mss3.c 23.3 KB
Newer Older
1 2 3 4
/*
 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
 * Copyright (c) 2012 Konstantin Shishkov
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8 9 10 11
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19 20 21 22 23 24 25 26 27 28
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
 */

#include "avcodec.h"
#include "bytestream.h"
29
#include "internal.h"
30
#include "mathops.h"
31
#include "mss34dsp.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

#define HEADER_SIZE 27

#define MODEL2_SCALE       13
#define MODEL_SCALE        15
#define MODEL256_SEC_SCALE  9

typedef struct Model2 {
    int      upd_val, till_rescale;
    unsigned zero_freq,  zero_weight;
    unsigned total_freq, total_weight;
} Model2;

typedef struct Model {
    int weights[16], freqs[16];
    int num_syms;
    int tot_weight;
    int upd_val, max_upd_val, till_rescale;
} Model;

typedef struct Model256 {
    int weights[256], freqs[256];
    int tot_weight;
    int secondary[68];
    int sec_size;
    int upd_val, max_upd_val, till_rescale;
} Model256;

#define RAC_BOTTOM 0x01000000
typedef struct RangeCoder {
    const uint8_t *src, *src_end;

    uint32_t range, low;
    int got_error;
} RangeCoder;

enum BlockType {
    FILL_BLOCK = 0,
    IMAGE_BLOCK,
    DCT_BLOCK,
    HAAR_BLOCK,
    SKIP_BLOCK
};

typedef struct BlockTypeContext {
    int      last_type;
    Model    bt_model[5];
} BlockTypeContext;

typedef struct FillBlockCoder {
    int      fill_val;
    Model    coef_model;
} FillBlockCoder;

typedef struct ImageBlockCoder {
    Model256 esc_model, vec_entry_model;
    Model    vec_size_model;
    Model    vq_model[125];
} ImageBlockCoder;

typedef struct DCTBlockCoder {
    int      *prev_dc;
94
    ptrdiff_t prev_dc_stride;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    int      prev_dc_height;
    int      quality;
    uint16_t qmat[64];
    Model    dc_model;
    Model2   sign_model;
    Model256 ac_model;
} DCTBlockCoder;

typedef struct HaarBlockCoder {
    int      quality, scale;
    Model256 coef_model;
    Model    coef_hi_model;
} HaarBlockCoder;

typedef struct MSS3Context {
    AVCodecContext   *avctx;
111
    AVFrame          *pic;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    int              got_error;
    RangeCoder       coder;
    BlockTypeContext btype[3];
    FillBlockCoder   fill_coder[3];
    ImageBlockCoder  image_coder[3];
    DCTBlockCoder    dct_coder[3];
    HaarBlockCoder   haar_coder[3];

    int              dctblock[64];
    int              hblock[16 * 16];
} MSS3Context;


static void model2_reset(Model2 *m)
{
    m->zero_weight  = 1;
    m->total_weight = 2;
    m->zero_freq    = 0x1000;
    m->total_freq   = 0x2000;
    m->upd_val      = 4;
    m->till_rescale = 4;
}

static void model2_update(Model2 *m, int bit)
{
    unsigned scale;

    if (!bit)
        m->zero_weight++;
    m->till_rescale--;
    if (m->till_rescale)
        return;

    m->total_weight += m->upd_val;
    if (m->total_weight > 0x2000) {
        m->total_weight = (m->total_weight + 1) >> 1;
        m->zero_weight  = (m->zero_weight  + 1) >> 1;
        if (m->total_weight == m->zero_weight)
            m->total_weight = m->zero_weight + 1;
    }
    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > 64)
        m->upd_val = 64;
    scale = 0x80000000u / m->total_weight;
    m->zero_freq    = m->zero_weight  * scale >> 18;
    m->total_freq   = m->total_weight * scale >> 18;
    m->till_rescale = m->upd_val;
}

static void model_update(Model *m, int val)
{
    int i, sum = 0;
    unsigned scale;

