dcadsp.c 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright (C) 2016 foo86
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/mem.h"

#include "dcadsp.h"
#include "dcamath.h"

static void decode_hf_c(int32_t **dst,
                        const int32_t *vq_index,
                        const int8_t hf_vq[1024][32],
                        int32_t scale_factors[32][2],
30 31
                        ptrdiff_t sb_start, ptrdiff_t sb_end,
                        ptrdiff_t ofs, ptrdiff_t len)
32 33 34 35 36 37 38 39 40 41 42 43 44
{
    int i, j;

    for (i = sb_start; i < sb_end; i++) {
        const int8_t *coeff = hf_vq[vq_index[i]];
        int32_t scale = scale_factors[i][0];
        for (j = 0; j < len; j++)
            dst[i][j + ofs] = clip23(coeff[j] * scale + (1 << 3) >> 4);
    }
}

static void decode_joint_c(int32_t **dst, int32_t **src,
                           const int32_t *scale_factors,
45 46
                           ptrdiff_t sb_start, ptrdiff_t sb_end,
                           ptrdiff_t ofs, ptrdiff_t len)
47 48 49 50 51 52 53 54 55 56 57
{
    int i, j;

    for (i = sb_start; i < sb_end; i++) {
        int32_t scale = scale_factors[i];
        for (j = 0; j < len; j++)
            dst[i][j + ofs] = clip23(mul17(src[i][j + ofs], scale));
    }
}

static void lfe_fir_float_c(float *pcm_samples, int32_t *lfe_samples,
58
                            const float *filter_coeff, ptrdiff_t npcmblocks,
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                            int dec_select)
{
    // Select decimation factor
    int factor = 64 << dec_select;
    int ncoeffs = 8 >> dec_select;
    int nlfesamples = npcmblocks >> (dec_select + 1);
    int i, j, k;

    for (i = 0; i < nlfesamples; i++) {
        // One decimated sample generates 64 or 128 interpolated ones
        for (j = 0; j < factor / 2; j++) {
            float a = 0;
            float b = 0;

            for (k = 0; k < ncoeffs; k++) {
                a += filter_coeff[      j * ncoeffs + k] * lfe_samples[-k];
                b += filter_coeff[255 - j * ncoeffs - k] * lfe_samples[-k];
            }

            pcm_samples[             j] = a;
            pcm_samples[factor / 2 + j] = b;
        }

        lfe_samples++;
        pcm_samples += factor;
    }
}

87
static void lfe_fir0_float_c(float *pcm_samples, int32_t *lfe_samples,
88
                             const float *filter_coeff, ptrdiff_t npcmblocks)
89 90 91 92
{
    lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 0);
}

93
static void lfe_fir1_float_c(float *pcm_samples, int32_t *lfe_samples,
94
                             const float *filter_coeff, ptrdiff_t npcmblocks)
95 96 97 98 99
{
    lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 1);
}

static void lfe_x96_float_c(float *dst, const float *src,
100
                            float *hist, ptrdiff_t len)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
    float prev = *hist;
    int i;

    for (i = 0; i < len; i++) {
        float a = 0.25f * src[i] + 0.75f * prev;
        float b = 0.75f * src[i] + 0.25f * prev;
        prev = src[i];
        *dst++ = a;
        *dst++ = b;
    }

    *hist = prev;
}

static void sub_qmf32_float_c(SynthFilterContext *synth,
                              FFTContext *imdct,
                              float *pcm_samples,
                              int32_t **subband_samples_lo,
                              int32_t **subband_samples_hi,
                              float *hist1, int *offset, float *hist2,
122
                              const float *filter_coeff, ptrdiff_t npcmblocks,
123 124
                              float scale)
{
125
    LOCAL_ALIGNED_32(float, input, [32]);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    int i, j;

    for (j = 0; j < npcmblocks; j++) {
        // Load in one sample from each subband
        for (i = 0; i < 32; i++) {
            if ((i - 1) & 2)
                input[i] = -subband_samples_lo[i][j];
            else
                input[i] =  subband_samples_lo[i][j];
        }

