ac3dec.c 52.8 KB
Newer Older
1 2
/*
 * AC-3 Audio Decoder
3 4
 * This code was developed as part of Google Summer of Code 2006.
 * E-AC-3 support was added as part of Google Summer of Code 2007.
5
 *
6
 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7
 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8
 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
9
 *
10
 * This file is part of Libav.
11
 *
12
 * Libav is free software; you can redistribute it and/or
13
 * modify it under the terms of the GNU Lesser General Public
14
 * License as published by the Free Software Foundation; either
15
 * version 2.1 of the License, or (at your option) any later version.
16
 *
17
 * Libav is distributed in the hope that it will be useful,
18 19
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
 * Lesser General Public License for more details.
21
 *
22
 * You should have received a copy of the GNU Lesser General Public
23
 * License along with Libav; if not, write to the Free Software
24 25 26 27 28 29 30 31
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <string.h>

32
#include "libavutil/crc.h"
33
#include "internal.h"
34
#include "aac_ac3_parser.h"
35
#include "ac3_parser.h"
36
#include "ac3dec.h"
37
#include "ac3dec_data.h"
38
#include "kbdwin.h"
39

40 41
/** Large enough for maximum possible frame size when the specification limit is ignored */
#define AC3_FRAME_BUFFER_SIZE 32768
42

43 44 45 46 47
/**
 * table for ungrouping 3 values in 7 bits.
 * used for exponents and bap=2 mantissas
 */
static uint8_t ungroup_3_in_7_bits_tab[128][3];
48 49


50
/** tables for ungrouping mantissas */
51 52 53 54 55
static int b1_mantissas[32][3];
static int b2_mantissas[128][3];
static int b3_mantissas[8];
static int b4_mantissas[128][2];
static int b5_mantissas[16];
56

57 58 59 60
/**
 * Quantization table: levels for symmetric. bits for asymmetric.
 * reference: Table 7.18 Mapping of bap to Quantizer
 */
61
static const uint8_t quantization_tab[16] = {
62 63 64
    0, 3, 5, 7, 11, 15,
    5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};
65

66
/** dynamic range table. converts codes to scale factors. */
67
static float dynamic_range_tab[256];
68

69
/** Adjustments in dB gain */
70 71 72
static const float gain_levels[9] = {
    LEVEL_PLUS_3DB,
    LEVEL_PLUS_1POINT5DB,
73
    LEVEL_ONE,
74
    LEVEL_MINUS_1POINT5DB,
75 76 77
    LEVEL_MINUS_3DB,
    LEVEL_MINUS_4POINT5DB,
    LEVEL_MINUS_6DB,
78
    LEVEL_ZERO,
79 80
    LEVEL_MINUS_9DB
};
81

82 83 84 85 86 87 88 89 90 91 92 93
/**
 * Table for center mix levels
 * reference: Section 5.4.2.4 cmixlev
 */
static const uint8_t center_levels[4] = { 4, 5, 6, 5 };

/**
 * Table for surround mix levels
 * reference: Section 5.4.2.5 surmixlev
 */
static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };

94 95 96 97 98
/**
 * Table for default stereo downmixing coefficients
 * reference: Section 7.8.2 Downmixing Into Two Channels
 */
static const uint8_t ac3_default_coeffs[8][5][2] = {
99 100 101 102 103 104 105 106
    { { 2, 7 }, { 7, 2 },                               },
    { { 4, 4 },                                         },
    { { 2, 7 }, { 7, 2 },                               },
    { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
    { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
    { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
107
};
108

109 110 111 112 113
/**
 * Symmetrical Dequantization
 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 *            Tables 7.19 to 7.23
 */
114
static inline int
115
symmetric_dequant(int code, int levels)
116
{
117
    return ((code - (levels >> 1)) << 24) / levels;
118 119
}

120 121 122
/*
 * Initialize tables at runtime.
 */
123
static av_cold void ac3_tables_init(void)
124
{
125
    int i;
126

127 128 129 130 131 132 133 134
    /* generate table for ungrouping 3 values in 7 bits
       reference: Section 7.1.3 Exponent Decoding */
    for(i=0; i<128; i++) {
        ungroup_3_in_7_bits_tab[i][0] =  i / 25;
        ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
        ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
    }

135 136 137 138
    /* generate grouped mantissa tables
       reference: Section 7.3.5 Ungrouping of Mantissas */
    for(i=0; i<32; i++) {
        /* bap=1 mantissas */
139 140 141
        b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
        b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
        b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
142 143 144
    }
    for(i=0; i<128; i++) {
        /* bap=2 mantissas */
145 146 147
        b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
        b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
        b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        /* bap=4 mantissas */
        b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
        b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
    }
    /* generate ungrouped mantissa tables
       reference: Tables 7.21 and 7.23 */
    for(i=0; i<7; i++) {
        /* bap=3 mantissas */
        b3_mantissas[i] = symmetric_dequant(i, 7);
    }
    for(i=0; i<15; i++) {
        /* bap=5 mantissas */
        b5_mantissas[i] = symmetric_dequant(i, 15);
    }
163

164 165 166 167
    /* generate dynamic range table
       reference: Section 7.7.1 Dynamic Range Control */
    for(i=0; i<256; i++) {
        int v = (i >> 5) - ((i >> 7) << 3) - 5;
168
        dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
169
    }
170 171
}

172

173 174 175
/**
 * AVCodec initialization
 */
176
static av_cold int ac3_decode_init(AVCodecContext *avctx)
177
{
178 179
    AC3DecodeContext *s = avctx->priv_data;
    s->avctx = avctx;
180

181
    ff_ac3_common_init();
182
    ac3_tables_init();
183 184
    ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
    ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
185
    ff_kbd_window_init(s->window, 5.0, 256);
186
    dsputil_init(&s->dsp, avctx);
187
    ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
188
    ff_fmt_convert_init(&s->fmt_conv, avctx);
189
    av_lfg_init(&s->dith_state, 0);
190

191
    /* set scale value for float to int16 conversion */
192 193 194 195 196 197 198
    if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
        s->mul_bias = 1.0f;
        avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
    } else {
        s->mul_bias = 32767.0f;
        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
    }
199

200 201 202 203 204 205
    /* allow downmixing to stereo or mono */
    if (avctx->channels > 0 && avctx->request_channels > 0 &&
            avctx->request_channels < avctx->channels &&
            avctx->request_channels <= 2) {
        avctx->channels = avctx->request_channels;
    }
206
    s->downmixed = 1;
207

208
    /* allocate context input buffer */
209
        s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
210
        if (!s->input_buffer)
211
            return AVERROR(ENOMEM);
212

