWN_RIGHT_PRED] = "diag_downright",
        [VERT_RIGHT_PRED] = "vert_right",
        [HOR_DOWN_PRED] = "hor_down",
        [VERT_LEFT_PRED] = "vert_left",
        [HOR_UP_PRED] = "hor_up",
        [TM_VP8_PRED] = "tm",
        [LEFT_DC_PRED] = "dc_left",
        [TOP_DC_PRED] = "dc_top",
        [DC_128_PRED] = "dc_128",
        [DC_127_PRED] = "dc_127",
        [DC_129_PRED] = "dc_129",
    };

    for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
        ff_vp9dsp_init(&dsp, bit_depth, 0);
        for (tx = 0; tx < 4; tx++) {
            int size = 4 << tx;

            for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) {
                if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp",
                               mode_names[mode], size, size, bit_depth)) {
                    randomize_buffers();
                    call_ref(dst0, size * SIZEOF_PIXEL, l, a);
                    call_new(dst1, size * SIZEOF_PIXEL, l, a);
                    if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL))
                        fail();
                    bench_new(dst1, size * SIZEOF_PIXEL,l, a);
                }
            }
        }
    }
    report("ipred");
}

#undef randomize_buffers

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#define randomize_buffers() \
    do { \
        uint32_t mask = pixel_mask[(bit_depth - 8) >> 1];                  \
        for (y = 0; y < sz; y++) {                                         \
            for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) {                   \
                uint32_t r = rnd() & mask;                                 \
                AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r);              \
                AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask);   \
            }                                                              \
            for (x = 0; x < sz; x++) {                                     \
                if (bit_depth == 8) {                                      \
                    coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x];  \
                } else {                                                   \
                    ((int32_t *) coef)[y * sz + x] =                       \
                        ((uint16_t *) src)[y * sz + x] -                   \
                        ((uint16_t *) dst)[y * sz + x];                    \
                }                                                          \
            }                                                              \
        }                                                                  \
    } while(0)

// wht function copied from libvpx
static void fwht_1d(double *out, const double *in, int sz)
{
    double t0 = in[0] + in[1];
    double t3 = in[3] - in[2];
    double t4 = trunc((t0 - t3) * 0.5);
    double t1 = t4 - in[1];
    double t2 = t4 - in[2];

    out[0] = t0 - t2;
    out[1] = t2;
    out[2] = t3 + t1;
    out[3] = t1;
}

// standard DCT-II
static void fdct_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0));
    }
    out[0] *= M_SQRT1_2;
}

// see "Towards jointly optimal spatial prediction and adaptive transform in
// video/image coding", by J. Han, A. Saxena, and K. Rose
// IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
static void fadst4_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0));
    }
}

// see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
// by Jingning Han, Yaowu Xu, and Debargha Mukherjee
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf
static void fadst_1d(double *out, const double *in, int sz)
{
    int k, n;

    for (k = 0; k < sz; k++) {
        out[k] = 0.0;
        for (n = 0; n < sz; n++)
            out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0));
    }
}

typedef void (*ftx1d_fn)(double *out, const double *in, int sz);
static void ftx_2d(double *out, const double *in, enum TxfmMode tx,
                   enum TxfmType txtp, int sz)
{
    static const double scaling_factors[5][4] = {
        { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 },
        { 2.0, 2.0, 2.0, 2.0 },
        { 1.0, 1.0, 1.0, 1.0 },
        { 0.25 },
        { 4.0 }
    };
    static const ftx1d_fn ftx1d_tbl[5][4][2] = {
        {
            { fdct_1d, fdct_1d },
            { fadst4_1d, fdct_1d },
            { fdct_1d, fadst4_1d },
            { fadst4_1d, fadst4_1d },
        }, {
            { fdct_1d, fdct_1d },
            { fadst_1d, fdct_1d },
            { fdct_1d, fadst_1d },
            { fadst_1d, fadst_1d },
        }, {
            { fdct_1d, fdct_1d },
            { fadst_1d, fdct_1d },
            { fdct_1d, fadst_1d },
            { fadst_1d, fadst_1d },
        }, {
            { fdct_1d, fdct_1d },
        }, {
            { fwht_1d, fwht_1d },
        },
    };
    double temp[1024];
    double scaling_factor = scaling_factors[tx][txtp];
    int i, j;

