cook.c 36.2 KB
Newer Older
1 2 3 4 5
/*
 * COOK compatible decoder
 * Copyright (c) 2003 Sascha Sommer
 * Copyright (c) 2005 Benjamin Larsson
 *
6 7 8
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
9 10
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14 15 16 17 18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 *
 */

/**
 * @file cook.c
 * Cook compatible decoder.
 * This decoder handles RealNetworks, RealAudio G2 data.
 * Cook is identified by the codec name cook in RM files.
 *
 * To use this decoder, a calling application must supply the extradata
 * bytes provided from the RM container; 8+ bytes for mono streams and
 * 16+ for stereo streams (maybe more).
 *
 * Codec technicalities (all this assume a buffer length of 1024):
 * Cook works with several different techniques to achieve its compression.
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
 * two neighboring pieces have different quantization index a smooth
 * quantization curve is used to get a smooth overlap between the different
 * pieces.
 * To get to the transformdomain Cook uses a modulated lapped transform.
 * The transform domain has 50 subbands with 20 elements each. This
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 * available.
 */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"
53
#include "common.h"
54
#include "bytestream.h"
55
#include "random.h"
56 57 58 59

#include "cookdata.h"

/* the different Cook versions */
60 61
#define MONO            0x1000001
#define STEREO          0x1000002
62 63 64 65 66 67 68
#define JOINT_STEREO    0x1000003
#define MC_COOK         0x2000000   //multichannel Cook, not supported

#define SUBBAND_SIZE    20
//#define COOKDEBUG

typedef struct {
69 70 71
    int *now;
    int *previous;
} cook_gains;
72 73 74 75 76 77 78 79 80 81 82

typedef struct {
    GetBitContext       gb;
    /* stream data */
    int                 nb_channels;
    int                 joint_stereo;
    int                 bit_rate;
    int                 sample_rate;
    int                 samples_per_channel;
    int                 samples_per_frame;
    int                 subbands;
83 84
    int                 log2_numvector_size;
    int                 numvector_size;                //1 << log2_numvector_size;
85 86 87 88
    int                 js_subband_start;
    int                 total_subbands;
    int                 num_vectors;
    int                 bits_per_subpacket;
89
    int                 cookversion;
90
    /* states */
91
    AVRandomState       random_state;
92 93

    /* transform data */
94 95
    MDCTContext         mdct_ctx;
    DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]);  /* temporary storage for imlt */
96 97 98
    float*              mlt_window;

    /* gain buffers */
99 100 101 102 103 104
    cook_gains          gains1;
    cook_gains          gains2;
    int                 gain_1[9];
    int                 gain_2[9];
    int                 gain_3[9];
    int                 gain_4[9];
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    /* VLC data */
    int                 js_vlc_bits;
    VLC                 envelope_quant_index[13];
    VLC                 sqvh[7];          //scalar quantization
    VLC                 ccpl;             //channel coupling

    /* generatable tables and related variables */
    int                 gain_size_factor;
    float               gain_table[23];
    float               pow2tab[127];
    float               rootpow2tab[127];

    /* data buffers */

    uint8_t*            decoded_bytes_buffer;
121
    DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    float               mono_previous_buffer1[1024];
    float               mono_previous_buffer2[1024];
    float               decode_buffer_1[1024];
    float               decode_buffer_2[1024];
} COOKContext;

/* debug functions */

#ifdef COOKDEBUG
static void dump_float_table(float* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

static void dump_int_table(int* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

static void dump_short_table(short* table, int size, int delimiter) {
    int i=0;
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
    for (i=0 ; i<size ; i++) {
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
    }
}

#endif

/*************** init functions ***************/

/* table generator */
static void init_pow2table(COOKContext *q){
    int i;
    q->pow2tab[63] = 1.0;
    for (i=1 ; i<64 ; i++){
167 168
        q->pow2tab[63+i]=(float)((uint64_t)1<<i);
        q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
169 170 171 172 173 174 175 176
    }
}

