mjpegenc_huffman.c 6.36 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * Copyright (c) 2016 William Ma, Sofia Kim, Dustin Woo
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Optimal Huffman Encoding tests.
 */

#include "libavcodec/avcodec.h"
#include <stdlib.h>
#include "libavcodec/mjpegenc.h"
#include "libavcodec/mjpegenc_huffman.h"
#include "libavcodec/mjpegenc_common.h"
#include "libavcodec/mpegvideo.h"

// Validate the computed lengths satisfy the JPEG restrictions and is optimal.
static int check_lengths(int L, int expected_length,
                         const int *probs, int nprobs)
{
    HuffTable lengths[256];
    PTable val_counts[256];
    int actual_length = 0, i, j, k, prob, length;
    int ret = 0;
    double cantor_measure = 0;
42
    av_assert0(nprobs <= 256);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    for (i = 0; i < nprobs; i++) {
        val_counts[i] = (PTable){.value = i, .prob = probs[i]};
    }

    ff_mjpegenc_huffman_compute_bits(val_counts, lengths, nprobs, L);

    for (i = 0; i < nprobs; i++) {
        // Find the value's prob and length
        for (j = 0; j < nprobs; j++)
            if (val_counts[j].value == i) break;
        for (k = 0; k < nprobs; k++)
            if (lengths[k].code == i) break;
        if (!(j < nprobs && k < nprobs)) return 1;
        prob = val_counts[j].prob;
        length = lengths[k].length;

        if (prob) {
            actual_length += prob * length;
            cantor_measure += 1. / (1 << length);
        }

        if (length > L || length < 1) return 1;
    }
    // Check that the codes can be prefix-free.
    if (cantor_measure > 1) ret = 1;
    // Check that the total length is optimal
    if (actual_length != expected_length) ret = 1;

    if (ret == 1) {
      fprintf(stderr,
              "Cantor measure: %f\n"
              "Actual length: %d\n"
              "Expected length: %d\n",
              cantor_measure, actual_length, expected_length);
    }

    return ret;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
static const int probs_zeroes[] = {
    6, 6, 0, 0, 0
};

static const int probs_skewed[] = {
    2, 0, 0, 0, 0, 1, 0, 0, 20, 0, 2, 0, 10, 5, 1, 1, 9, 1, 1, 6, 0, 5, 0, 1, 0, 7, 6,
    1, 1, 5, 0, 0, 0, 0, 11, 0, 0, 0, 51, 1, 0, 20, 0, 1, 0, 0, 0, 0, 6, 106, 1, 0, 1,
    0, 2, 1, 16, 0, 0, 5, 0, 0, 0, 4, 3, 15, 4, 4, 0, 0, 0, 3, 0, 0, 1, 0, 3, 0, 3, 2,
    2, 0, 0, 4, 3, 40, 1, 2, 0, 22, 0, 0, 0, 9, 0, 0, 0, 0, 1, 1, 0, 1, 6, 11, 4, 10,
    28, 6, 1, 0, 0, 9, 9, 4, 0, 0, 0, 0, 8, 33844, 2, 0, 2, 1, 1, 5, 0, 0, 1, 9, 1, 0,
    4, 14, 4, 0, 0, 3, 8, 0, 51, 9, 6, 1, 1, 2, 2, 3, 1, 5, 5, 29, 0, 0, 0, 0, 14, 29,
    6, 4, 13, 12, 2, 3, 1, 0, 5, 4, 1, 1, 0, 0, 29, 1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 1,
    7, 0, 42, 0, 0, 0, 0, 0, 2, 0, 3, 9, 0, 0, 0, 2, 1, 0, 0, 6, 5, 6, 1, 2, 3, 0, 0,
    0, 3, 0, 0, 28, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 23, 0, 0, 0, 0,
    0, 21, 1, 0, 3, 24, 2, 0, 0, 7, 0, 0, 1, 5, 1, 2, 0, 5
};