    // cols
    for (i = 0; i < sz; ++i) {
        double temp_out[32];

        ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz);
        // scale and transpose
        for (j = 0; j < sz; ++j)
            temp[j * sz + i] = temp_out[j] * scaling_factor;
    }

    // rows
    for (i = 0; i < sz; i++)
        ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz);
}

static void ftx(int16_t *buf, enum TxfmMode tx,
                enum TxfmType txtp, int sz, int bit_depth)
{
    double ind[1024], outd[1024];
    int n;

    emms_c();
    for (n = 0; n < sz * sz; n++) {
        if (bit_depth == 8)
            ind[n] = buf[n];
        else
            ind[n] = ((int32_t *) buf)[n];
    }
    ftx_2d(outd, ind, tx, txtp, sz);
    for (n = 0; n < sz * sz; n++) {
        if (bit_depth == 8)
            buf[n] = lrint(outd[n]);
        else
            ((int32_t *) buf)[n] = lrint(outd[n]);
    }
}

static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx,
                         enum TxfmType txtp, int sz, int sub, int bit_depth)
{
    // copy the topleft coefficients such that the return value (being the
    // coefficient scantable index for the eob token) guarantees that only
    // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
    // dimensions are non-zero. This leads to braching to specific optimized
    // simd versions (e.g. dc-only) so that we get full asm coverage in this
    // test

    int n;
262
    const int16_t *scan = ff_vp9_scans[tx][txtp];
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    int eob;

    for (n = 0; n < sz * sz; n++) {
        int rc = scan[n], rcx = rc % sz, rcy = rc / sz;

        // find eob for this sub-idct
        if (rcx >= sub || rcy >= sub)
            break;

        // copy coef
        if (bit_depth == 8) {
            out[rc] = in[rc];
        } else {
            AV_COPY32(&out[rc * 2], &in[rc * 2]);
        }
    }

    eob = n;

    for (; n < sz * sz; n++) {
        int rc = scan[n];

        // zero
        if (bit_depth == 8) {
            out[rc] = 0;
        } else {
            AV_ZERO32(&out[rc * 2]);
        }
    }

    return eob;
}

static int iszero(const int16_t *c, int sz)
{
    int n;

300
    for (n = 0; n < sz / sizeof(int16_t); n += 2)
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        if (AV_RN32A(&c[n]))
            return 0;

    return 1;
}

#define SIZEOF_COEF (2 * ((bit_depth + 7) / 8))

static void check_itxfm(void)
{
    LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]);
    LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]);
318
    declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    VP9DSPContext dsp;
    int y, x, tx, txtp, bit_depth, sub;
    static const char *const txtp_types[N_TXFM_TYPES] = {
        [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct",
        [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst"
    };

    for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
        ff_vp9dsp_init(&dsp, bit_depth, 0);

        for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) {
            int sz = 4 << (tx & 3);
            int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1;

            for (txtp = 0; txtp < n_txtps; txtp++) {
334 335 336
                // skip testing sub-IDCTs for WHT or ADST since they don't
                // implement it in any of the SIMD functions. If they do,
                // consider changing this to ensure we have complete test
337 338 339 340
                // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc,
                // since the arm version can distinguish them at that level.
                for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz;
                     sub < 4 ? (sub <<= 1) : (sub += 4)) {
341 342 343 344
                    if (check_func(dsp.itxfm_add[tx][txtp],
                                   "vp9_inv_%s_%dx%d_sub%d_add_%d",
                                   tx == 4 ? "wht_wht" : txtp_types[txtp],
                                   sz, sz, sub, bit_depth)) {
345 346
                        int eob;

347 348 349
                        randomize_buffers();
                        ftx(coef, tx, txtp, sz, bit_depth);

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
                        if (sub < sz) {
                            eob = copy_subcoefs(subcoef0, coef, tx, txtp,
                                                sz, sub, bit_depth);
                        } else {
                            eob = sz * sz;
                            memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
                        }

                        memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL);
                        memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL);
                        memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
                        call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob);
                        call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob);
                        if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) ||
                            !iszero(subcoef0, sz * sz * SIZEOF_COEF) ||
                            !iszero(subcoef1, sz * sz * SIZEOF_COEF))
                            fail();
367 368