/* table generator */
static void init_rootpow2table(COOKContext *q){
    int i;
    q->rootpow2tab[63] = 1.0;
    for (i=1 ; i<64 ; i++){
177 178
        q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
        q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    }
}

/* table generator */
static void init_gain_table(COOKContext *q) {
    int i;
    q->gain_size_factor = q->samples_per_channel/8;
    for (i=0 ; i<23 ; i++) {
        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
                               (1.0/(double)q->gain_size_factor));
    }
}


static int init_cook_vlc_tables(COOKContext *q) {
    int i, result;

    result = 0;
    for (i=0 ; i<13 ; i++) {
        result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
            envelope_quant_index_huffbits[i], 1, 1,
            envelope_quant_index_huffcodes[i], 2, 2, 0);
    }
    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
    for (i=0 ; i<7 ; i++) {
        result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
            cvh_huffbits[i], 1, 1,
            cvh_huffcodes[i], 2, 2, 0);
    }

    if (q->nb_channels==2 && q->joint_stereo==1){
        result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
    }

    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
    return result;
}

static int init_cook_mlt(COOKContext *q) {
    int j;
    float alpha;
223
    int mlt_size = q->samples_per_channel;
224

225 226
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
      return -1;
227 228

    /* Initialize the MLT window: simple sine window. */
229 230 231 232 233 234 235 236
    alpha = M_PI / (2.0 * (float)mlt_size);
    for(j=0 ; j<mlt_size ; j++)
        q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);

    /* Initialize the MDCT. */
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
      av_free(q->mlt_window);
      return -1;
237
    }
238 239
    av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
           av_log2(mlt_size)+1);
240

241
    return 0;
242 243 244 245 246 247 248
}

/*************** init functions end ***********/

/**
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 * Why? No idea, some checksum/error detection method maybe.
249 250 251 252 253 254 255 256 257 258 259
 *
 * Out buffer size: extra bytes are needed to cope with
 * padding/missalignment.
 * Subpackets passed to the decoder can contain two, consecutive
 * half-subpackets, of identical but arbitrary size.
 *          1234 1234 1234 1234  extraA extraB
 * Case 1:  AAAA BBBB              0      0
 * Case 2:  AAAA ABBB BB--         3      3
 * Case 3:  AAAA AABB BBBB         2      2
 * Case 4:  AAAA AAAB BBBB BB--    1      5
 *
260 261
 * Nice way to waste CPU cycles.
 *
262 263 264
 * @param inbuffer  pointer to byte array of indata
 * @param out       pointer to byte array of outdata
 * @param bytes     number of bytes
265
 */
266 267
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
268

269 270 271 272
static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
    int i, off;
    uint32_t c;
    uint32_t* buf;
273 274 275 276 277 278 279
    uint32_t* obuf = (uint32_t*) out;
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
     * I'm too lazy though, should be something like
     * for(i=0 ; i<bitamount/64 ; i++)
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
     * Buffer alignment needs to be checked. */

280
    off = (int)((long)inbuffer & 3);
281 282 283 284 285
    buf = (uint32_t*) (inbuffer - off);
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
    bytes += 3 + off;
    for (i = 0; i < bytes/4; i++)
        obuf[i] = c ^ buf[i];
286

287
    return off;
288 289 290 291 292 293 294 295 296 297
}

/**
 * Cook uninit
 */

static int cook_decode_close(AVCodecContext *avctx)
{
    int i;
    COOKContext *q = avctx->priv_data;
298
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
299 300 301 302 303 304

    /* Free allocated memory buffers. */
    av_free(q->mlt_window);
    av_free(q->decoded_bytes_buffer);

    /* Free the transform. */
305
    ff_mdct_end(&q->mdct_ctx);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    /* Free the VLC tables. */
    for (i=0 ; i<13 ; i++) {
        free_vlc(&q->envelope_quant_index[i]);
    }
    for (i=0 ; i<7 ; i++) {
        free_vlc(&q->sqvh[i]);
    }
    if(q->nb_channels==2 && q->joint_stereo==1 ){
        free_vlc(&q->ccpl);
    }