        // One subband sample generates 32 interpolated ones
        synth->synth_filter_float(imdct, hist1, offset,
                                  hist2, filter_coeff,
                                  pcm_samples, input, scale);
        pcm_samples += 32;
    }
}

static void sub_qmf64_float_c(SynthFilterContext *synth,
                              FFTContext *imdct,
                              float *pcm_samples,
                              int32_t **subband_samples_lo,
                              int32_t **subband_samples_hi,
                              float *hist1, int *offset, float *hist2,
151
                              const float *filter_coeff, ptrdiff_t npcmblocks,
152 153
                              float scale)
{
154
    LOCAL_ALIGNED_32(float, input, [64]);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    int i, j;

    if (!subband_samples_hi)
        memset(&input[32], 0, sizeof(input[0]) * 32);

    for (j = 0; j < npcmblocks; j++) {
        // Load in one sample from each subband
        if (subband_samples_hi) {
            // Full 64 subbands, first 32 are residual coded
            for (i =  0; i < 32; i++) {
                if ((i - 1) & 2)
                    input[i] = -subband_samples_lo[i][j] - subband_samples_hi[i][j];
                else
                    input[i] =  subband_samples_lo[i][j] + subband_samples_hi[i][j];
            }
            for (i = 32; i < 64; i++) {
                if ((i - 1) & 2)
                    input[i] = -subband_samples_hi[i][j];
                else
                    input[i] =  subband_samples_hi[i][j];
            }
        } else {
            // Only first 32 subbands
            for (i =  0; i < 32; i++) {
                if ((i - 1) & 2)
                    input[i] = -subband_samples_lo[i][j];
                else
                    input[i] =  subband_samples_lo[i][j];
            }
        }

        // One subband sample generates 64 interpolated ones
        synth->synth_filter_float_64(imdct, hist1, offset,
                                     hist2, filter_coeff,
                                     pcm_samples, input, scale);
        pcm_samples += 64;
    }
}

static void lfe_fir_fixed_c(int32_t *pcm_samples, int32_t *lfe_samples,
195
                            const int32_t *filter_coeff, ptrdiff_t npcmblocks)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
{
    // Select decimation factor
    int nlfesamples = npcmblocks >> 1;
    int i, j, k;

    for (i = 0; i < nlfesamples; i++) {
        // One decimated sample generates 64 interpolated ones
        for (j = 0; j < 32; j++) {
            int64_t a = 0;
            int64_t b = 0;

            for (k = 0; k < 8; k++) {
                a += (int64_t)filter_coeff[      j * 8 + k] * lfe_samples[-k];
                b += (int64_t)filter_coeff[255 - j * 8 - k] * lfe_samples[-k];
            }

            pcm_samples[     j] = clip23(norm23(a));
            pcm_samples[32 + j] = clip23(norm23(b));
        }

        lfe_samples++;
        pcm_samples += 64;
    }
}

static void lfe_x96_fixed_c(int32_t *dst, const int32_t *src,
222
                            int32_t *hist, ptrdiff_t len)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
{
    int32_t prev = *hist;
    int i;

    for (i = 0; i < len; i++) {
        int64_t a = INT64_C(2097471) * src[i] + INT64_C(6291137) * prev;
        int64_t b = INT64_C(6291137) * src[i] + INT64_C(2097471) * prev;
        prev = src[i];
        *dst++ = clip23(norm23(a));
        *dst++ = clip23(norm23(b));
    }

    *hist = prev;
}

static void sub_qmf32_fixed_c(SynthFilterContext *synth,
                              DCADCTContext *imdct,
                              int32_t *pcm_samples,
                              int32_t **subband_samples_lo,
                              int32_t **subband_samples_hi,
                              int32_t *hist1, int *offset, int32_t *hist2,
244
                              const int32_t *filter_coeff, ptrdiff_t npcmblocks)
245
{
246
    LOCAL_ALIGNED_32(int32_t, input, [32]);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    int i, j;

    for (j = 0; j < npcmblocks; j++) {
        // Load in one sample from each subband
        for (i = 0; i < 32; i++)
            input[i] = subband_samples_lo[i][j];

