cook.c 43.4 KB
Newer Older
1 2 3 4 5
/*
 * COOK compatible decoder
 * Copyright (c) 2003 Sascha Sommer
 * Copyright (c) 2005 Benjamin Larsson
 *
6
 * This file is part of Libav.
7
 *
8
 * Libav is free software; you can redistribute it and/or
9 10
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * Libav is distributed in the hope that it will be useful,
14 15 16 17 18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with Libav; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 22 23
 */

/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 * This decoder handles RealNetworks, RealAudio G2 data.
 * Cook is identified by the codec name cook in RM files.
 *
 * To use this decoder, a calling application must supply the extradata
 * bytes provided from the RM container; 8+ bytes for mono streams and
 * 16+ for stereo streams (maybe more).
 *
 * Codec technicalities (all this assume a buffer length of 1024):
 * Cook works with several different techniques to achieve its compression.
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
 * two neighboring pieces have different quantization index a smooth
 * quantization curve is used to get a smooth overlap between the different
 * pieces.
 * To get to the transformdomain Cook uses a modulated lapped transform.
 * The transform domain has 50 subbands with 20 elements each. This
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
 * available.
 */

45
#include "libavutil/channel_layout.h"
46
#include "libavutil/lfg.h"
47 48

#include "audiodsp.h"
49
#include "avcodec.h"
50
#include "get_bits.h"
51
#include "bytestream.h"
52
#include "fft.h"
53
#include "internal.h"
54
#include "sinewin.h"
55 56 57 58

#include "cookdata.h"

/* the different Cook versions */
59 60
#define MONO            0x1000001
#define STEREO          0x1000002
61
#define JOINT_STEREO    0x1000003
62
#define MC_COOK         0x2000000   // multichannel Cook, not supported
63 64

#define SUBBAND_SIZE    20
65
#define MAX_SUBPACKETS   5
66 67

typedef struct {
68 69 70
    int *now;
    int *previous;
} cook_gains;
71

72 73
typedef struct {
    int                 ch_idx;
74
    int                 size;
75 76 77 78 79 80 81 82
    int                 num_channels;
    int                 cookversion;
    int                 subbands;
    int                 js_subband_start;
    int                 js_vlc_bits;
    int                 samples_per_channel;
    int                 log2_numvector_size;
    unsigned int        channel_mask;
83
    VLC                 channel_coupling;
84 85 86 87
    int                 joint_stereo;
    int                 bits_per_subpacket;
    int                 bits_per_subpdiv;
    int                 total_subbands;
88
    int                 numvector_size;       // 1 << log2_numvector_size;
89 90 91

    float               mono_previous_buffer1[1024];
    float               mono_previous_buffer2[1024];
92

93 94 95 96 97 98 99 100
    cook_gains          gains1;
    cook_gains          gains2;
    int                 gain_1[9];
    int                 gain_2[9];
    int                 gain_3[9];
    int                 gain_4[9];
} COOKSubpacket;

101 102 103 104 105
typedef struct cook {
    /*
     * The following 5 functions provide the lowlevel arithmetic on
     * the internal audio buffers.
     */
106 107 108
    void (*scalar_dequant)(struct cook *q, int index, int quant_index,
                           int *subband_coef_index, int *subband_coef_sign,
                           float *mlt_p);
109

110 111 112 113 114 115
    void (*decouple)(struct cook *q,
                     COOKSubpacket *p,
                     int subband,
                     float f1, float f2,
                     float *decode_buffer,
                     float *mlt_buffer1, float *mlt_buffer2);
116

117 118
    void (*imlt_window)(struct cook *q, float *buffer1,
                        cook_gains *gains_ptr, float *previous_buffer);
119

120 121
    void (*interpolate)(struct cook *q, float *buffer,
                        int gain_index, int gain_index_next);
122

123
    void (*saturate_output)(struct cook *q, float *out);
124

125
    AVCodecContext*     avctx;
126
    AudioDSPContext     adsp;
127 128 129
    GetBitContext       gb;
    /* stream data */
    int                 num_vectors;
130
    int                 samples_per_channel;
131
    /* states */
132
    AVLFG               random_state;
133
    int                 discarded_packets;
134 135

    /* transform data */
136
    FFTContext          mdct_ctx;
137 138 139 140
    float*              mlt_window;

    /* VLC data */
    VLC                 envelope_quant_index[13];
141
    VLC                 sqvh[7];          // scalar quantization
142 143 144 145 146 147 148 149

    /* generatable tables and related variables */
    int                 gain_size_factor;
    float               gain_table[23];

    /* data buffers */

    uint8_t*            decoded_bytes_buffer;
150
    DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
151 152
    float               decode_buffer_1[1024];
    float               decode_buffer_2[1024];
153
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
154

155
    const float         *cplscales[5];
156 157
    int                 num_subpackets;
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
158 159
} COOKContext;

160 161 162
static float     pow2tab[127];
static float rootpow2tab[127];