    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");

    return 0;
}

/**
324
 * Fill the gain array for the timedomain quantization.
325 326
 *
 * @param q                 pointer to the COOKContext
327
 * @param gaininfo[9]       array of gain indices
328 329
 */

330 331 332
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
{
    int i, n;
333 334

    while (get_bits1(gb)) {}
335
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
336

337 338 339 340
    i = 0;
    while (n--) {
        int index = get_bits(gb, 3);
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
341

342
        while (i <= index) gaininfo[i++] = gain;
343
    }
344
    while (i <= 8) gaininfo[i++] = 0;
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

/**
 * Create the quant index table needed for the envelope.
 *
 * @param q                 pointer to the COOKContext
 * @param quant_index_table pointer to the array
 */

static void decode_envelope(COOKContext *q, int* quant_index_table) {
    int i,j, vlc_index;
    int bitbias;

    bitbias = get_bits_count(&q->gb);
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize

    for (i=1 ; i < q->total_subbands ; i++){
        vlc_index=i;
        if (i >= q->js_subband_start * 2) {
            vlc_index-=q->js_subband_start;
        } else {
            vlc_index/=2;
            if(vlc_index < 1) vlc_index = 1;
        }
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13

        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
                     q->envelope_quant_index[vlc_index-1].bits,2);
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
    }
}

/**
 * Calculate the category and category_index vector.
 *
 * @param q                     pointer to the COOKContext
 * @param quant_index_table     pointer to the array
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static void categorize(COOKContext *q, int* quant_index_table,
                       int* category, int* category_index){
    int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
    int exp_index2[102];
    int exp_index1[102];

    int tmp_categorize_array1[128];
    int tmp_categorize_array1_idx=0;
    int tmp_categorize_array2[128];
    int tmp_categorize_array2_idx=0;
    int category_index_size=0;

    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);

    if(bits_left > q->samples_per_channel) {
        bits_left = q->samples_per_channel +
                    ((bits_left - q->samples_per_channel)*5)/8;
        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
    }

    memset(&exp_index1,0,102*sizeof(int));
    memset(&exp_index2,0,102*sizeof(int));
    memset(&tmp_categorize_array1,0,128*sizeof(int));
    memset(&tmp_categorize_array2,0,128*sizeof(int));

    bias=-32;

    /* Estimate bias. */
    for (i=32 ; i>0 ; i=i/2){
        num_bits = 0;
        index = 0;
        for (j=q->total_subbands ; j>0 ; j--){
            exp_idx = (i - quant_index_table[index] + bias) / 2;
            if (exp_idx<0){
                exp_idx=0;
            } else if(exp_idx >7) {
                exp_idx=7;
            }
            index++;
            num_bits+=expbits_tab[exp_idx];
        }
        if(num_bits >= bits_left - 32){
            bias+=i;
        }
    }

    /* Calculate total number of bits. */
    num_bits=0;
    for (i=0 ; i<q->total_subbands ; i++) {
        exp_idx = (bias - quant_index_table[i]) / 2;
        if (exp_idx<0) {
            exp_idx=0;
        } else if(exp_idx >7) {
            exp_idx=7;
        }
        num_bits += expbits_tab[exp_idx];
        exp_index1[i] = exp_idx;
        exp_index2[i] = exp_idx;
    }
    tmpbias = bias = num_bits;