                        bench_new(dst, sz * SIZEOF_PIXEL, coef, eob);
369 370 371 372 373 374 375 376 377 378
                    }
                }
            }
        }
    }
    report("itxfm");
}

#undef randomize_buffers

379 380 381
#define setpx(a,b,c) \
    do { \
        if (SIZEOF_PIXEL == 1) { \
382
            buf0[(a) + (b) * jstride] = av_clip_uint8(c); \
383
        } else { \
384
            ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \
385 386
        } \
    } while (0)
387 388 389

// c can be an assignment and must not be put under ()
#define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1)))
390
#define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8))
391
static void randomize_loopfilter_buffers(int bidx, int lineoff, int str,
392 393
                                         int bit_depth, int dir, const int *E,
                                         const int *F, const int *H, const int *I,
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                                         uint8_t *buf0, uint8_t *buf1)
{
    uint32_t mask = (1 << bit_depth) - 1;
    int off = dir ? lineoff : lineoff * 16;
    int istride = dir ? 1 : 16;
    int jstride = dir ? str : 1;
    int i, j;
    for (i = 0; i < 2; i++) /* flat16 */ {
        int idx = off + i * istride, p0, q0;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        for (j = 1; j < 8; j++) {
            setsx(idx, -1 - j, p0, F[bidx]);
            setsx(idx, j, q0, F[bidx]);
        }
    }
    for (i = 2; i < 4; i++) /* flat8 */ {
        int idx = off + i * istride, p0, q0;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        for (j = 1; j < 4; j++) {
            setsx(idx, -1 - j, p0, F[bidx]);
            setsx(idx, j, q0, F[bidx]);
        }
        for (j = 4; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
    for (i = 4; i < 6; i++) /* regular */ {
        int idx = off + i * istride, p2, p1, p0, q0, q1, q2;
        setpx(idx,  0, q0 = rnd() & mask);
        setsx(idx,  1, q1 = q0, I[bidx]);
        setsx(idx,  2, q2 = q1, I[bidx]);
        setsx(idx,  3, q2,      I[bidx]);
        setsx(idx, -1, p0 = q0, E[bidx] >> 2);
        setsx(idx, -2, p1 = p0, I[bidx]);
        setsx(idx, -3, p2 = p1, I[bidx]);
        setsx(idx, -4, p2,      I[bidx]);
        for (j = 4; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
    for (i = 6; i < 8; i++) /* off */ {
        int idx = off + i * istride;
        for (j = 0; j < 8; j++) {
            setpx(idx, -1 - j, rnd() & mask);
            setpx(idx, j, rnd() & mask);
        }
    }
}
446
#define randomize_buffers(bidx, lineoff, str) \
447 448
        randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \
                                     E, F, H, I, buf0, buf1)
449

450
static void check_loopfilter(void)
451 452 453 454 455 456
{
    LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]);
    LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]);
    VP9DSPContext dsp;
    int dir, wd, wd2, bit_depth;
    static const char *const dir_name[2] = { "h", "v" };
457 458
    static const int E[2] = { 20, 28 }, I[2] = { 10, 16 };
    static const int H[2] = { 7, 11 }, F[2] = { 1, 1 };
459
    declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H);
460 461 462 463 464 465 466

    for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
        ff_vp9dsp_init(&dsp, bit_depth, 0);

        for (dir = 0; dir < 2; dir++) {
            int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL;
            int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL;
467 468
            uint8_t *buf0 = base0 + midoff_aligned;
            uint8_t *buf1 = base1 + midoff_aligned;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

            for (wd = 0; wd < 3; wd++) {
                // 4/8/16wd_8px
                if (check_func(dsp.loop_filter_8[wd][dir],
                               "vp9_loop_filter_%s_%d_8_%dbpp",
                               dir_name[dir], 4 << wd, bit_depth)) {
                    randomize_buffers(0, 0, 8);
                    memcpy(buf1 - midoff, buf0 - midoff,
                           16 * 8 * SIZEOF_PIXEL);
                    call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
                    call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
                    if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL))
                        fail();
                    bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
                }
            }

            midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL;
            midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL;

489 490 491
            buf0 = base0 + midoff_aligned;
            buf1 = base1 + midoff_aligned;