163 164 165
/*************** init functions ***************/

/* table generator */
166 167
static av_cold void init_pow2table(void)
{
168
    int i;
169 170 171
    for (i = -63; i < 64; i++) {
        pow2tab[63 + i] = pow(2, i);
        rootpow2tab[63 + i] = sqrt(pow(2, i));
172 173 174 175
    }
}

/* table generator */
176 177
static av_cold void init_gain_table(COOKContext *q)
{
178
    int i;
179 180 181 182
    q->gain_size_factor = q->samples_per_channel / 8;
    for (i = 0; i < 23; i++)
        q->gain_table[i] = pow(pow2tab[i + 52],
                               (1.0 / (double) q->gain_size_factor));
183 184 185
}


186 187
static av_cold int init_cook_vlc_tables(COOKContext *q)
{
188 189 190
    int i, result;

    result = 0;
191 192 193 194
    for (i = 0; i < 13; i++) {
        result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
                           envelope_quant_index_huffbits[i], 1, 1,
                           envelope_quant_index_huffcodes[i], 2, 2, 0);
195
    }
196 197 198 199 200
    av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
    for (i = 0; i < 7; i++) {
        result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
                           cvh_huffbits[i], 1, 1,
                           cvh_huffcodes[i], 2, 2, 0);
201 202
    }

203 204
    for (i = 0; i < q->num_subpackets; i++) {
        if (q->subpacket[i].joint_stereo == 1) {
205 206
            result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
                               (1 << q->subpacket[i].js_vlc_bits) - 1,
207 208 209
                               ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
                               ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
            av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
210
        }
211 212
    }

213
    av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
214 215 216
    return result;
}

217 218
static av_cold int init_cook_mlt(COOKContext *q)
{
219
    int j, ret;
220
    int mlt_size = q->samples_per_channel;
221

222
    if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
223
        return AVERROR(ENOMEM);
224 225

    /* Initialize the MLT window: simple sine window. */
226
    ff_sine_window_init(q->mlt_window, mlt_size);
227
    for (j = 0; j < mlt_size; j++)
228
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
229 230

    /* Initialize the MDCT. */
231
    if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
232 233
        av_free(q->mlt_window);
        return ret;
234
    }
235 236
    av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
           av_log2(mlt_size) + 1);
237

238
    return 0;
239 240
}

241 242
static av_cold void init_cplscales_table(COOKContext *q)
{
243
    int i;
244
    for (i = 0; i < 5; i++)
245
        q->cplscales[i] = cplscales[i];
246 247
}

248 249
/*************** init functions end ***********/

250
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
251 252
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))

253 254 255
/**
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
 * Why? No idea, some checksum/error detection method maybe.
256 257
 *
 * Out buffer size: extra bytes are needed to cope with
258
 * padding/misalignment.
259 260 261 262 263 264 265 266
 * Subpackets passed to the decoder can contain two, consecutive
 * half-subpackets, of identical but arbitrary size.
 *          1234 1234 1234 1234  extraA extraB
 * Case 1:  AAAA BBBB              0      0
 * Case 2:  AAAA ABBB BB--         3      3
 * Case 3:  AAAA AABB BBBB         2      2
 * Case 4:  AAAA AAAB BBBB BB--    1      5
 *
267 268
 * Nice way to waste CPU cycles.
 *
269 270 271
 * @param inbuffer  pointer to byte array of indata
 * @param out       pointer to byte array of outdata
 * @param bytes     number of bytes
272
 */
273 274
static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
{
275
    static const uint32_t tab[4] = {
276 277
        AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
        AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
278
    };
279 280
    int i, off;
    uint32_t c;
281 282
    const uint32_t *buf;
    uint32_t *obuf = (uint32_t *) out;
283 284
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
     * I'm too lazy though, should be something like
285 286
     * for (i = 0; i < bitamount / 64; i++)
     *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
287 288
     * Buffer alignment needs to be checked. */

289 290
    off = (intptr_t) inbuffer & 3;
    buf = (const uint32_t *) (inbuffer - off);
291
    c = tab[off];
292
    bytes += 3 + off;
293
    for (i = 0; i < bytes / 4; i++)
294
        obuf[i] = c ^ buf[i];
295

296
    return off;
297 298
}

299
static av_cold int cook_decode_close(AVCodecContext *avctx)
300 301 302
{
    int i;
    COOKContext *q = avctx->priv_data;
303
    av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
304 305 306 307 308 309

    /* Free allocated memory buffers. */
    av_free(q->mlt_window);
    av_free(q->decoded_bytes_buffer);

    /* Free the transform. */
310
    ff_mdct_end(&q->mdct_ctx);
311 312

    /* Free the VLC tables. */
313
    for (i = 0; i < 13; i++)
314
        ff_free_vlc(&q->envelope_quant_index[i]);
315
    for (i = 0; i < 7; i++)
316
        ff_free_vlc(&q->sqvh[i]);
317
    for (i = 0; i < q->num_subpackets; i++)
318
        ff_free_vlc(&q->subpacket[i].channel_coupling);
319