    for (j = 1 ; j < q->numvector_size ; j++) {
        if (tmpbias + bias > 2*bits_left) {  /* ---> */
            int max = -999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if (exp_index1[i] < 7) {
                    v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
                    if ( v >= max) {
                        max = v;
                        index = i;
                    }
                }
            }
            if(index==-1)break;
            tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
            tmpbias -= expbits_tab[exp_index1[index]] -
                       expbits_tab[exp_index1[index]+1];
            ++exp_index1[index];
        } else {  /* <--- */
            int min = 999999;
            index=-1;
            for (i=0 ; i<q->total_subbands ; i++){
                if(exp_index2[i] > 0){
                    v = (-2*exp_index2[i])-quant_index_table[i];
                    if ( v < min) {
                        min = v;
                        index = i;
                    }
                }
            }
            if(index == -1)break;
            tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
            tmpbias -= expbits_tab[exp_index2[index]] -
                       expbits_tab[exp_index2[index]-1];
            --exp_index2[index];
        }
    }

    for(i=0 ; i<q->total_subbands ; i++)
        category[i] = exp_index2[i];

    /* Concatenate the two arrays. */
    for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
        category_index[category_index_size++] =  tmp_categorize_array2[i];

    for(i=0;i<tmp_categorize_array1_idx;i++)
        category_index[category_index_size++ ] =  tmp_categorize_array1[i];

    /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
       should fill the remaining bytes. */
    for(i=category_index_size;i<q->numvector_size;i++)
        category_index[i]=0;

}


/**
 * Expand the category vector.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */

static void inline expand_category(COOKContext *q, int* category,
                                   int* category_index){
    int i;
    for(i=0 ; i<q->num_vectors ; i++){
        ++category[category_index[i]];
    }
}

/**
 * The real requantization of the mltcoefs
 *
 * @param q                     pointer to the COOKContext
 * @param index                 index
524
 * @param quant_index           quantisation index
525
 * @param subband_coef_index    array of indexes to quant_centroid_tab
526
 * @param subband_coef_sign     signs of coefficients
527
 * @param mlt_p                 pointer into the mlt buffer
528 529
 */

530 531 532
static void scalar_dequant(COOKContext *q, int index, int quant_index,
                           int* subband_coef_index, int* subband_coef_sign,
                           float* mlt_p){
533 534 535 536 537
    int i;
    float f1;

    for(i=0 ; i<SUBBAND_SIZE ; i++) {
        if (subband_coef_index[i]) {
538 539
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
            if (subband_coef_sign[i]) f1 = -f1;
540
        } else {
541
            /* noise coding if subband_coef_index[i] == 0 */
542 543
            f1 = dither_tab[index];
            if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
544
        }
545
        mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
546 547 548
    }
}
/**
549
 * Unpack the subband_coef_index and subband_coef_sign vectors.
550 551 552 553
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param subband_coef_index    array of indexes to quant_centroid_tab
554
 * @param subband_coef_sign     signs of coefficients
555 556 557
 */

static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
558
                       int* subband_coef_sign) {
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    int i,j;
    int vlc, vd ,tmp, result;
    int ub;
    int cb;

    vd = vd_tab[category];
    result = 0;
    for(i=0 ; i<vpr_tab[category] ; i++){
        ub = get_bits_count(&q->gb);
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
        cb = get_bits_count(&q->gb);
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
            vlc = 0;
            result = 1;
        }
        for(j=vd-1 ; j>=0 ; j--){
            tmp = (vlc * invradix_tab[category])/0x100000;
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
            vlc = tmp;
        }
        for(j=0 ; j<vd ; j++){
            if (subband_coef_index[i*vd + j]) {
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
582
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
583 584
                } else {
                    result=1;
585
                    subband_coef_sign[i*vd+j]=0;
586 587
                }
            } else {
588
                subband_coef_sign[i*vd+j]=0;
589 590 591 592 593 594 595 596 597 598 599 600
            }
        }
    }
    return result;
}