213
    return 0;
214 215
}

216
/**
217
 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
218
 * GetBitContext within AC3DecodeContext must point to
219
 * the start of the synchronized AC-3 bitstream.
220
 */
221
static int ac3_parse_header(AC3DecodeContext *s)
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
    GetBitContext *gbc = &s->gbc;
    int i;

    /* read the rest of the bsi. read twice for dual mono mode. */
    i = !(s->channel_mode);
    do {
        skip_bits(gbc, 5); // skip dialog normalization
        if (get_bits1(gbc))
            skip_bits(gbc, 8); //skip compression
        if (get_bits1(gbc))
            skip_bits(gbc, 8); //skip language code
        if (get_bits1(gbc))
            skip_bits(gbc, 7); //skip audio production information
    } while (i--);

    skip_bits(gbc, 2); //skip copyright bit and original bitstream bit

    /* skip the timecodes (or extra bitstream information for Alternate Syntax)
       TODO: read & use the xbsi1 downmix levels */
    if (get_bits1(gbc))
        skip_bits(gbc, 14); //skip timecode1 / xbsi1
    if (get_bits1(gbc))
        skip_bits(gbc, 14); //skip timecode2 / xbsi2

    /* skip additional bitstream info */
    if (get_bits1(gbc)) {
        i = get_bits(gbc, 6);
        do {
            skip_bits(gbc, 8);
        } while(i--);
    }

    return 0;
}

/**
259
 * Common function to parse AC-3 or E-AC-3 frame header
260 261
 */
static int parse_frame_header(AC3DecodeContext *s)
262
{
263
    AC3HeaderInfo hdr;
264
    int err;
265

266
    err = ff_ac3_parse_header(&s->gbc, &hdr);
267 268 269 270
    if(err)
        return err;

    /* get decoding parameters from header info */
271
    s->bit_alloc_params.sr_code     = hdr.sr_code;
272
    s->bitstream_mode               = hdr.bitstream_mode;
273
    s->channel_mode                 = hdr.channel_mode;
274
    s->channel_layout               = hdr.channel_layout;
275
    s->lfe_on                       = hdr.lfe_on;
276
    s->bit_alloc_params.sr_shift    = hdr.sr_shift;
277
    s->sample_rate                  = hdr.sample_rate;
278 279 280 281 282
    s->bit_rate                     = hdr.bit_rate;
    s->channels                     = hdr.channels;
    s->fbw_channels                 = s->channels - s->lfe_on;
    s->lfe_ch                       = s->fbw_channels + 1;
    s->frame_size                   = hdr.frame_size;
283 284
    s->center_mix_level             = hdr.center_mix_level;
    s->surround_mix_level           = hdr.surround_mix_level;
285
    s->num_blocks                   = hdr.num_blocks;
286
    s->frame_type                   = hdr.frame_type;
287
    s->substreamid                  = hdr.substreamid;
288

289 290 291 292 293 294 295
    if(s->lfe_on) {
        s->start_freq[s->lfe_ch] = 0;
        s->end_freq[s->lfe_ch] = 7;
        s->num_exp_groups[s->lfe_ch] = 2;
        s->channel_in_cpl[s->lfe_ch] = 0;
    }

296 297 298 299 300 301 302 303 304 305 306
    if (hdr.bitstream_id <= 10) {
        s->eac3                  = 0;
        s->snr_offset_strategy   = 2;
        s->block_switch_syntax   = 1;
        s->dither_flag_syntax    = 1;
        s->bit_allocation_syntax = 1;
        s->fast_gain_syntax      = 0;
        s->first_cpl_leak        = 0;
        s->dba_syntax            = 1;
        s->skip_syntax           = 1;
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
Justin Ruggles's avatar
Justin Ruggles committed
307
        return ac3_parse_header(s);
308
    } else if (CONFIG_EAC3_DECODER) {
309 310
        s->eac3 = 1;
        return ff_eac3_parse_header(s);
311 312 313
    } else {
        av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
        return -1;
314
    }
315 316 317 318 319 320 321 322 323
}

/**
 * Set stereo downmixing coefficients based on frame header info.
 * reference: Section 7.8.2 Downmixing Into Two Channels
 */
static void set_downmix_coeffs(AC3DecodeContext *s)
{
    int i;
324 325
    float cmix = gain_levels[center_levels[s->center_mix_level]];
    float smix = gain_levels[surround_levels[s->surround_mix_level]];
Loren Merritt's avatar
Loren Merritt committed
326
    float norm0, norm1;
327

328 329 330
    for(i=0; i<s->fbw_channels; i++) {
        s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
        s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
331
    }
332
    if(s->channel_mode > 1 && s->channel_mode & 1) {
333
        s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
334
    }
335 336
    if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
        int nf = s->channel_mode - 2;
337
        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
338
    }
339 340
    if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
        int nf = s->channel_mode - 4;
341
        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
342
    }
343

Loren Merritt's avatar
Loren Merritt committed
344 345
    /* renormalize */
    norm0 = norm1 = 0.0;
346
    for(i=0; i<s->fbw_channels; i++) {
Loren Merritt's avatar
Loren Merritt committed
347 348 349 350 351 352 353 354 355 356 357 358 359
        norm0 += s->downmix_coeffs[i][0];
        norm1 += s->downmix_coeffs[i][1];
    }
    norm0 = 1.0f / norm0;
    norm1 = 1.0f / norm1;
    for(i=0; i<s->fbw_channels; i++) {
        s->downmix_coeffs[i][0] *= norm0;
        s->downmix_coeffs[i][1] *= norm1;
    }

    if(s->output_mode == AC3_CHMODE_MONO) {
        for(i=0; i<s->fbw_channels; i++)
            s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
360
    }
361 362
}

363
/**
364 365
 * Decode the grouped exponents according to exponent strategy.
 * reference: Section 7.1.3 Exponent Decoding
366
 */
367
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
368
                            uint8_t absexp, int8_t *dexps)
369
{
370
    int i, j, grp, group_size;
371 372 373 374
    int dexp[256];
    int expacc, prevexp;

    /* unpack groups */
375
    group_size = exp_strategy + (exp_strategy == EXP_D45);
376
    for(grp=0,i=0; grp<ngrps; grp++) {
377
        expacc = get_bits(gbc, 7);
378 379 380
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
381
    }
382