320
    av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
321 322 323 324 325

    return 0;
}

/**
326
 * Fill the gain array for the timedomain quantization.
327
 *
328
 * @param gb          pointer to the GetBitContext
329
 * @param gaininfo    array[9] of gain indexes
330
 */
331 332 333
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
{
    int i, n;
334

335 336 337 338 339
    while (get_bits1(gb)) {
        /* NOTHING */
    }

    n = get_bits_count(gb) - 1;     // amount of elements*2 to update
340

341 342 343 344
    i = 0;
    while (n--) {
        int index = get_bits(gb, 3);
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
345

346 347
        while (i <= index)
            gaininfo[i++] = gain;
348
    }
349 350
    while (i <= 8)
        gaininfo[i++] = 0;
351 352 353 354 355 356 357 358
}

/**
 * Create the quant index table needed for the envelope.
 *
 * @param q                 pointer to the COOKContext
 * @param quant_index_table pointer to the array
 */
359 360
static int decode_envelope(COOKContext *q, COOKSubpacket *p,
                           int *quant_index_table)
361 362
{
    int i, j, vlc_index;
363

364
    quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
365

366 367
    for (i = 1; i < p->total_subbands; i++) {
        vlc_index = i;
368
        if (i >= p->js_subband_start * 2) {
369
            vlc_index -= p->js_subband_start;
370
        } else {
371 372 373
            vlc_index /= 2;
            if (vlc_index < 1)
                vlc_index = 1;
374
        }
375 376
        if (vlc_index > 13)
            vlc_index = 13; // the VLC tables >13 are identical to No. 13
377

378 379 380
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
                     q->envelope_quant_index[vlc_index - 1].bits, 2);
        quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
381 382 383 384 385 386
        if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
            av_log(q->avctx, AV_LOG_ERROR,
                   "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
                   quant_index_table[i], i);
            return AVERROR_INVALIDDATA;
        }
387
    }
388 389

    return 0;
390 391 392 393 394 395 396 397 398 399
}

/**
 * Calculate the category and category_index vector.
 *
 * @param q                     pointer to the COOKContext
 * @param quant_index_table     pointer to the array
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */
400 401 402
static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
                       int *category, int *category_index)
{
403
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
404 405
    int exp_index2[102] = { 0 };
    int exp_index1[102] = { 0 };
406

407
    int tmp_categorize_array[128 * 2] = { 0 };
408 409
    int tmp_categorize_array1_idx = p->numvector_size;
    int tmp_categorize_array2_idx = p->numvector_size;
410

411
    bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
412

413
    if (bits_left > q->samples_per_channel)
414
        bits_left = q->samples_per_channel +
415
                    ((bits_left - q->samples_per_channel) * 5) / 8;
416

417
    bias = -32;
418 419

    /* Estimate bias. */
420
    for (i = 32; i > 0; i = i / 2) {
421
        num_bits = 0;
422 423
        index    = 0;
        for (j = p->total_subbands; j > 0; j--) {
424
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
425
            index++;
426
            num_bits += expbits_tab[exp_idx];
427
        }
428 429
        if (num_bits >= bits_left - 32)
            bias += i;
430 431 432
    }

    /* Calculate total number of bits. */
433 434
    num_bits = 0;
    for (i = 0; i < p->total_subbands; i++) {
435
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
436 437 438 439
        num_bits += expbits_tab[exp_idx];
        exp_index1[i] = exp_idx;
        exp_index2[i] = exp_idx;
    }
440
    tmpbias1 = tmpbias2 = num_bits;
441

442 443
    for (j = 1; j < p->numvector_size; j++) {
        if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
444
            int max = -999999;
445 446
            index = -1;
            for (i = 0; i < p->total_subbands; i++) {
447
                if (exp_index1[i] < 7) {
448 449 450
                    v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
                    if (v >= max) {
                        max   = v;
451 452 453 454
                        index = i;
                    }
                }
            }
455 456
            if (index == -1)
                break;
457
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
458
            tmpbias1 -= expbits_tab[exp_index1[index]] -
459
                        expbits_tab[exp_index1[index] + 1];
460 461 462
            ++exp_index1[index];
        } else {  /* <--- */
            int min = 999999;
463 464 465 466 467 468
            index = -1;
            for (i = 0; i < p->total_subbands; i++) {
                if (exp_index2[i] > 0) {
                    v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
                    if (v < min) {
                        min   = v;
469 470 471 472
                        index = i;
                    }
                }
            }
473 474
            if (index == -1)
                break;
475
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
476
            tmpbias2 -= expbits_tab[exp_index2[index]] -
477
                        expbits_tab[exp_index2[index] - 1];
478 479 480 481
            --exp_index2[index];
        }
    }

482
    for (i = 0; i < p->total_subbands; i++)
483 484
        category[i] = exp_index2[i];

485
    for (i = 0; i < p->numvector_size - 1; i++)
486
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
487 488 489 490 491 492 493 494 495 496
}