/**
 * Fill the mlt_buffer with mlt coefficients.
 *
 * @param q                 pointer to the COOKContext
 * @param category          pointer to the category array
601
 * @param quant_index_table pointer to the array
602 603 604 605 606
 * @param mlt_buffer        pointer to mlt coefficients
 */


static void decode_vectors(COOKContext* q, int* category,
607
                           int *quant_index_table, float* mlt_buffer){
608 609
    /* A zero in this table means that the subband coefficient is
       random noise coded. */
610
    int subband_coef_index[SUBBAND_SIZE];
611 612
    /* A zero in this table means that the subband coefficient is a
       positive multiplicator. */
613
    int subband_coef_sign[SUBBAND_SIZE];
614 615 616 617 618 619
    int band, j;
    int index=0;

    for(band=0 ; band<q->total_subbands ; band++){
        index = category[band];
        if(category[band] < 7){
620
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
621 622 623 624 625 626
                index=7;
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
            }
        }
        if(index==7) {
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
627
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
628
        }
629 630 631
        scalar_dequant(q, index, quant_index_table[band],
                       subband_coef_index, subband_coef_sign,
                       &mlt_buffer[band * 20]);
632 633 634 635
    }

    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
        return;
636
    } /* FIXME: should this be removed, or moved into loop above? */
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}


/**
 * function for decoding mono data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */

static void mono_decode(COOKContext *q, float* mlt_buffer) {

    int category_index[128];
    int quant_index_table[102];
    int category[128];

    memset(&category, 0, 128*sizeof(int));
    memset(&category_index, 0, 128*sizeof(int));

    decode_envelope(q, quant_index_table);
658
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
659 660
    categorize(q, quant_index_table, category, category_index);
    expand_category(q, category, category_index);
661
    decode_vectors(q, category, quant_index_table, mlt_buffer);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
}


/**
 * the actual requantization of the timedomain samples
 *
 * @param q                 pointer to the COOKContext
 * @param buffer            pointer to the timedomain buffer
 * @param gain_index        index for the block multiplier
 * @param gain_index_next   index for the next block multiplier
 */

static void interpolate(COOKContext *q, float* buffer,
                        int gain_index, int gain_index_next){
    int i;
    float fc1, fc2;
    fc1 = q->pow2tab[gain_index+63];

    if(gain_index == gain_index_next){              //static gain
        for(i=0 ; i<q->gain_size_factor ; i++){
            buffer[i]*=fc1;
        }
        return;
    } else {                                        //smooth gain
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
        for(i=0 ; i<q->gain_size_factor ; i++){
            buffer[i]*=fc1;
            fc1*=fc2;
        }
        return;
    }
}


/**
697 698 699 700
 * The modulated lapped transform, this takes transform coefficients
 * and transforms them into timedomain samples.
 * Apply transform window, overlap buffers, apply gain profile
 * and buffer management.
701 702
 *
 * @param q                 pointer to the COOKContext
703
 * @param inbuffer          pointer to the mltcoefficients
704
 * @param gains_ptr         current and previous gains
705 706 707
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 */

708 709
static void imlt_gain(COOKContext *q, float *inbuffer,
                      cook_gains *gains_ptr, float* previous_buffer)
710 711
{
    const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
712 713
    float *buffer0 = q->mono_mdct_output;
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
714 715
    int i;

716 717 718 719 720 721 722 723 724 725 726 727 728 729
    /* Inverse modified discrete cosine transform */
    q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
                               inbuffer, q->mdct_tmp);

    /* The weird thing here, is that the two halves of the time domain
     * buffer are swapped. Also, the newest data, that we save away for
     * next frame, has the wrong sign. Hence the subtraction below.
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
     */

    /* Apply window and overlap */
    for(i = 0; i < q->samples_per_channel; i++){
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
730 731 732 733 734
    }

    /* Apply gain profile */
    for (i = 0; i < 8; i++) {
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
735
            interpolate(q, &buffer1[q->gain_size_factor * i],
736 737
                        gains_ptr->now[i], gains_ptr->now[i + 1]);
    }
738 739

    /* Save away the current to be previous block. */
740
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
}