        // One subband sample generates 32 interpolated ones
        synth->synth_filter_fixed(imdct, hist1, offset,
                                  hist2, filter_coeff,
                                  pcm_samples, input);
        pcm_samples += 32;
    }
}

static void sub_qmf64_fixed_c(SynthFilterContext *synth,
                              DCADCTContext *imdct,
                              int32_t *pcm_samples,
                              int32_t **subband_samples_lo,
                              int32_t **subband_samples_hi,
                              int32_t *hist1, int *offset, int32_t *hist2,
268
                              const int32_t *filter_coeff, ptrdiff_t npcmblocks)
269
{
270
    LOCAL_ALIGNED_32(int32_t, input, [64]);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    int i, j;

    if (!subband_samples_hi)
        memset(&input[32], 0, sizeof(input[0]) * 32);

    for (j = 0; j < npcmblocks; j++) {
        // Load in one sample from each subband
        if (subband_samples_hi) {
            // Full 64 subbands, first 32 are residual coded
            for (i =  0; i < 32; i++)
                input[i] = subband_samples_lo[i][j] + subband_samples_hi[i][j];
            for (i = 32; i < 64; i++)
                input[i] = subband_samples_hi[i][j];
        } else {
            // Only first 32 subbands
            for (i =  0; i < 32; i++)
                input[i] = subband_samples_lo[i][j];
        }

        // One subband sample generates 64 interpolated ones
        synth->synth_filter_fixed_64(imdct, hist1, offset,
                                     hist2, filter_coeff,
                                     pcm_samples, input);
        pcm_samples += 64;
    }
}

298
static void decor_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len)
299 300 301 302 303 304 305 306
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] += src[i] * coeff + (1 << 2) >> 3;
}

static void dmix_sub_xch_c(int32_t *dst1, int32_t *dst2,
307
                           const int32_t *src, ptrdiff_t len)
308 309 310 311 312 313 314 315 316 317
{
    int i;

    for (i = 0; i < len; i++) {
        int32_t cs = mul23(src[i], 5931520 /* M_SQRT1_2 * (1 << 23) */);
        dst1[i] -= cs;
        dst2[i] -= cs;
    }
}

318
static void dmix_sub_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len)
319 320 321 322 323 324 325
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] -= mul15(src[i], coeff);
}

326
static void dmix_add_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len)
327 328 329 330 331 332 333
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] += mul15(src[i], coeff);
}

334
static void dmix_scale_c(int32_t *dst, int scale, ptrdiff_t len)
335 336 337 338 339 340 341
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] = mul15(dst[i], scale);
}

342
static void dmix_scale_inv_c(int32_t *dst, int scale_inv, ptrdiff_t len)
343 344 345 346 347 348 349
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] = mul16(dst[i], scale_inv);
}

350
static void filter0(int32_t *dst, const int32_t *src, int32_t coeff, ptrdiff_t len)
351 352 353 354 355 356 357
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] -= mul22(src[i], coeff);
}

358
static void filter1(int32_t *dst, const int32_t *src, int32_t coeff, ptrdiff_t len)
359 360 361 362 363 364 365 366
{
    int i;

    for (i = 0; i < len; i++)
        dst[i] -= mul23(src[i], coeff);
}

static void assemble_freq_bands_c(int32_t *dst, int32_t *src0, int32_t *src1,
367
                                  const int32_t *coeff, ptrdiff_t len)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
    int i;

    filter0(src0, src1, coeff[0], len);
    filter0(src1, src0, coeff[1], len);
    filter0(src0, src1, coeff[2], len);
    filter0(src1, src0, coeff[3], len);

    for (i = 0; i < 8; i++, src0--) {
        filter1(src0, src1, coeff[i +  4], len);
        filter1(src1, src0, coeff[i + 12], len);
        filter1(src0, src1, coeff[i +  4], len);
    }