383 384
    /* convert to absolute exps and expand groups */
    prevexp = absexp;
385
    for(i=0,j=0; i<ngrps*3; i++) {
386
        prevexp += dexp[i] - 2;
387
        if (prevexp > 24U)
388
            return -1;
389 390 391 392 393
        switch (group_size) {
            case 4: dexps[j++] = prevexp;
                    dexps[j++] = prevexp;
            case 2: dexps[j++] = prevexp;
            case 1: dexps[j++] = prevexp;
394
        }
395
    }
396
    return 0;
397 398
}

399
/**
400
 * Generate transform coefficients for each coupled channel in the coupling
401 402 403
 * range using the coupling coefficients and coupling coordinates.
 * reference: Section 7.4.3 Coupling Coordinate Format
 */
404
static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
405
{
406
    int bin, band, ch;
407 408 409

    bin = s->start_freq[CPL_CH];
    for (band = 0; band < s->num_cpl_bands; band++) {
410
        int band_start = bin;
411
        int band_end = bin + s->cpl_band_sizes[band];
412 413
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (s->channel_in_cpl[ch]) {
414
                int cpl_coord = s->cpl_coords[ch][band] << 5;
415
                for (bin = band_start; bin < band_end; bin++) {
416
                    s->fixed_coeffs[ch][bin] = MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
417 418 419 420
                }
                if (ch == 2 && s->phase_flags[band]) {
                    for (bin = band_start; bin < band_end; bin++)
                        s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
421
                }
422
            }
423
        }
424
        bin = band_end;
425 426 427
    }
}

428 429 430 431
/**
 * Grouped mantissas for 3-level 5-level and 11-level quantization
 */
typedef struct {
432 433 434 435 436 437
    int b1_mant[2];
    int b2_mant[2];
    int b4_mant;
    int b1;
    int b2;
    int b4;
438 439
} mant_groups;

440
/**
441
 * Decode the transform coefficients for a particular channel
442 443
 * reference: Section 7.3 Quantization and Decoding of Mantissas
 */
444
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
445
{
446 447 448 449 450
    int start_freq = s->start_freq[ch_index];
    int end_freq = s->end_freq[ch_index];
    uint8_t *baps = s->bap[ch_index];
    int8_t *exps = s->dexps[ch_index];
    int *coeffs = s->fixed_coeffs[ch_index];
451
    int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
452
    GetBitContext *gbc = &s->gbc;
453
    int freq;
454

455 456 457 458
    for(freq = start_freq; freq < end_freq; freq++){
        int bap = baps[freq];
        int mantissa;
        switch(bap){
459
            case 0:
460
                if (dither)
461
                    mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
462 463
                else
                    mantissa = 0;
464
                break;
465
            case 1:
466 467 468 469 470 471 472 473 474 475
                if(m->b1){
                    m->b1--;
                    mantissa = m->b1_mant[m->b1];
                }
                else{
                    int bits      = get_bits(gbc, 5);
                    mantissa      = b1_mantissas[bits][0];
                    m->b1_mant[1] = b1_mantissas[bits][1];
                    m->b1_mant[0] = b1_mantissas[bits][2];
                    m->b1         = 2;
476
                }
477
                break;
478
            case 2:
479 480 481 482 483 484 485 486 487 488
                if(m->b2){
                    m->b2--;
                    mantissa = m->b2_mant[m->b2];
                }
                else{
                    int bits      = get_bits(gbc, 7);
                    mantissa      = b2_mantissas[bits][0];
                    m->b2_mant[1] = b2_mantissas[bits][1];
                    m->b2_mant[0] = b2_mantissas[bits][2];
                    m->b2         = 2;
489
                }
490
                break;
491
            case 3:
492
                mantissa = b3_mantissas[get_bits(gbc, 3)];
493
                break;
494
            case 4:
495 496 497 498 499 500 501 502 503
                if(m->b4){
                    m->b4 = 0;
                    mantissa = m->b4_mant;
                }
                else{
                    int bits   = get_bits(gbc, 7);
                    mantissa   = b4_mantissas[bits][0];
                    m->b4_mant = b4_mantissas[bits][1];
                    m->b4      = 1;
504
                }
505
                break;
506
            case 5:
507
                mantissa = b5_mantissas[get_bits(gbc, 4)];
508
                break;
509 510 511 512
            default: /* 6 to 15 */
                mantissa = get_bits(gbc, quantization_tab[bap]);
                /* Shift mantissa and sign-extend it. */
                mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
513
                break;
514
        }
515
        coeffs[freq] = mantissa >> exps[freq];
516 517 518
    }
}

519
/**
520 521
 * Remove random dithering from coupling range coefficients with zero-bit
 * mantissas for coupled channels which do not use dithering.
522 523
 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 */
524
static void remove_dithering(AC3DecodeContext *s) {
525 526
    int ch, i;

527
    for(ch=1; ch<=s->fbw_channels; ch++) {
528 529 530 531
        if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
            for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
                if(!s->bap[CPL_CH][i])
                    s->fixed_coeffs[ch][i] = 0;
532 533 534 535 536
            }
        }
    }
}

537
static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
538 539 540
                                    mant_groups *m)
{
    if (!s->channel_uses_aht[ch]) {
541
        ac3_decode_transform_coeffs_ch(s, ch, m);
542 543 544 545
    } else {
        /* if AHT is used, mantissas for all blocks are encoded in the first
           block of the frame. */
        int bin;
546
        if (!blk && CONFIG_EAC3_DECODER)
547
            ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
548
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
549
            s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
550 551 552 553
        }
    }
}

554
/**
555
 * Decode the transform coefficients.
556
 */
557
static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
558
{
559
    int ch, end;
560
    int got_cplchan = 0;
561 562
    mant_groups m;

563
    m.b1 = m.b2 = m.b4 = 0;
564

565
    for (ch = 1; ch <= s->channels; ch++) {
566
        /* transform coefficients for full-bandwidth channel */
567
        decode_transform_coeffs_ch(s, blk, ch, &m);
568 569
        /* tranform coefficients for coupling channel come right after the
           coefficients for the first coupled channel*/
570
        if (s->channel_in_cpl[ch])  {
571
            if (!got_cplchan) {
572
                decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
573
                calc_transform_coeffs_cpl(s);
574 575
                got_cplchan = 1;
            }
576
            end = s->end_freq[CPL_CH];
577
        } else {
578
            end = s->end_freq[ch];
579
        }
580
        do
581
            s->fixed_coeffs[ch][end] = 0;
582 583
        while(++end < 256);
    }
584

585
    /* zero the dithered coefficients for appropriate channels */
Justin Ruggles's avatar
Justin Ruggles committed
586
    remove_dithering(s);
587 588
}