/**
 * Expand the category vector.
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param category_index        pointer to the category_index array
 */
497 498 499
static inline void expand_category(COOKContext *q, int *category,
                                   int *category_index)
{
500
    int i;
501
    for (i = 0; i < q->num_vectors; i++)
502 503 504 505 506
    {
        int idx = category_index[i];
        if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
            --category[idx];
    }
507 508 509 510 511 512 513
}

/**
 * The real requantization of the mltcoefs
 *
 * @param q                     pointer to the COOKContext
 * @param index                 index
514
 * @param quant_index           quantisation index
515
 * @param subband_coef_index    array of indexes to quant_centroid_tab
516
 * @param subband_coef_sign     signs of coefficients
517
 * @param mlt_p                 pointer into the mlt buffer
518
 */
519
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
520 521 522
                                 int *subband_coef_index, int *subband_coef_sign,
                                 float *mlt_p)
{
523 524 525
    int i;
    float f1;

526
    for (i = 0; i < SUBBAND_SIZE; i++) {
527
        if (subband_coef_index[i]) {
528
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
529 530
            if (subband_coef_sign[i])
                f1 = -f1;
531
        } else {
532
            /* noise coding if subband_coef_index[i] == 0 */
533
            f1 = dither_tab[index];
534 535
            if (av_lfg_get(&q->random_state) < 0x80000000)
                f1 = -f1;
536
        }
537
        mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
538 539 540
    }
}
/**
541
 * Unpack the subband_coef_index and subband_coef_sign vectors.
542 543 544 545
 *
 * @param q                     pointer to the COOKContext
 * @param category              pointer to the category array
 * @param subband_coef_index    array of indexes to quant_centroid_tab
546
 * @param subband_coef_sign     signs of coefficients
547
 */
548 549 550 551 552
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
                       int *subband_coef_index, int *subband_coef_sign)
{
    int i, j;
    int vlc, vd, tmp, result;
553 554 555

    vd = vd_tab[category];
    result = 0;
556
    for (i = 0; i < vpr_tab[category]; i++) {
557
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
558
        if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
559 560 561
            vlc = 0;
            result = 1;
        }
562 563 564
        for (j = vd - 1; j >= 0; j--) {
            tmp = (vlc * invradix_tab[category]) / 0x100000;
            subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
565 566
            vlc = tmp;
        }
567 568 569 570
        for (j = 0; j < vd; j++) {
            if (subband_coef_index[i * vd + j]) {
                if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
                    subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
571
                } else {
572 573
                    result = 1;
                    subband_coef_sign[i * vd + j] = 0;
574 575
                }
            } else {
576
                subband_coef_sign[i * vd + j] = 0;
577 578 579 580 581 582 583 584 585 586 587 588
            }
        }
    }
    return result;
}


/**
 * Fill the mlt_buffer with mlt coefficients.
 *
 * @param q                 pointer to the COOKContext
 * @param category          pointer to the category array
589
 * @param quant_index_table pointer to the array
590 591
 * @param mlt_buffer        pointer to mlt coefficients
 */
592 593 594
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
                           int *quant_index_table, float *mlt_buffer)
{
595 596
    /* A zero in this table means that the subband coefficient is
       random noise coded. */
597
    int subband_coef_index[SUBBAND_SIZE];
598 599
    /* A zero in this table means that the subband coefficient is a
       positive multiplicator. */
600
    int subband_coef_sign[SUBBAND_SIZE];
601
    int band, j;
602
    int index = 0;
603

604
    for (band = 0; band < p->total_subbands; band++) {
605
        index = category[band];
606 607 608 609 610
        if (category[band] < 7) {
            if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
                index = 7;
                for (j = 0; j < p->total_subbands; j++)
                    category[band + j] = 7;
611 612
            }
        }
613
        if (index >= 7) {
614
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
615
            memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
616
        }
617
        q->scalar_dequant(q, index, quant_index_table[band],
618 619
                          subband_coef_index, subband_coef_sign,
                          &mlt_buffer[band * SUBBAND_SIZE]);
620 621
    }

622 623
    /* FIXME: should this be removed, or moved into loop above? */
    if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
624 625 626 627
        return;
}


628
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
629
{
630 631
    int category_index[128] = { 0 };
    int category[128]       = { 0 };
632
    int quant_index_table[102];
633
    int res;
634

635 636
    if ((res = decode_envelope(q, p, quant_index_table)) < 0)
        return res;
637
    q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
638
    categorize(q, p, quant_index_table, category, category_index);
639
    expand_category(q, category, category_index);
640
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
641 642

    return 0;
643 644 645 646 647 648 649 650 651 652 653
}


/**
 * the actual requantization of the timedomain samples
 *
 * @param q                 pointer to the COOKContext
 * @param buffer            pointer to the timedomain buffer
 * @param gain_index        index for the block multiplier
 * @param gain_index_next   index for the next block multiplier
 */
654 655 656
static void interpolate_float(COOKContext *q, float *buffer,
                              int gain_index, int gain_index_next)
{
657 658
    int i;
    float fc1, fc2;
659 660 661 662 663 664 665 666 667 668
    fc1 = pow2tab[gain_index + 63];

    if (gain_index == gain_index_next) {             // static gain
        for (i = 0; i < q->gain_size_factor; i++)
            buffer[i] *= fc1;
    } else {                                        // smooth gain
        fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
        for (i = 0; i < q->gain_size_factor; i++) {
            buffer[i] *= fc1;
            fc1       *= fc2;
669 670 671 672
        }
    }
}