    for (i = 0; i < len; i++) {
        *dst++ = *src1++;
        *dst++ = *++src0;
    }
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static void lbr_bank_c(float output[32][4], float **input,
                       const float *coeff, ptrdiff_t ofs, ptrdiff_t len)
{
    float SW0 = coeff[0];
    float SW1 = coeff[1];
    float SW2 = coeff[2];
    float SW3 = coeff[3];

    float C1  = coeff[4];
    float C2  = coeff[5];
    float C3  = coeff[6];
    float C4  = coeff[7];

    float AL1 = coeff[8];
    float AL2 = coeff[9];

    int i;

    // Short window and 8 point forward MDCT
    for (i = 0; i < len; i++) {
        float *src = input[i] + ofs;

        float a = src[-4] * SW0 - src[-1] * SW3;
        float b = src[-3] * SW1 - src[-2] * SW2;
        float c = src[ 2] * SW1 + src[ 1] * SW2;
        float d = src[ 3] * SW0 + src[ 0] * SW3;

        output[i][0] = C1 * b - C2 * c + C4 * a - C3 * d;
        output[i][1] = C1 * d - C2 * a - C4 * b - C3 * c;
        output[i][2] = C3 * b + C2 * d - C4 * c + C1 * a;
        output[i][3] = C3 * a - C2 * b + C4 * d - C1 * c;
    }

    // Aliasing cancellation for high frequencies
    for (i = 12; i < len - 1; i++) {
        float a = output[i  ][3] * AL1;
        float b = output[i+1][0] * AL1;
        output[i  ][3] += b - a;
        output[i+1][0] -= b + a;
        a = output[i  ][2] * AL2;
        b = output[i+1][1] * AL2;
        output[i  ][2] += b - a;
        output[i+1][1] -= b + a;
    }
}

static void lfe_iir_c(float *output, const float *input,
                      const float iir[5][4], float hist[5][2],
                      ptrdiff_t factor)
{
    float res, tmp;
    int i, j, k;

    for (i = 0; i < 64; i++) {
        res = *input++;

        for (j = 0; j < factor; j++) {
            for (k = 0; k < 5; k++) {
                tmp = hist[k][0] * iir[k][0] + hist[k][1] * iir[k][1] + res;
                res = hist[k][0] * iir[k][2] + hist[k][1] * iir[k][3] + tmp;

                hist[k][0] = hist[k][1];
                hist[k][1] = tmp;
            }

            *output++ = res;
            res = 0;
        }
    }
}

459 460 461 462 463
av_cold void ff_dcadsp_init(DCADSPContext *s)
{
    s->decode_hf     = decode_hf_c;
    s->decode_joint  = decode_joint_c;

464 465
    s->lfe_fir_float[0] = lfe_fir0_float_c;
    s->lfe_fir_float[1] = lfe_fir1_float_c;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    s->lfe_x96_float    = lfe_x96_float_c;
    s->sub_qmf_float[0] = sub_qmf32_float_c;
    s->sub_qmf_float[1] = sub_qmf64_float_c;

    s->lfe_fir_fixed    = lfe_fir_fixed_c;
    s->lfe_x96_fixed    = lfe_x96_fixed_c;
    s->sub_qmf_fixed[0] = sub_qmf32_fixed_c;
    s->sub_qmf_fixed[1] = sub_qmf64_fixed_c;

    s->decor   = decor_c;

    s->dmix_sub_xch   = dmix_sub_xch_c;
    s->dmix_sub       = dmix_sub_c;
    s->dmix_add       = dmix_add_c;
    s->dmix_scale     = dmix_scale_c;
    s->dmix_scale_inv = dmix_scale_inv_c;

    s->assemble_freq_bands = assemble_freq_bands_c;
484

485 486 487
    s->lbr_bank = lbr_bank_c;
    s->lfe_iir = lfe_iir_c;

488 489
    if (ARCH_X86)
        ff_dcadsp_init_x86(s);
490
}