589
/**
590
 * Stereo rematrixing.
591 592
 * reference: Section 7.5.4 Rematrixing : Decoding Technique
 */
593
static void do_rematrixing(AC3DecodeContext *s)
594
{
595
    int bnd, i;
596 597
    int end, bndend;

598
    end = FFMIN(s->end_freq[1], s->end_freq[2]);
599

600 601
    for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
        if(s->rematrixing_flags[bnd]) {
602
            bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
603
            for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
604
                int tmp0 = s->fixed_coeffs[1][i];
605
                s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
606
                s->fixed_coeffs[2][i]  = tmp0 - s->fixed_coeffs[2][i];
607 608
            }
        }
609 610
    }
}
611

612 613 614 615 616
/**
 * Inverse MDCT Transform.
 * Convert frequency domain coefficients to time-domain audio samples.
 * reference: Section 7.9.4 Transformation Equations
 */
617
static inline void do_imdct(AC3DecodeContext *s, int channels)
618
{
Justin Ruggles's avatar
Justin Ruggles committed
619
    int ch;
620

621
    for (ch=1; ch<=channels; ch++) {
622
        if (s->block_switch[ch]) {
Loren Merritt's avatar
Loren Merritt committed
623 624 625 626
            int i;
            float *x = s->tmp_output+128;
            for(i=0; i<128; i++)
                x[i] = s->transform_coeffs[ch][2*i];
627
            s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
628
            s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 128);
Loren Merritt's avatar
Loren Merritt committed
629 630
            for(i=0; i<128; i++)
                x[i] = s->transform_coeffs[ch][2*i+1];
631
            s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch-1], x);
632
        } else {
633
            s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
634
            s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 128);
Loren Merritt's avatar
Loren Merritt committed
635
            memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
636
        }
637 638 639
    }
}

640
/**
641
 * Downmix the output to mono or stereo.
642
 */
Loren Merritt's avatar
Loren Merritt committed
643
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
644 645
{
    int i, j;
646
    float v0, v1;
Loren Merritt's avatar
Loren Merritt committed
647 648
    if(out_ch == 2) {
        for(i=0; i<len; i++) {
Loren Merritt's avatar
Loren Merritt committed
649
            v0 = v1 = 0.0f;
Loren Merritt's avatar
Loren Merritt committed
650 651 652
            for(j=0; j<in_ch; j++) {
                v0 += samples[j][i] * matrix[j][0];
                v1 += samples[j][i] * matrix[j][1];
Loren Merritt's avatar
Loren Merritt committed
653 654 655
            }
            samples[0][i] = v0;
            samples[1][i] = v1;
656
        }
Loren Merritt's avatar
Loren Merritt committed
657 658
    } else if(out_ch == 1) {
        for(i=0; i<len; i++) {
Loren Merritt's avatar
Loren Merritt committed
659
            v0 = 0.0f;
Loren Merritt's avatar
Loren Merritt committed
660 661
            for(j=0; j<in_ch; j++)
                v0 += samples[j][i] * matrix[j][0];
Loren Merritt's avatar
Loren Merritt committed
662
            samples[0][i] = v0;
663 664 665 666
        }
    }
}

667 668 669 670 671
/**
 * Upmix delay samples from stereo to original channel layout.
 */
static void ac3_upmix_delay(AC3DecodeContext *s)
{
672
    int channel_data_size = sizeof(s->delay[0]);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    switch(s->channel_mode) {
        case AC3_CHMODE_DUALMONO:
        case AC3_CHMODE_STEREO:
            /* upmix mono to stereo */
            memcpy(s->delay[1], s->delay[0], channel_data_size);
            break;
        case AC3_CHMODE_2F2R:
            memset(s->delay[3], 0, channel_data_size);
        case AC3_CHMODE_2F1R:
            memset(s->delay[2], 0, channel_data_size);
            break;
        case AC3_CHMODE_3F2R:
            memset(s->delay[4], 0, channel_data_size);
        case AC3_CHMODE_3F1R:
            memset(s->delay[3], 0, channel_data_size);
        case AC3_CHMODE_3F:
            memcpy(s->delay[2], s->delay[1], channel_data_size);
            memset(s->delay[1], 0, channel_data_size);
            break;
    }
}

695 696
/**
 * Decode band structure for coupling, spectral extension, or enhanced coupling.
697 698 699 700
 * The band structure defines how many subbands are in each band.  For each
 * subband in the range, 1 means it is combined with the previous band, and 0
 * means that it starts a new band.
 *
701 702 703 704 705 706 707 708 709 710 711 712 713
 * @param[in] gbc bit reader context
 * @param[in] blk block number
 * @param[in] eac3 flag to indicate E-AC-3
 * @param[in] ecpl flag to indicate enhanced coupling
 * @param[in] start_subband subband number for start of range
 * @param[in] end_subband subband number for end of range
 * @param[in] default_band_struct default band structure table
 * @param[out] num_bands number of bands (optionally NULL)
 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
 */
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
                                  int ecpl, int start_subband, int end_subband,
                                  const uint8_t *default_band_struct,
714
                                  int *num_bands, uint8_t *band_sizes)
715
{
716
    int subbnd, bnd, n_subbands, n_bands=0;
717
    uint8_t bnd_sz[22];
718 719
    uint8_t coded_band_struct[22];
    const uint8_t *band_struct;
720 721 722 723 724 725

    n_subbands = end_subband - start_subband;

    /* decode band structure from bitstream or use default */
    if (!eac3 || get_bits1(gbc)) {
        for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
726
            coded_band_struct[subbnd] = get_bits1(gbc);
727
        }
728
        band_struct = coded_band_struct;
729
    } else if (!blk) {
730 731 732 733
        band_struct = &default_band_struct[start_subband+1];
    } else {
        /* no change in band structure */
        return;
734 735 736 737 738 739
    }

    /* calculate number of bands and band sizes based on band structure.
       note that the first 4 subbands in enhanced coupling span only 6 bins
       instead of 12. */
    if (num_bands || band_sizes ) {
740
        n_bands = n_subbands;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        bnd_sz[0] = ecpl ? 6 : 12;
        for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
            int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
            if (band_struct[subbnd-1]) {
                n_bands--;
                bnd_sz[bnd] += subbnd_size;
            } else {
                bnd_sz[++bnd] = subbnd_size;
            }
        }
    }

    /* set optional output params */
    if (num_bands)
        *num_bands = n_bands;
    if (band_sizes)
757
        memcpy(band_sizes, bnd_sz, n_bands);
758 759
}