/**
 * function for getting the jointstereo coupling information
 *
 * @param q                 pointer to the COOKContext
 * @param decouple_tab      decoupling array
 *
 */

static void decouple_info(COOKContext *q, int* decouple_tab){
    int length, i;

    if(get_bits1(&q->gb)) {
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
        for (i=0 ; i<length ; i++) {
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
        }
        return;
    }

    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;

    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
    for (i=0 ; i<length ; i++) {
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
    }
    return;
}


/**
 * function for decoding joint stereo data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */

static void joint_decode(COOKContext *q, float* mlt_buffer1,
                         float* mlt_buffer2) {
    int i,j;
    int decouple_tab[SUBBAND_SIZE];
787
    float decode_buffer[1060];
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    int idx, cpl_tmp,tmp_idx;
    float f1,f2;
    float* cplscale;

    memset(decouple_tab, 0, sizeof(decouple_tab));
    memset(decode_buffer, 0, sizeof(decode_buffer));

    /* Make sure the buffers are zeroed out. */
    memset(mlt_buffer1,0, 1024*sizeof(float));
    memset(mlt_buffer2,0, 1024*sizeof(float));
    decouple_info(q, decouple_tab);
    mono_decode(q, decode_buffer);

    /* The two channels are stored interleaved in decode_buffer. */
    for (i=0 ; i<q->js_subband_start ; i++) {
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
        }
    }

    /* When we reach js_subband_start (the higher frequencies)
       the coefficients are stored in a coupling scheme. */
    idx = (1 << q->js_vlc_bits) - 1;
812 813 814 815 816 817 818 819 820 821
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
        cpl_tmp = cplband[i];
        idx -=decouple_tab[cpl_tmp];
        cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
        f1 = cplscale[decouple_tab[cpl_tmp]];
        f2 = cplscale[idx-1];
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
            tmp_idx = ((q->js_subband_start + i)*20)+j;
            mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
            mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
822
        }
823
        idx = (1 << q->js_vlc_bits) - 1;
824 825 826
    }
}

827 828 829 830 831 832 833 834 835 836
/**
 * First part of subpacket decoding:
 *  decode raw stream bytes and read gain info.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to raw stream data
 * @param gain_ptr          array of current/prev gain pointers
 */

static inline void
837
decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
838
                      cook_gains *gains_ptr)
839 840 841 842 843 844 845
{
    int offset;

    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
                          q->bits_per_subpacket/8);
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
                  q->bits_per_subpacket);
846
    decode_gain_info(&q->gb, gains_ptr->now);
847 848

    /* Swap current and previous gains */
849
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
}

/**
 * Final part of subpacket decoding:
 *  Apply modulated lapped transform, gain compensation,
 *  clip and convert to integer.
 *
 * @param q                 pointer to the COOKContext
 * @param decode_buffer     pointer to the mlt coefficients
 * @param gain_ptr          array of current/prev gain pointers
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 * @param out               pointer to the output buffer
 * @param chan              0: left or single channel, 1: right channel
 */

static inline void
mlt_compensate_output(COOKContext *q, float *decode_buffer,
867
                      cook_gains *gains, float *previous_buffer,
868 869
                      int16_t *out, int chan)
{
870
    float *output = q->mono_mdct_output + q->samples_per_channel;
871 872
    int j;

873
    imlt_gain(q, decode_buffer, gains, previous_buffer);
874 875 876 877 878

    /* Clip and convert floats to 16 bits.
     */
    for (j = 0; j < q->samples_per_channel; j++) {
        out[chan + q->nb_channels * j] =
879
          av_clip(lrintf(output[j]), -32768, 32767);
880
    }
881 882 883
}


884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/**
 * Cook subpacket decoding. This function returns one decoded subpacket,
 * usually 1024 samples per channel.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to the inbuffer
 * @param sub_packet_size   subpacket size
 * @param outbuffer         pointer to the outbuffer
 */


static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
                            int sub_packet_size, int16_t *outbuffer) {
    /* packet dump */
//    for (i=0 ; i<sub_packet_size ; i++) {
//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
//    }
//    av_log(NULL, AV_LOG_ERROR, "\n");