673 674 675 676
/**
 * Apply transform window, overlap buffers.
 *
 * @param q                 pointer to the COOKContext
677
 * @param inbuffer          pointer to the mltcoefficients
678 679 680
 * @param gains_ptr         current and previous gains
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 */
681 682
static void imlt_window_float(COOKContext *q, float *inbuffer,
                              cook_gains *gains_ptr, float *previous_buffer)
683
{
684
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
685 686 687 688 689 690 691 692
    int i;
    /* The weird thing here, is that the two halves of the time domain
     * buffer are swapped. Also, the newest data, that we save away for
     * next frame, has the wrong sign. Hence the subtraction below.
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
     */

    /* Apply window and overlap */
693
    for (i = 0; i < q->samples_per_channel; i++)
694
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
695
                      previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
696
}
697 698

/**
699 700 701 702
 * The modulated lapped transform, this takes transform coefficients
 * and transforms them into timedomain samples.
 * Apply transform window, overlap buffers, apply gain profile
 * and buffer management.
703 704
 *
 * @param q                 pointer to the COOKContext
705
 * @param inbuffer          pointer to the mltcoefficients
706
 * @param gains_ptr         current and previous gains
707 708
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 */
709
static void imlt_gain(COOKContext *q, float *inbuffer,
710
                      cook_gains *gains_ptr, float *previous_buffer)
711
{
712 713
    float *buffer0 = q->mono_mdct_output;
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
714 715
    int i;

716
    /* Inverse modified discrete cosine transform */
717
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
718

719
    q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
720 721

    /* Apply gain profile */
722
    for (i = 0; i < 8; i++)
723
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
724
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
725
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
726 727

    /* Save away the current to be previous block. */
728 729
    memcpy(previous_buffer, buffer0,
           q->samples_per_channel * sizeof(*previous_buffer));
730 731 732 733 734 735 736 737 738
}


/**
 * function for getting the jointstereo coupling information
 *
 * @param q                 pointer to the COOKContext
 * @param decouple_tab      decoupling array
 */
739 740 741 742 743
static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
{
    int i;
    int vlc    = get_bits1(&q->gb);
    int start  = cplband[p->js_subband_start];
744
    int end    = cplband[p->subbands - 1];
745
    int length = end - start + 1;
746

747
    if (start > end)
748 749
        return;

750
    if (vlc)
751
        for (i = 0; i < length; i++)
752 753 754
            decouple_tab[start + i] = get_vlc2(&q->gb,
                                               p->channel_coupling.table,
                                               p->channel_coupling.bits, 2);
755
    else
756 757
        for (i = 0; i < length; i++)
            decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
758 759
}

760 761 762 763 764 765 766 767 768 769 770
/*
 * function decouples a pair of signals from a single signal via multiplication.
 *
 * @param q                 pointer to the COOKContext
 * @param subband           index of the current subband
 * @param f1                multiplier for channel 1 extraction
 * @param f2                multiplier for channel 2 extraction
 * @param decode_buffer     input buffer
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */
771 772 773 774 775 776
static void decouple_float(COOKContext *q,
                           COOKSubpacket *p,
                           int subband,
                           float f1, float f2,
                           float *decode_buffer,
                           float *mlt_buffer1, float *mlt_buffer2)
777 778
{
    int j, tmp_idx;
779 780 781 782
    for (j = 0; j < SUBBAND_SIZE; j++) {
        tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
        mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
        mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
783 784
    }
}
785 786 787 788 789 790 791 792

/**
 * function for decoding joint stereo data
 *
 * @param q                 pointer to the COOKContext
 * @param mlt_buffer1       pointer to left channel mlt coefficients
 * @param mlt_buffer2       pointer to right channel mlt coefficients
 */
793 794
static int joint_decode(COOKContext *q, COOKSubpacket *p,
                        float *mlt_buffer_left, float *mlt_buffer_right)
795
{
796
    int i, j, res;
797
    int decouple_tab[SUBBAND_SIZE] = { 0 };
798
    float *decode_buffer = q->decode_buffer_0;
Diego Biurrun's avatar
Diego Biurrun committed
799
    int idx, cpl_tmp;
800 801
    float f1, f2;
    const float *cplscale;
802

803
    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
804 805

    /* Make sure the buffers are zeroed out. */
806 807
    memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
    memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
808
    decouple_info(q, p, decouple_tab);
809 810
    if ((res = mono_decode(q, p, decode_buffer)) < 0)
        return res;
811 812

    /* The two channels are stored interleaved in decode_buffer. */
813 814
    for (i = 0; i < p->js_subband_start; i++) {
        for (j = 0; j < SUBBAND_SIZE; j++) {
815 816
            mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
            mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
817 818 819 820 821
        }
    }