760
/**
761
 * Decode a single audio block from the AC-3 bitstream.
762
 */
763
static int decode_audio_block(AC3DecodeContext *s, int blk)
764
{
765 766
    int fbw_channels = s->fbw_channels;
    int channel_mode = s->channel_mode;
767
    int i, bnd, seg, ch;
768 769
    int different_transforms;
    int downmix_output;
770
    int cpl_in_use;
771
    GetBitContext *gbc = &s->gbc;
772
    uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
773

774 775
    memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);

776
    /* block switch flags */
777
    different_transforms = 0;
778
    if (s->block_switch_syntax) {
Justin Ruggles's avatar
Justin Ruggles committed
779 780 781 782 783
        for (ch = 1; ch <= fbw_channels; ch++) {
            s->block_switch[ch] = get_bits1(gbc);
            if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
                different_transforms = 1;
        }
784
    }
785

786
    /* dithering flags */
787
    if (s->dither_flag_syntax) {
Justin Ruggles's avatar
Justin Ruggles committed
788 789 790
        for (ch = 1; ch <= fbw_channels; ch++) {
            s->dither_flag[ch] = get_bits1(gbc);
        }
791
    }
792

793
    /* dynamic range */
794
    i = !(s->channel_mode);
795
    do {
796
        if(get_bits1(gbc)) {
797
            s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
798
                                  s->avctx->drc_scale)+1.0;
799
        } else if(blk == 0) {
800
            s->dynamic_range[i] = 1.0f;
801
        }
802
    } while(i--);
803

804 805
    /* spectral extension strategy */
    if (s->eac3 && (!blk || get_bits1(gbc))) {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
        s->spx_in_use = get_bits1(gbc);
        if (s->spx_in_use) {
            int dst_start_freq, dst_end_freq, src_start_freq,
                start_subband, end_subband;

            /* determine which channels use spx */
            if (s->channel_mode == AC3_CHMODE_MONO) {
                s->channel_uses_spx[1] = 1;
            } else {
                for (ch = 1; ch <= fbw_channels; ch++)
                    s->channel_uses_spx[ch] = get_bits1(gbc);
            }

            /* get the frequency bins of the spx copy region and the spx start
               and end subbands */
            dst_start_freq = get_bits(gbc, 2);
            start_subband  = get_bits(gbc, 3) + 2;
            if (start_subband > 7)
                start_subband += start_subband - 7;
            end_subband    = get_bits(gbc, 3) + 5;
            if (end_subband   > 7)
                end_subband   += end_subband   - 7;
            dst_start_freq = dst_start_freq * 12 + 25;
            src_start_freq = start_subband  * 12 + 25;
            dst_end_freq   = end_subband    * 12 + 25;

            /* check validity of spx ranges */
            if (start_subband >= end_subband) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                       "range (%d >= %d)\n", start_subband, end_subband);
                return -1;
            }
            if (dst_start_freq >= src_start_freq) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                       "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
                return -1;
            }

            s->spx_dst_start_freq = dst_start_freq;
            s->spx_src_start_freq = src_start_freq;
            s->spx_dst_end_freq   = dst_end_freq;

            decode_band_structure(gbc, blk, s->eac3, 0,
                                  start_subband, end_subband,
                                  ff_eac3_default_spx_band_struct,
                                  &s->num_spx_bands,
                                  s->spx_band_sizes);
        } else {
            for (ch = 1; ch <= fbw_channels; ch++) {
                s->channel_uses_spx[ch] = 0;
                s->first_spx_coords[ch] = 1;
            }
858 859 860
        }
    }

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    /* spectral extension coordinates */
    if (s->spx_in_use) {
        for (ch = 1; ch <= fbw_channels; ch++) {
            if (s->channel_uses_spx[ch]) {
                if (s->first_spx_coords[ch] || get_bits1(gbc)) {
                    float spx_blend;
                    int bin, master_spx_coord;

                    s->first_spx_coords[ch] = 0;
                    spx_blend = get_bits(gbc, 5) * (1.0f/32);
                    master_spx_coord = get_bits(gbc, 2) * 3;

                    bin = s->spx_src_start_freq;
                    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                        int bandsize;
                        int spx_coord_exp, spx_coord_mant;
                        float nratio, sblend, nblend, spx_coord;

                        /* calculate blending factors */
                        bandsize = s->spx_band_sizes[bnd];
                        nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
                        nratio = av_clipf(nratio, 0.0f, 1.0f);
                        nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3) to give unity variance
                        sblend = sqrtf(1.0f - nratio);
                        bin += bandsize;

                        /* decode spx coordinates */
                        spx_coord_exp  = get_bits(gbc, 4);
                        spx_coord_mant = get_bits(gbc, 2);
                        if (spx_coord_exp == 15) spx_coord_mant <<= 1;
                        else                     spx_coord_mant += 4;
                        spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
                        spx_coord = spx_coord_mant * (1.0f/(1<<23));

                        /* multiply noise and signal blending factors by spx coordinate */
                        s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
                        s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
                    }
                }
            } else {
                s->first_spx_coords[ch] = 1;
            }
        }
    }
905

906
    /* coupling strategy */
907
    if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
908
        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
909
        if (!s->eac3)
Justin Ruggles's avatar
Justin Ruggles committed
910
            s->cpl_in_use[blk] = get_bits1(gbc);
911
        if (s->cpl_in_use[blk]) {
912
            /* coupling in use */
913
            int cpl_start_subband, cpl_end_subband;
914

915 916 917 918 919
            if (channel_mode < AC3_CHMODE_STEREO) {
                av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
                return -1;
            }

920 921 922
            /* check for enhanced coupling */
            if (s->eac3 && get_bits1(gbc)) {
                /* TODO: parse enhanced coupling strategy info */
923
                av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
924 925 926
                return -1;
            }

927
            /* determine which channels are coupled */
928 929 930 931
            if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
                s->channel_in_cpl[1] = 1;
                s->channel_in_cpl[2] = 1;
            } else {
Justin Ruggles's avatar
Justin Ruggles committed
932 933
                for (ch = 1; ch <= fbw_channels; ch++)
                    s->channel_in_cpl[ch] = get_bits1(gbc);
934
            }
935

936
            /* phase flags in use */
937
            if (channel_mode == AC3_CHMODE_STEREO)
938
                s->phase_flags_in_use = get_bits1(gbc);
939

940
            /* coupling frequency range */
941
            cpl_start_subband = get_bits(gbc, 4);
942 943
            cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
                                              get_bits(gbc, 4) + 3;
944 945
            if (cpl_start_subband >= cpl_end_subband) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
946
                       cpl_start_subband, cpl_end_subband);
947
                return -1;
948
            }
949
            s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
950
            s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;
951