903
    decode_bytes_and_gain(q, inbuffer, &q->gains1);
904

905 906 907 908
    if (q->joint_stereo) {
        joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
    } else {
        mono_decode(q, q->decode_buffer_1);
909

910
        if (q->nb_channels == 2) {
911
            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
912 913 914
            mono_decode(q, q->decode_buffer_2);
        }
    }
915

916
    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
917
                          q->mono_previous_buffer1, outbuffer, 0);
918

919 920
    if (q->nb_channels == 2) {
        if (q->joint_stereo) {
921
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
922 923
                                  q->mono_previous_buffer2, outbuffer, 1);
        } else {
924
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
925
                                  q->mono_previous_buffer2, outbuffer, 1);
926 927
        }
    }
928
    return q->samples_per_frame * sizeof(int16_t);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}


/**
 * Cook frame decoding
 *
 * @param avctx     pointer to the AVCodecContext
 */

static int cook_decode_frame(AVCodecContext *avctx,
            void *data, int *data_size,
            uint8_t *buf, int buf_size) {
    COOKContext *q = avctx->priv_data;

    if (buf_size < avctx->block_align)
        return buf_size;

    *data_size = decode_subpacket(q, buf, avctx->block_align, data);

948 949 950
    /* Discard the first two frames: no valid audio. */
    if (avctx->frame_number < 2) *data_size = 0;

951 952
    return avctx->block_align;
}
953

954
#ifdef COOKDEBUG
955
static void dump_cook_context(COOKContext *q)
956 957 958 959
{
    //int i=0;
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
960 961 962 963
    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
    if (q->cookversion > STEREO) {
        PRINT("js_subband_start",q->js_subband_start);
        PRINT("js_vlc_bits",q->js_vlc_bits);
964 965 966 967 968 969 970 971 972 973
    }
    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
    PRINT("nb_channels",q->nb_channels);
    PRINT("bit_rate",q->bit_rate);
    PRINT("sample_rate",q->sample_rate);
    PRINT("samples_per_channel",q->samples_per_channel);
    PRINT("samples_per_frame",q->samples_per_frame);
    PRINT("subbands",q->subbands);
    PRINT("random_state",q->random_state);
    PRINT("js_subband_start",q->js_subband_start);
974
    PRINT("log2_numvector_size",q->log2_numvector_size);
975 976 977 978
    PRINT("numvector_size",q->numvector_size);
    PRINT("total_subbands",q->total_subbands);
}
#endif
979

980 981 982 983 984 985 986 987 988
/**
 * Cook initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */

static int cook_decode_init(AVCodecContext *avctx)
{
    COOKContext *q = avctx->priv_data;
989
    uint8_t *edata_ptr = avctx->extradata;
990 991 992

    /* Take care of the codec specific extradata. */
    if (avctx->extradata_size <= 0) {
993
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
994 995 996 997
        return -1;
    } else {
        /* 8 for mono, 16 for stereo, ? for multichannel
           Swap to right endianness so we don't need to care later on. */
998
        av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
999
        if (avctx->extradata_size >= 8){
1000 1001 1002
            q->cookversion = bytestream_get_be32(&edata_ptr);
            q->samples_per_frame =  bytestream_get_be16(&edata_ptr);
            q->subbands = bytestream_get_be16(&edata_ptr);
1003 1004
        }
        if (avctx->extradata_size >= 16){
1005 1006 1007
            bytestream_get_be32(&edata_ptr);    //Unknown unused
            q->js_subband_start = bytestream_get_be16(&edata_ptr);
            q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1008 1009 1010 1011 1012 1013 1014 1015
        }
    }

    /* Take data from the AVCodecContext (RM container). */
    q->sample_rate = avctx->sample_rate;
    q->nb_channels = avctx->channels;
    q->bit_rate = avctx->bit_rate;