    /* When we reach js_subband_start (the higher frequencies)
       the coefficients are stored in a coupling scheme. */
822
    idx = (1 << p->js_vlc_bits) - 1;
823
    for (i = p->js_subband_start; i < p->subbands; i++) {
824
        cpl_tmp = cplband[i];
825 826
        idx -= decouple_tab[cpl_tmp];
        cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
827 828
        f1 = cplscale[decouple_tab[cpl_tmp] + 1];
        f2 = cplscale[idx];
829 830
        q->decouple(q, p, i, f1, f2, decode_buffer,
                    mlt_buffer_left, mlt_buffer_right);
831
        idx = (1 << p->js_vlc_bits) - 1;
832
    }
833 834

    return 0;
835 836
}

837 838 839 840 841 842
/**
 * First part of subpacket decoding:
 *  decode raw stream bytes and read gain info.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to raw stream data
843
 * @param gains_ptr         array of current/prev gain pointers
844
 */
845 846 847
static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
                                         const uint8_t *inbuffer,
                                         cook_gains *gains_ptr)
848 849 850 851
{
    int offset;

    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
852
                          p->bits_per_subpacket / 8);
853
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
854
                  p->bits_per_subpacket);
855
    decode_gain_info(&q->gb, gains_ptr->now);
856 857

    /* Swap current and previous gains */
858
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
859 860
}

861
/**
862
 * Saturate the output signal and interleave.
863 864 865 866
 *
 * @param q                 pointer to the COOKContext
 * @param out               pointer to the output vector
 */
867
static void saturate_output_float(COOKContext *q, float *out)
868
{
869 870
    q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
                         -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
871 872
}

873

874 875 876 877 878 879 880
/**
 * Final part of subpacket decoding:
 *  Apply modulated lapped transform, gain compensation,
 *  clip and convert to integer.
 *
 * @param q                 pointer to the COOKContext
 * @param decode_buffer     pointer to the mlt coefficients
881
 * @param gains_ptr         array of current/prev gain pointers
882 883 884
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
 * @param out               pointer to the output buffer
 */
885 886
static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
                                         cook_gains *gains_ptr, float *previous_buffer,
887
                                         float *out)
888
{
889
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
890
    if (out)
891
        q->saturate_output(q, out);
892 893 894
}


895 896 897 898 899 900 901 902
/**
 * Cook subpacket decoding. This function returns one decoded subpacket,
 * usually 1024 samples per channel.
 *
 * @param q                 pointer to the COOKContext
 * @param inbuffer          pointer to the inbuffer
 * @param outbuffer         pointer to the outbuffer
 */
903
static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
904
                            const uint8_t *inbuffer, float **outbuffer)
905
{
906
    int sub_packet_size = p->size;
907
    int res;
908

909
    memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
910
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
911

912
    if (p->joint_stereo) {
913 914
        if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
            return res;
915
    } else {
916 917
        if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
            return res;
918

919
        if (p->num_channels == 2) {
920
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
921 922
            if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
                return res;
923 924
        }
    }
925

926
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
927 928
                          p->mono_previous_buffer1,
                          outbuffer ? outbuffer[p->ch_idx] : NULL);
929

930 931
    if (p->num_channels == 2)
        if (p->joint_stereo)
932
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
933 934
                                  p->mono_previous_buffer2,
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
935
        else
936
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
937 938
                                  p->mono_previous_buffer2,
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
939 940

    return 0;
941 942 943
}


944 945 946
static int cook_decode_frame(AVCodecContext *avctx, void *data,
                             int *got_frame_ptr, AVPacket *avpkt)
{
947
    AVFrame *frame     = data;
948 949
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
950
    COOKContext *q = avctx->priv_data;
951
    float **samples = NULL;
952
    int i, ret;
953 954
    int offset = 0;
    int chidx = 0;
955 956 957 958

    if (buf_size < avctx->block_align)
        return buf_size;

959 960
    /* get output buffer */
    if (q->discarded_packets >= 2) {
961
        frame->nb_samples = q->samples_per_channel;
962
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
963 964 965
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return ret;
        }
966
        samples = (float **)frame->extended_data;
967 968
    }

969 970 971
    /* estimate subpacket sizes */
    q->subpacket[0].size = avctx->block_align;

972
    for (i = 1; i < q->num_subpackets; i++) {
Benjamin Larsson's avatar
Benjamin Larsson committed
973
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
Benjamin Larsson's avatar
Benjamin Larsson committed
974
        q->subpacket[0].size -= q->subpacket[i].size + 1;
975
        if (q->subpacket[0].size < 0) {
976 977
            av_log(avctx, AV_LOG_DEBUG,
                   "frame subpacket size total > avctx->block_align!\n");
978
            return AVERROR_INVALIDDATA;
979
        }
Benjamin Larsson's avatar
Benjamin Larsson committed
980
    }
981