952 953 954
            decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
                                  cpl_end_subband,
                                  ff_eac3_default_cpl_band_struct,
955
                                  &s->num_cpl_bands, s->cpl_band_sizes);
956
        } else {
957
            /* coupling not in use */
958
            for (ch = 1; ch <= fbw_channels; ch++) {
959
                s->channel_in_cpl[ch] = 0;
960 961
                s->first_cpl_coords[ch] = 1;
            }
962
            s->first_cpl_leak = s->eac3;
963
            s->phase_flags_in_use = 0;
964
        }
965 966
    } else if (!s->eac3) {
        if(!blk) {
Justin Ruggles's avatar
Justin Ruggles committed
967 968 969 970 971
            av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
            return -1;
        } else {
            s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
        }
972
    }
973
    cpl_in_use = s->cpl_in_use[blk];
974

975
    /* coupling coordinates */
976
    if (cpl_in_use) {
977
        int cpl_coords_exist = 0;
978

979
        for (ch = 1; ch <= fbw_channels; ch++) {
980
            if (s->channel_in_cpl[ch]) {
981
                if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
982
                    int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
983
                    s->first_cpl_coords[ch] = 0;
984
                    cpl_coords_exist = 1;
985
                    master_cpl_coord = 3 * get_bits(gbc, 2);
986
                    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
987 988
                        cpl_coord_exp = get_bits(gbc, 4);
                        cpl_coord_mant = get_bits(gbc, 4);
989
                        if (cpl_coord_exp == 15)
990
                            s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
991
                        else
992 993
                            s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
                        s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
994
                    }
995 996 997
                } else if (!blk) {
                    av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
                    return -1;
998
                }
999 1000 1001
            } else {
                /* channel not in coupling */
                s->first_cpl_coords[ch] = 1;
1002 1003
            }
        }
1004
        /* phase flags */
1005
        if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
1006
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1007
                s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
1008 1009
            }
        }
1010
    }
1011

1012
    /* stereo rematrixing strategy and band structure */
1013
    if (channel_mode == AC3_CHMODE_STEREO) {
1014
        if ((s->eac3 && !blk) || get_bits1(gbc)) {
1015
            s->num_rematrixing_bands = 4;
1016
            if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
1017
                s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
1018 1019 1020
            } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
                s->num_rematrixing_bands--;
            }
1021 1022
            for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
                s->rematrixing_flags[bnd] = get_bits1(gbc);
1023
        } else if (!blk) {
1024 1025
            av_log(s->avctx, AV_LOG_WARNING, "Warning: new rematrixing strategy not present in block 0\n");
            s->num_rematrixing_bands = 0;
1026
        }
1027 1028
    }

1029
    /* exponent strategies for each channel */
1030
    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1031
        if (!s->eac3)
1032
            s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
1033
        if(s->exp_strategy[blk][ch] != EXP_REUSE)
1034 1035 1036
            bit_alloc_stages[ch] = 3;
    }

1037
    /* channel bandwidth */
1038
    for (ch = 1; ch <= fbw_channels; ch++) {
1039
        s->start_freq[ch] = 0;
1040
        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
1041
            int group_size;
1042 1043 1044
            int prev = s->end_freq[ch];
            if (s->channel_in_cpl[ch])
                s->end_freq[ch] = s->start_freq[CPL_CH];
1045 1046
            else if (s->channel_uses_spx[ch])
                s->end_freq[ch] = s->spx_src_start_freq;
1047
            else {
1048
                int bandwidth_code = get_bits(gbc, 6);
1049
                if (bandwidth_code > 60) {
1050
                    av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
1051 1052
                    return -1;
                }
1053
                s->end_freq[ch] = bandwidth_code * 3 + 73;
1054
            }
1055
            group_size = 3 << (s->exp_strategy[blk][ch] - 1);
1056
            s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
1057
            if(blk > 0 && s->end_freq[ch] != prev)
1058
                memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
1059
        }
1060
    }
1061
    if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
1062
        s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
1063
                                    (3 << (s->exp_strategy[blk][CPL_CH] - 1));
1064
    }
1065

1066
    /* decode exponents for each channel */
1067
    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1068
        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
1069
            s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
1070
            if (decode_exponents(gbc, s->exp_strategy[blk][ch],
1071 1072
                                 s->num_exp_groups[ch], s->dexps[ch][0],
                                 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
1073 1074 1075
                av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
                return -1;
            }
1076
            if(ch != CPL_CH && ch != s->lfe_ch)
1077
                skip_bits(gbc, 2); /* skip gainrng */
1078
        }
1079
    }
1080

1081
    /* bit allocation information */
1082
    if (s->bit_allocation_syntax) {
Justin Ruggles's avatar
Justin Ruggles committed
1083 1084 1085 1086 1087
        if (get_bits1(gbc)) {
            s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
            s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1088
            s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
Justin Ruggles's avatar
Justin Ruggles committed
1089 1090 1091 1092 1093 1094
            for(ch=!cpl_in_use; ch<=s->channels; ch++)
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        } else if (!blk) {
            av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
            return -1;
        }
1095
    }
1096

1097
    /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1098 1099
    if(!s->eac3 || !blk){
        if(s->snr_offset_strategy && get_bits1(gbc)) {
Justin Ruggles's avatar
Justin Ruggles committed
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
            int snr = 0;
            int csnr;
            csnr = (get_bits(gbc, 6) - 15) << 4;
            for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
                /* snr offset */
                if (ch == i || s->snr_offset_strategy == 2)
                    snr = (csnr + get_bits(gbc, 4)) << 2;
                /* run at least last bit allocation stage if snr offset changes */
                if(blk && s->snr_offset[ch] != snr) {
                    bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
                }
                s->snr_offset[ch] = snr;
1112 1113 1114 1115

                /* fast gain (normal AC-3 only) */
                if (!s->eac3) {
                    int prev = s->fast_gain[ch];
Justin Ruggles's avatar
Justin Ruggles committed
1116
                    s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1117 1118 1119 1120
                    /* run last 2 bit allocation stages if fast gain changes */
                    if(blk && prev != s->fast_gain[ch])
                        bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
                }
Justin Ruggles's avatar
Justin Ruggles committed
1121
            }
1122
        } else if (!s->eac3 && !blk) {
Justin Ruggles's avatar
Justin Ruggles committed
1123 1124
            av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
            return -1;
1125
        }
1126
    }
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    /* fast gain (E-AC-3 only) */
    if (s->fast_gain_syntax && get_bits1(gbc)) {
        for (ch = !cpl_in_use; ch <= s->channels; ch++) {
            int prev = s->fast_gain[ch];
            s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
            /* run last 2 bit allocation stages if fast gain changes */
            if(blk && prev != s->fast_gain[ch])
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        }
    } else if (s->eac3 && !blk) {
        for (ch = !cpl_in_use; ch <= s->channels; ch++)
            s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
    }