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            // 16wd_16px loopfilter
            if (check_func(dsp.loop_filter_16[dir],
                           "vp9_loop_filter_%s_16_16_%dbpp",
                           dir_name[dir], bit_depth)) {
                randomize_buffers(0, 0, 16);
                randomize_buffers(0, 8, 16);
                memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
                call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
                call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
                if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
                    fail();
                bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
            }

            for (wd = 0; wd < 2; wd++) {
                for (wd2 = 0; wd2 < 2; wd2++) {
                    // mix2 loopfilter
                    if (check_func(dsp.loop_filter_mix2[wd][wd2][dir],
                                   "vp9_loop_filter_mix2_%s_%d%d_16_%dbpp",
                                   dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) {
                        randomize_buffers(0, 0, 16);
                        randomize_buffers(1, 8, 16);
                        memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
515
#define M(a) (((a)[1] << 8) | (a)[0])
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                        call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
                        call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
                        if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
                            fail();
                        bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
#undef M
                    }
                }
            }
        }
    }
    report("loopfilter");
}

#undef setsx
#undef setpx
#undef setdx
#undef randomize_buffers

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
#define DST_BUF_SIZE (size * size * SIZEOF_PIXEL)
#define SRC_BUF_STRIDE 72
#define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL)
#define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1))

#define randomize_buffers()                               \
    do {                                                  \
        uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
        int k;                                            \
        for (k = 0; k < SRC_BUF_SIZE; k += 4) {           \
            uint32_t r = rnd() & mask;                    \
            AV_WN32A(buf + k, r);                         \
        }                                                 \
        if (op == 1) {                                    \
            for (k = 0; k < DST_BUF_SIZE; k += 4) {       \
                uint32_t r = rnd() & mask;                \
                AV_WN32A(dst0 + k, r);                    \
                AV_WN32A(dst1 + k, r);                    \
            }                                             \
        }                                                 \
    } while (0)

static void check_mc(void)
{
    LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]);
    LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]);
    VP9DSPContext dsp;
    int op, hsize, bit_depth, filter, dx, dy;
564 565
    declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride,
                      const uint8_t *ref, ptrdiff_t ref_stride,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                 int h, int mx, int my);
    static const char *const filter_names[4] = {
        "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin"
    };
    static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } };
    static const char *const op_names[2] = { "put", "avg" };
    char str[256];

    for (op = 0; op < 2; op++) {
        for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
            ff_vp9dsp_init(&dsp, bit_depth, 0);
            for (hsize = 0; hsize < 5; hsize++) {
                int size = 64 >> hsize;

                for (filter = 0; filter < 4; filter++) {
                    for (dx = 0; dx < 2; dx++) {
                        for (dy = 0; dy < 2; dy++) {
                            if (dx || dy) {
584 585 586 587
                                snprintf(str, sizeof(str),
                                         "%s_%s_%d%s", op_names[op],
                                         filter_names[filter], size,
                                         subpel_names[dy][dx]);
588
                            } else {
589 590
                                snprintf(str, sizeof(str),
                                         "%s%d", op_names[op], size);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
                            }
                            if (check_func(dsp.mc[hsize][filter][op][dx][dy],
                                           "vp9_%s_%dbpp", str, bit_depth)) {
                                int mx = dx ? 1 + (rnd() % 14) : 0;
                                int my = dy ? 1 + (rnd() % 14) : 0;
                                randomize_buffers();
                                call_ref(dst0, size * SIZEOF_PIXEL,
                                         src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                         size, mx, my);
                                call_new(dst1, size * SIZEOF_PIXEL,
                                         src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                         size, mx, my);
                                if (memcmp(dst0, dst1, DST_BUF_SIZE))
                                    fail();

                                // simd implementations for each filter of subpel
                                // functions are identical
                                if (filter >= 1 && filter <= 2) continue;
                                // 10/12 bpp for bilin are identical
                                if (bit_depth == 12 && filter == 3) continue;

                                bench_new(dst1, size * SIZEOF_PIXEL,
                                          src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
                                          size, mx, my);
                            }
                        }
                    }
                }
            }
        }
    }
    report("mc");
}

void checkasm_check_vp9dsp(void)
{
627
    check_ipred();
628
    check_itxfm();
629
    check_loopfilter();
630 631
    check_mc();
}