982
    /* decode supbackets */
983 984 985
    for (i = 0; i < q->num_subpackets; i++) {
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
                                              q->subpacket[i].bits_per_subpdiv;
986
        q->subpacket[i].ch_idx = chidx;
987 988 989 990 991
        av_log(avctx, AV_LOG_DEBUG,
               "subpacket[%i] size %i js %i %i block_align %i\n",
               i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
               avctx->block_align);

992 993
        if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
            return ret;
994 995
        offset += q->subpacket[i].size;
        chidx += q->subpacket[i].num_channels;
996 997
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
               i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
998
    }
999

1000
    /* Discard the first two frames: no valid audio. */
1001 1002 1003 1004 1005 1006
    if (q->discarded_packets < 2) {
        q->discarded_packets++;
        *got_frame_ptr = 0;
        return avctx->block_align;
    }

1007
    *got_frame_ptr = 1;
1008

1009 1010
    return avctx->block_align;
}
1011

1012
#ifdef DEBUG
1013
static void dump_cook_context(COOKContext *q)
1014 1015
{
    //int i=0;
1016 1017 1018
#define PRINT(a, b) av_dlog(q->avctx, " %s = %d\n", a, b);
    av_dlog(q->avctx, "COOKextradata\n");
    av_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1019
    if (q->subpacket[0].cookversion > STEREO) {
1020 1021
        PRINT("js_subband_start", q->subpacket[0].js_subband_start);
        PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1022
    }
1023
    av_dlog(q->avctx, "COOKContext\n");
1024
    PRINT("nb_channels", q->avctx->channels);
1025
    PRINT("bit_rate", q->avctx->bit_rate);
1026
    PRINT("sample_rate", q->avctx->sample_rate);
1027 1028 1029 1030 1031 1032
    PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
    PRINT("subbands", q->subpacket[0].subbands);
    PRINT("js_subband_start", q->subpacket[0].js_subband_start);
    PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
    PRINT("numvector_size", q->subpacket[0].numvector_size);
    PRINT("total_subbands", q->subpacket[0].total_subbands);
1033 1034
}
#endif
1035

1036 1037 1038 1039 1040
/**
 * Cook initialization
 *
 * @param avctx     pointer to the AVCodecContext
 */
1041
static av_cold int cook_decode_init(AVCodecContext *avctx)
1042 1043
{
    COOKContext *q = avctx->priv_data;
Michael Niedermayer's avatar
Michael Niedermayer committed
1044
    const uint8_t *edata_ptr = avctx->extradata;
1045 1046 1047
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
    int extradata_size = avctx->extradata_size;
    int s = 0;
1048
    unsigned int channel_mask = 0;
1049
    int samples_per_frame;
1050
    int ret;
1051
    q->avctx = avctx;
1052 1053

    /* Take care of the codec specific extradata. */
1054
    if (extradata_size <= 0) {
1055
        av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1056
        return AVERROR_INVALIDDATA;
1057
    }
1058
    av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1059 1060

    /* Take data from the AVCodecContext (RM container). */
1061
    if (!avctx->channels) {
1062 1063 1064
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
        return AVERROR_INVALIDDATA;
    }
1065

1066
    /* Initialize RNG. */
1067
    av_lfg_init(&q->random_state, 0);
1068

1069
    ff_audiodsp_init(&q->adsp);
1070

1071
    while (edata_ptr < edata_ptr_end) {
1072 1073
        /* 8 for mono, 16 for stereo, ? for multichannel
           Swap to right endianness so we don't need to care later on. */
1074
        if (extradata_size >= 8) {
1075
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1076
            samples_per_frame           = bytestream_get_be16(&edata_ptr);
1077 1078 1079
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
            extradata_size -= 8;
        }
1080
        if (extradata_size >= 8) {
1081
            bytestream_get_be32(&edata_ptr);    // Unknown unused
1082 1083 1084 1085 1086 1087
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
            extradata_size -= 8;
        }

        /* Initialize extradata related variables. */
1088
        q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1089 1090 1091 1092 1093 1094 1095 1096 1097
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;

        /* Initialize default data states. */
        q->subpacket[s].log2_numvector_size = 5;
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
        q->subpacket[s].num_channels = 1;

        /* Initialize version-dependent variables */

1098 1099
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
               q->subpacket[s].cookversion);
1100 1101
        q->subpacket[s].joint_stereo = 0;
        switch (q->subpacket[s].cookversion) {
1102
        case MONO:
1103
            if (avctx->channels != 1) {
1104
                avpriv_request_sample(avctx, "Container channels != 1");
1105 1106 1107 1108 1109
                return AVERROR_PATCHWELCOME;
            }
            av_log(avctx, AV_LOG_DEBUG, "MONO\n");
            break;
        case STEREO:
1110
            if (avctx->channels != 1) {
1111 1112 1113 1114 1115 1116
                q->subpacket[s].bits_per_subpdiv = 1;
                q->subpacket[s].num_channels = 2;
            }
            av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
            break;
        case JOINT_STEREO:
1117
            if (avctx->channels != 2) {
1118
                avpriv_request_sample(avctx, "Container channels != 2");
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
                return AVERROR_PATCHWELCOME;
            }
            av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
            if (avctx->extradata_size >= 16) {
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
                                                 q->subpacket[s].js_subband_start;
                q->subpacket[s].joint_stereo = 1;
                q->subpacket[s].num_channels = 2;
            }
            if (q->subpacket[s].samples_per_channel > 256) {
                q->subpacket[s].log2_numvector_size = 6;
            }
            if (q->subpacket[s].samples_per_channel > 512) {
                q->subpacket[s].log2_numvector_size = 7;
            }
            break;
        case MC_COOK:
            av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
            if (extradata_size >= 4)
                channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);