    m->weights[val]++;
    m->till_rescale--;
    if (m->till_rescale)
        return;
    m->tot_weight += m->upd_val;

    if (m->tot_weight > 0x8000) {
        m->tot_weight = 0;
        for (i = 0; i < m->num_syms; i++) {
            m->weights[i]  = (m->weights[i] + 1) >> 1;
            m->tot_weight +=  m->weights[i];
        }
    }
    scale = 0x80000000u / m->tot_weight;
    for (i = 0; i < m->num_syms; i++) {
        m->freqs[i] = sum * scale >> 16;
        sum += m->weights[i];
    }

    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > m->max_upd_val)
        m->upd_val = m->max_upd_val;
    m->till_rescale = m->upd_val;
}

static void model_reset(Model *m)
{
    int i;

    m->tot_weight   = 0;
    for (i = 0; i < m->num_syms - 1; i++)
        m->weights[i] = 1;
    m->weights[m->num_syms - 1] = 0;

    m->upd_val      = m->num_syms;
    m->till_rescale = 1;
    model_update(m, m->num_syms - 1);
    m->till_rescale =
    m->upd_val      = (m->num_syms + 6) >> 1;
}

static av_cold void model_init(Model *m, int num_syms)
{
    m->num_syms    = num_syms;
    m->max_upd_val = 8 * num_syms + 48;

    model_reset(m);
}

static void model256_update(Model256 *m, int val)
{
    int i, sum = 0;
    unsigned scale;
    int send, sidx = 1;

    m->weights[val]++;
    m->till_rescale--;
    if (m->till_rescale)
        return;
    m->tot_weight += m->upd_val;

    if (m->tot_weight > 0x8000) {
        m->tot_weight = 0;
        for (i = 0; i < 256; i++) {
            m->weights[i]  = (m->weights[i] + 1) >> 1;
            m->tot_weight +=  m->weights[i];
        }
    }
    scale = 0x80000000u / m->tot_weight;
    m->secondary[0] = 0;
    for (i = 0; i < 256; i++) {
        m->freqs[i] = sum * scale >> 16;
        sum += m->weights[i];
        send = m->freqs[i] >> MODEL256_SEC_SCALE;
        while (sidx <= send)
            m->secondary[sidx++] = i - 1;
    }
    while (sidx < m->sec_size)
        m->secondary[sidx++] = 255;

    m->upd_val = m->upd_val * 5 >> 2;
    if (m->upd_val > m->max_upd_val)
        m->upd_val = m->max_upd_val;
    m->till_rescale = m->upd_val;
}

static void model256_reset(Model256 *m)
{
    int i;

    for (i = 0; i < 255; i++)
        m->weights[i] = 1;
    m->weights[255] = 0;

    m->tot_weight   = 0;
    m->upd_val      = 256;
    m->till_rescale = 1;
    model256_update(m, 255);
    m->till_rescale =
    m->upd_val      = (256 + 6) >> 1;
}

static av_cold void model256_init(Model256 *m)
{
    m->max_upd_val = 8 * 256 + 48;
    m->sec_size    = (1 << 6) + 2;

    model256_reset(m);
}

static void rac_init(RangeCoder *c, const uint8_t *src, int size)
{
    int i;

    c->src       = src;
    c->src_end   = src + size;
    c->low       = 0;
    for (i = 0; i < FFMIN(size, 4); i++)
        c->low = (c->low << 8) | *c->src++;
    c->range     = 0xFFFFFFFF;
    c->got_error = 0;
}

static void rac_normalise(RangeCoder *c)
{
    for (;;) {
        c->range <<= 8;
        c->low   <<= 8;
        if (c->src < c->src_end) {
            c->low |= *c->src++;
        } else if (!c->low) {
            c->got_error = 1;
299
            c->low = 1;
300
        }
301 302 303 304
        if (c->low > c->range) {
            c->got_error = 1;
            c->low = 1;
        }
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        if (c->range >= RAC_BOTTOM)
            return;
    }
}

static int rac_get_bit(RangeCoder *c)
{
    int bit;

    c->range >>= 1;

    bit = (c->range <= c->low);
    if (bit)
        c->low -= c->range;