    /* E-AC-3 to AC-3 converter SNR offset */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
        skip_bits(gbc, 10); // skip converter snr offset
    }

1147
    /* coupling leak information */
1148
    if (cpl_in_use) {
1149 1150 1151 1152 1153 1154 1155
        if (s->first_cpl_leak || get_bits1(gbc)) {
            int fl = get_bits(gbc, 3);
            int sl = get_bits(gbc, 3);
            /* run last 2 bit allocation stages for coupling channel if
               coupling leak changes */
            if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
                       sl != s->bit_alloc_params.cpl_slow_leak)) {
Justin Ruggles's avatar
Justin Ruggles committed
1156
                bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1157 1158 1159 1160
            }
            s->bit_alloc_params.cpl_fast_leak = fl;
            s->bit_alloc_params.cpl_slow_leak = sl;
        } else if (!s->eac3 && !blk) {
Justin Ruggles's avatar
Justin Ruggles committed
1161 1162 1163
            av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
            return -1;
        }
1164
        s->first_cpl_leak = 0;
1165
    }
1166

1167
    /* delta bit allocation information */
1168
    if (s->dba_syntax && get_bits1(gbc)) {
1169
        /* delta bit allocation exists (strategy) */
1170
        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1171 1172 1173
            s->dba_mode[ch] = get_bits(gbc, 2);
            if (s->dba_mode[ch] == DBA_RESERVED) {
                av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1174 1175
                return -1;
            }
1176
            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1177
        }
1178
        /* channel delta offset, len and bit allocation */
1179
        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1180
            if (s->dba_mode[ch] == DBA_NEW) {
1181 1182
                s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
                for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
1183 1184 1185
                    s->dba_offsets[ch][seg] = get_bits(gbc, 5);
                    s->dba_lengths[ch][seg] = get_bits(gbc, 4);
                    s->dba_values[ch][seg] = get_bits(gbc, 3);
1186
                }
1187 1188
                /* run last 2 bit allocation stages if new dba values */
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1189
            }
1190
        }
1191
    } else if(blk == 0) {
1192 1193
        for(ch=0; ch<=s->channels; ch++) {
            s->dba_mode[ch] = DBA_NONE;
1194
        }
1195
    }
1196

1197
    /* Bit allocation */
1198
    for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1199 1200
        if(bit_alloc_stages[ch] > 2) {
            /* Exponent mapping into PSD and PSD integration */
1201 1202 1203
            ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
                                      s->start_freq[ch], s->end_freq[ch],
                                      s->psd[ch], s->band_psd[ch]);
1204
        }
1205 1206 1207
        if(bit_alloc_stages[ch] > 1) {
            /* Compute excitation function, Compute masking curve, and
               Apply delta bit allocation */
1208
            if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1209 1210 1211 1212 1213
                                           s->start_freq[ch], s->end_freq[ch],
                                           s->fast_gain[ch], (ch == s->lfe_ch),
                                           s->dba_mode[ch], s->dba_nsegs[ch],
                                           s->dba_offsets[ch], s->dba_lengths[ch],
                                           s->dba_values[ch], s->mask[ch])) {
1214 1215 1216
                av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
                return -1;
            }
1217
        }
1218 1219
        if(bit_alloc_stages[ch] > 0) {
            /* Compute bit allocation */
1220 1221
            const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
                                     ff_eac3_hebap_tab : ff_ac3_bap_tab;
1222
            s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1223 1224 1225
                                      s->start_freq[ch], s->end_freq[ch],
                                      s->snr_offset[ch],
                                      s->bit_alloc_params.floor,
1226
                                      bap_tab, s->bap[ch]);
1227
        }
1228
    }
1229

1230
    /* unused dummy data */
1231
    if (s->skip_syntax && get_bits1(gbc)) {
1232
        int skipl = get_bits(gbc, 9);
1233
        while(skipl--)
1234
            skip_bits(gbc, 8);
1235
    }
1236

1237
    /* unpack the transform coefficients
1238
       this also uncouples channels if coupling is in use. */
1239
    decode_transform_coeffs(s, blk);
1240

1241 1242
    /* TODO: generate enhanced coupling coordinates and uncouple */

1243
    /* recover coefficients if rematrixing is in use */
1244 1245
    if(s->channel_mode == AC3_CHMODE_STEREO)
        do_rematrixing(s);
1246

1247
    /* apply scaling to coefficients (headroom, dynrng) */
1248
    for(ch=1; ch<=s->channels; ch++) {
1249
        float gain = s->mul_bias / 4194304.0f;
1250
        if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1251
            gain *= s->dynamic_range[2-ch];
1252
        } else {
1253
            gain *= s->dynamic_range[0];
1254
        }
1255
        s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1256
    }
1257

1258
    /* apply spectral extension to high frequency bins */
1259
    if (s->spx_in_use && CONFIG_EAC3_DECODER) {
1260 1261 1262
        ff_eac3_apply_spectral_extension(s);
    }

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    /* downmix and MDCT. order depends on whether block switching is used for
       any channel in this block. this is because coefficients for the long
       and short transforms cannot be mixed. */
    downmix_output = s->channels != s->out_channels &&
                     !((s->output_mode & AC3_OUTPUT_LFEON) &&
                     s->fbw_channels == s->out_channels);
    if(different_transforms) {
        /* the delay samples have already been downmixed, so we upmix the delay
           samples in order to reconstruct all channels before downmixing. */
        if(s->downmixed) {
            s->downmixed = 0;
            ac3_upmix_delay(s);
        }

        do_imdct(s, s->channels);

        if(downmix_output) {
Loren Merritt's avatar
Loren Merritt committed
1280
            s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1281 1282 1283
        }
    } else {
        if(downmix_output) {
Loren Merritt's avatar
Loren Merritt committed
1284
            s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1285 1286
        }

1287
        if(downmix_output && !s->downmixed) {
1288
            s->downmixed = 1;
Loren Merritt's avatar
Loren Merritt committed
1289
            s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1290
        }
1291