1140
            if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
1141 1142 1143 1144
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
                                                 q->subpacket[s].js_subband_start;
                q->subpacket[s].joint_stereo = 1;
                q->subpacket[s].num_channels = 2;
1145
                q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1146

1147
                if (q->subpacket[s].samples_per_channel > 256) {
1148
                    q->subpacket[s].log2_numvector_size = 6;
1149 1150
                }
                if (q->subpacket[s].samples_per_channel > 512) {
1151
                    q->subpacket[s].log2_numvector_size = 7;
1152
                }
1153
            } else
1154
                q->subpacket[s].samples_per_channel = samples_per_frame;
1155

1156 1157
            break;
        default:
1158 1159
            avpriv_request_sample(avctx, "Cook version %d",
                                  q->subpacket[s].cookversion);
1160
            return AVERROR_PATCHWELCOME;
1161 1162
        }

1163 1164
        if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
            av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1165
            return AVERROR_INVALIDDATA;
1166 1167 1168 1169 1170 1171 1172 1173 1174
        } else
            q->samples_per_channel = q->subpacket[0].samples_per_channel;


        /* Initialize variable relations */
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);

        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
        if (q->subpacket[s].total_subbands > 53) {
1175
            avpriv_request_sample(avctx, "total_subbands > 53");
1176
            return AVERROR_PATCHWELCOME;
1177 1178
        }

1179 1180 1181 1182
        if ((q->subpacket[s].js_vlc_bits > 6) ||
            (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
            av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
                   q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1183
            return AVERROR_INVALIDDATA;
1184
        }
1185

1186
        if (q->subpacket[s].subbands > 50) {
1187
            avpriv_request_sample(avctx, "subbands > 50");
1188
            return AVERROR_PATCHWELCOME;
1189 1190 1191 1192 1193
        }
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1194

1195 1196
        q->num_subpackets++;
        s++;
1197
        if (s > MAX_SUBPACKETS) {
1198
            avpriv_request_sample(avctx, "subpackets > %d", MAX_SUBPACKETS);
1199
            return AVERROR_PATCHWELCOME;
1200
        }
1201
    }
1202
    /* Generate tables */
1203
    init_pow2table();
1204
    init_gain_table(q);
1205
    init_cplscales_table(q);
1206

1207 1208
    if ((ret = init_cook_vlc_tables(q)))
        return ret;
1209

1210

1211
    if (avctx->block_align >= UINT_MAX / 2)
1212
        return AVERROR(EINVAL);
1213

1214 1215 1216
    /* Pad the databuffer with:
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1217 1218 1219 1220
    q->decoded_bytes_buffer =
        av_mallocz(avctx->block_align
                   + DECODE_BYTES_PAD1(avctx->block_align)
                   + FF_INPUT_BUFFER_PADDING_SIZE);
1221
    if (!q->decoded_bytes_buffer)
1222
        return AVERROR(ENOMEM);
1223 1224

    /* Initialize transform. */
1225 1226
    if ((ret = init_cook_mlt(q)))
        return ret;
1227

1228 1229
    /* Initialize COOK signal arithmetic handling */
    if (1) {
1230
        q->scalar_dequant  = scalar_dequant_float;
1231 1232
        q->decouple        = decouple_float;
        q->imlt_window     = imlt_window_float;
1233
        q->interpolate     = interpolate_float;
1234 1235 1236
        q->saturate_output = saturate_output_float;
    }

1237
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1238 1239
    if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
        q->samples_per_channel != 1024) {
1240
        avpriv_request_sample(avctx, "samples_per_channel = %d",
1241
                              q->samples_per_channel);
1242
        return AVERROR_PATCHWELCOME;
1243
    }
1244

1245
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1246 1247 1248
    if (channel_mask)
        avctx->channel_layout = channel_mask;
    else
1249
        avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1250

1251
#ifdef DEBUG
1252
    dump_cook_context(q);
1253
#endif
1254 1255 1256
    return 0;
}

1257 1258
AVCodec ff_cook_decoder = {
    .name           = "cook",
1259
    .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1260
    .type           = AVMEDIA_TYPE_AUDIO,
1261
    .id             = AV_CODEC_ID_COOK,
1262
    .priv_data_size = sizeof(COOKContext),
1263 1264 1265 1266
    .init           = cook_decode_init,
    .close          = cook_decode_close,
    .decode         = cook_decode_frame,
    .capabilities   = CODEC_CAP_DR1,
1267 1268
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                      AV_SAMPLE_FMT_NONE },
1269
};