static const int probs_sat[] = {
    74, 8, 14, 7, 9345, 40, 0, 2014, 2, 1, 115, 0, 2, 1, 194, 388, 20, 0, 0, 2, 1, 121,
    1, 1583, 0, 16, 21, 2, 132, 2, 15, 9, 13, 1, 0, 2293, 2, 8, 5, 2, 30, 0, 0, 4, 54,
    783, 4, 1, 2, 4, 0, 22, 93, 1, 143, 19, 0, 36, 32, 4, 6, 33, 3, 45, 0, 8, 1, 0, 18,
    17, 1, 0, 1, 0, 0, 1, 1004, 38, 3, 8, 90, 23, 0, 2819, 3, 0, 970, 158, 9, 6, 4, 48,
    4, 0, 1, 0, 0, 60, 3, 62, 0, 2, 2, 2, 279, 66, 16, 1, 20, 0, 7, 9, 32, 1411, 6, 3,
    27, 1, 5, 49, 0, 0, 0, 0, 0, 2, 10, 1, 1, 2, 3, 801, 3, 25, 5, 1, 1, 0, 632, 0, 14,
    18, 5, 8, 200, 4, 4, 22, 12, 0, 4, 1, 0, 2, 4, 9, 3, 16, 7, 2, 2, 213, 0, 2, 620,
    39303, 0, 1, 0, 2, 1, 183781, 1, 0, 0, 0, 94, 7, 3, 4, 0, 4, 306, 43, 352, 76, 34,
    13, 11, 0, 51, 1, 13, 19, 0, 26, 0, 7276, 4, 207, 31, 1, 2, 4, 6, 19, 8, 17, 4, 6,
    0, 1085, 0, 0, 0, 3, 489, 36, 1, 0, 1, 9420, 294, 28, 0, 57, 5, 0, 9, 2, 0, 1, 2,
    2, 0, 0, 9, 2, 29, 2, 2, 7, 0, 5, 490, 0, 7, 5, 0, 1, 8, 0, 0, 23255, 0, 1
};
113 114 115 116 117 118 119

// Test the example given on @see
// http://guru.multimedia.cx/small-tasks-for-ffmpeg/
int main(int argc, char **argv)
{
    int i, ret = 0;
    // Probabilities of symbols 0..4
120
    PTable val_counts[] = {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        {.value = 0, .prob = 1},
        {.value = 1, .prob = 2},
        {.value = 2, .prob = 5},
        {.value = 3, .prob = 10},
        {.value = 4, .prob = 21},
    };
    // Expected code lengths for each symbol
    static const HuffTable expected[] = {
        {.code = 0, .length = 3},
        {.code = 1, .length = 3},
        {.code = 2, .length = 3},
        {.code = 3, .length = 3},
        {.code = 4, .length = 1},
    };
    // Actual code lengths
    HuffTable distincts[5];

    // Build optimal huffman tree using an internal function, to allow for
    // smaller-than-normal test cases. This mutates val_counts by sorting.
    ff_mjpegenc_huffman_compute_bits(val_counts, distincts,
                                     FF_ARRAY_ELEMS(distincts), 3);

    for (i = 0; i < FF_ARRAY_ELEMS(distincts); i++) {
        if (distincts[i].code != expected[i].code ||
            distincts[i].length != expected[i].length) {
            fprintf(stderr,
                    "Built huffman does not equal expectations. "
                    "Expected: code %d probability %d, "
                    "Actual: code %d probability %d\n",
                    expected[i].code, expected[i].length,
                    distincts[i].code, distincts[i].length);
            ret = 1;
        }
    }

    // Check handling of zero probabilities
    if (check_lengths(16, 18, probs_zeroes, FF_ARRAY_ELEMS(probs_zeroes)))
        ret = 1;
    // Check skewed distribution over 256 without saturated lengths
    if (check_lengths(16, 41282, probs_skewed, FF_ARRAY_ELEMS(probs_skewed)))
        ret = 1;
    // Check skewed distribution over 256 with saturated lengths
    if (check_lengths(16, 669904, probs_sat, FF_ARRAY_ELEMS(probs_sat)))
        ret = 1;

    return ret;
}