1292
        do_imdct(s, s->out_channels);
1293 1294
    }

1295
    return 0;
1296 1297
}

1298 1299
/**
 * Decode a single AC-3 frame.
1300
 */
1301
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1302
                            AVPacket *avpkt)
1303
{
1304 1305
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
1306
    AC3DecodeContext *s = avctx->priv_data;
1307 1308
    float   *out_samples_flt = data;
    int16_t *out_samples_s16 = data;
1309
    int blk, ch, err;
1310
    const uint8_t *channel_map;
1311
    const float *output[AC3_MAX_CHANNELS];
1312

Justin Ruggles's avatar
Justin Ruggles committed
1313 1314
    /* copy input buffer to decoder context to avoid reading past the end
       of the buffer, which can be caused by a damaged input stream. */
1315 1316 1317 1318 1319
    if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
        // seems to be byte-swapped AC-3
        int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
        s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
    } else
1320
        memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1321 1322
    buf = s->input_buffer;
    /* initialize the GetBitContext with the start of valid AC-3 Frame */
Justin Ruggles's avatar
Justin Ruggles committed
1323
    init_get_bits(&s->gbc, buf, buf_size * 8);
1324

1325
    /* parse the syncinfo */
1326
    *data_size = 0;
1327
    err = parse_frame_header(s);
1328

1329
    if (err) {
1330
        switch(err) {
1331
            case AAC_AC3_PARSE_ERROR_SYNC:
1332
                av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1333
                return -1;
1334
            case AAC_AC3_PARSE_ERROR_BSID:
1335 1336
                av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
                break;
1337
            case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1338 1339
                av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
                break;
1340
            case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1341 1342
                av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
                break;
1343
            case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1344 1345 1346 1347 1348 1349
                /* skip frame if CRC is ok. otherwise use error concealment. */
                /* TODO: add support for substreams and dependent frames */
                if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
                    av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
                    return s->frame_size;
                } else {
Justin Ruggles's avatar
Justin Ruggles committed
1350
                    av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1351
                }
1352
                break;
1353 1354 1355 1356
            default:
                av_log(avctx, AV_LOG_ERROR, "invalid header\n");
                break;
        }
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    } else {
        /* check that reported frame size fits in input buffer */
        if (s->frame_size > buf_size) {
            av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
            err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
        } else if (avctx->error_recognition >= FF_ER_CAREFUL) {
            /* check for crc mismatch */
            if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
                av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
                err = AAC_AC3_PARSE_ERROR_CRC;
            }
        }
1369
    }
1370

1371 1372
    /* if frame is ok, set audio parameters */
    if (!err) {
Justin Ruggles's avatar
Justin Ruggles committed
1373 1374 1375 1376 1377
        avctx->sample_rate = s->sample_rate;
        avctx->bit_rate = s->bit_rate;

        /* channel config */
        s->out_channels = s->channels;
1378 1379 1380
        s->output_mode = s->channel_mode;
        if(s->lfe_on)
            s->output_mode |= AC3_OUTPUT_LFEON;
Justin Ruggles's avatar
Justin Ruggles committed
1381 1382 1383 1384
        if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
                avctx->request_channels < s->channels) {
            s->out_channels = avctx->request_channels;
            s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1385
            s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
Justin Ruggles's avatar
Justin Ruggles committed
1386 1387
        }
        avctx->channels = s->out_channels;
1388
        avctx->channel_layout = s->channel_layout;
1389

Justin Ruggles's avatar
Justin Ruggles committed
1390 1391 1392 1393 1394
        /* set downmixing coefficients if needed */
        if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
                s->fbw_channels == s->out_channels)) {
            set_downmix_coeffs(s);
        }
1395 1396 1397 1398
    } else if (!s->out_channels) {
        s->out_channels = avctx->channels;
        if(s->out_channels < s->channels)
            s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
Justin Ruggles's avatar
Justin Ruggles committed
1399
    }
1400 1401 1402 1403
    /* set audio service type based on bitstream mode for AC-3 */
    avctx->audio_service_type = s->bitstream_mode;
    if (s->bitstream_mode == 0x7 && s->channels > 1)
        avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
1404

1405
    /* decode the audio blocks */
1406
    channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1407 1408
    for (ch = 0; ch < s->out_channels; ch++)
        output[ch] = s->output[channel_map[ch]];
1409
    for (blk = 0; blk < s->num_blocks; blk++) {
1410 1411
        if (!err && decode_audio_block(s, blk)) {
            av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1412
            err = 1;
1413
        }
1414 1415 1416 1417 1418 1419 1420 1421 1422
        if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
            s->fmt_conv.float_interleave(out_samples_flt, output, 256,
                                         s->out_channels);
            out_samples_flt += 256 * s->out_channels;
        } else {
            s->fmt_conv.float_to_int16_interleave(out_samples_s16, output, 256,
                                                  s->out_channels);
            out_samples_s16 += 256 * s->out_channels;
        }
1423
    }
1424
    *data_size = s->num_blocks * 256 * avctx->channels *
1425
                 av_get_bytes_per_sample(avctx->sample_fmt);
1426
    return FFMIN(buf_size, s->frame_size);
1427
}
1428

1429 1430
/**
 * Uninitialize the AC-3 decoder.
1431
 */
1432
static av_cold int ac3_decode_end(AVCodecContext *avctx)
1433
{
1434
    AC3DecodeContext *s = avctx->priv_data;
1435 1436
    ff_mdct_end(&s->imdct_512);
    ff_mdct_end(&s->imdct_256);
1437

1438 1439
    av_freep(&s->input_buffer);

1440 1441 1442
    return 0;
}

1443
AVCodec ff_ac3_decoder = {
1444
    .name = "ac3",
1445
    .type = AVMEDIA_TYPE_AUDIO,
1446 1447 1448 1449 1450
    .id = CODEC_ID_AC3,
    .priv_data_size = sizeof (AC3DecodeContext),
    .init = ac3_decode_init,
    .close = ac3_decode_end,
    .decode = ac3_decode_frame,
1451
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1452 1453 1454
    .sample_fmts = (const enum AVSampleFormat[]) {
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
    },
1455 1456
};

1457
#if CONFIG_EAC3_DECODER
1458
AVCodec ff_eac3_decoder = {
1459
    .name = "eac3",
1460
    .type = AVMEDIA_TYPE_AUDIO,
1461 1462 1463 1464 1465 1466
    .id = CODEC_ID_EAC3,
    .priv_data_size = sizeof (AC3DecodeContext),
    .init = ac3_decode_init,
    .close = ac3_decode_end,
    .decode = ac3_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
1467 1468 1469
    .sample_fmts = (const enum AVSampleFormat[]) {
        AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
    },
1470
};
1471
#endif