1016 1017
    /* Initialize RNG. */
    av_init_random(1, &q->random_state);
1018 1019

    /* Initialize extradata related variables. */
1020
    q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1021 1022 1023
    q->bits_per_subpacket = avctx->block_align * 8;

    /* Initialize default data states. */
1024
    q->log2_numvector_size = 5;
1025 1026 1027
    q->total_subbands = q->subbands;

    /* Initialize version-dependent variables */
1028
    av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1029
    q->joint_stereo = 0;
1030
    switch (q->cookversion) {
1031
        case MONO:
1032
            if (q->nb_channels != 1) {
1033
                av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1034 1035
                return -1;
            }
1036
            av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1037
            break;
1038
        case STEREO:
1039
            if (q->nb_channels != 1) {
1040
                q->bits_per_subpacket = q->bits_per_subpacket/2;
1041
            }
1042
            av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1043 1044 1045
            break;
        case JOINT_STEREO:
            if (q->nb_channels != 2) {
1046
                av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1047 1048
                return -1;
            }
1049
            av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1050
            if (avctx->extradata_size >= 16){
1051
                q->total_subbands = q->subbands + q->js_subband_start;
1052 1053 1054
                q->joint_stereo = 1;
            }
            if (q->samples_per_channel > 256) {
1055
                q->log2_numvector_size  = 6;
1056 1057
            }
            if (q->samples_per_channel > 512) {
1058
                q->log2_numvector_size  = 7;
1059 1060 1061
            }
            break;
        case MC_COOK:
1062
            av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1063 1064 1065
            return -1;
            break;
        default:
1066
            av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1067 1068 1069 1070 1071
            return -1;
            break;
    }

    /* Initialize variable relations */
1072
    q->numvector_size = (1 << q->log2_numvector_size);
1073 1074 1075 1076 1077 1078 1079 1080 1081

    /* Generate tables */
    init_rootpow2table(q);
    init_pow2table(q);
    init_gain_table(q);

    if (init_cook_vlc_tables(q) != 0)
        return -1;

1082 1083 1084 1085

    if(avctx->block_align >= UINT_MAX/2)
        return -1;

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    /* Pad the databuffer with:
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
    if (q->nb_channels==2 && q->joint_stereo==0) {
        q->decoded_bytes_buffer =
          av_mallocz(avctx->block_align/2
                     + DECODE_BYTES_PAD2(avctx->block_align/2)
                     + FF_INPUT_BUFFER_PADDING_SIZE);
    } else {
        q->decoded_bytes_buffer =
          av_mallocz(avctx->block_align
                     + DECODE_BYTES_PAD1(avctx->block_align)
                     + FF_INPUT_BUFFER_PADDING_SIZE);
    }
    if (q->decoded_bytes_buffer == NULL)
1101 1102
        return -1;

1103 1104 1105 1106
    q->gains1.now      = q->gain_1;
    q->gains1.previous = q->gain_2;
    q->gains2.now      = q->gain_3;
    q->gains2.previous = q->gain_4;
1107 1108

    /* Initialize transform. */
1109
    if ( init_cook_mlt(q) != 0 )
1110
        return -1;
1111 1112 1113

    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
    if (q->total_subbands > 53) {
1114
        av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1115 1116 1117
        return -1;
    }
    if (q->subbands > 50) {
1118
        av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1119 1120
        return -1;
    }
1121 1122
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
    } else {
1123
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1124 1125
        return -1;
    }
1126 1127 1128 1129
    if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
        av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
        return -1;
    }
1130

1131
#ifdef COOKDEBUG
1132
    dump_cook_context(q);
1133
#endif
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    return 0;
}


AVCodec cook_decoder =
{
    .name = "cook",
    .type = CODEC_TYPE_AUDIO,
    .id = CODEC_ID_COOK,
    .priv_data_size = sizeof(COOKContext),
    .init = cook_decode_init,
    .close = cook_decode_close,
    .decode = cook_decode_frame,
};