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    return bit;
}

static int rac_get_bits(RangeCoder *c, int nbits)
{
    int val;

    c->range >>= nbits;
    val = c->low / c->range;
    c->low -= c->range * val;

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    return val;
}

static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
{
    int bit, helper;

    helper = m->zero_freq * (c->range >> MODEL2_SCALE);
    bit    = (c->low >= helper);
    if (bit) {
        c->low   -= helper;
        c->range -= helper;
    } else {
        c->range  = helper;
    }

    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model2_update(m, bit);

    return bit;
}

static int rac_get_model_sym(RangeCoder *c, Model *m)
{
363
    int val;
364
    int end, end2;
365
    unsigned prob, prob2, helper;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    prob       = 0;
    prob2      = c->range;
    c->range >>= MODEL_SCALE;
    val        = 0;
    end        = m->num_syms >> 1;
    end2       = m->num_syms;
    do {
        helper = m->freqs[end] * c->range;
        if (helper <= c->low) {
            val   = end;
            prob  = helper;
        } else {
            end2  = end;
            prob2 = helper;
        }
        end = (end2 + val) >> 1;
    } while (end != val);
    c->low  -= prob;
    c->range = prob2 - prob;
    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model_update(m, val);

    return val;
}

static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
{
396
    int val;
397 398
    int start, end;
    int ssym;
399
    unsigned prob, prob2, helper;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

    prob2      = c->range;
    c->range >>= MODEL_SCALE;

    helper     = c->low / c->range;
    ssym       = helper >> MODEL256_SEC_SCALE;
    val        = m->secondary[ssym];

    end = start = m->secondary[ssym + 1] + 1;
    while (end > val + 1) {
        ssym = (end + val) >> 1;
        if (m->freqs[ssym] <= helper) {
            end = start;
            val = ssym;
        } else {
            end   = (end + val) >> 1;
            start = ssym;
        }
    }
    prob = m->freqs[val] * c->range;
    if (val != 255)
        prob2 = m->freqs[val + 1] * c->range;

    c->low  -= prob;
    c->range = prob2 - prob;
    if (c->range < RAC_BOTTOM)
        rac_normalise(c);

    model256_update(m, val);

    return val;
}

static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
{
    bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);

    return bt->last_type;
}

static int decode_coeff(RangeCoder *c, Model *m)
{
    int val, sign;

    val = rac_get_model_sym(c, m);
    if (val) {
        sign = rac_get_bit(c);
        if (val > 1) {
            val--;
            val = (1 << val) + rac_get_bits(c, val);
        }
        if (!sign)
            val = -val;
    }

    return val;
}

static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
459
                              uint8_t *dst, ptrdiff_t stride, int block_size)
460 461 462 463 464 465 466 467 468 469
{
    int i;

    fc->fill_val += decode_coeff(c, &fc->coef_model);

    for (i = 0; i < block_size; i++, dst += stride)
        memset(dst, fc->fill_val, block_size);
}

static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
470
                               uint8_t *dst, ptrdiff_t stride, int block_size)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
{
    int i, j;
    int vec_size;
    int vec[4];
    int prev_line[16];
    int A, B, C;

    vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
    for (i = 0; i < vec_size; i++)
        vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
    for (; i < 4; i++)
        vec[i] = 0;
    memset(prev_line, 0, sizeof(prev_line));

    for (j = 0; j < block_size; j++) {
        A = 0;
        B = 0;
        for (i = 0; i < block_size; i++) {
            C = B;
            B = prev_line[i];
            A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);

            prev_line[i] = A;
            if (A < 4)
               dst[i] = vec[A];
            else
               dst[i] = rac_get_model256_sym(c, &ic->esc_model);
        }
        dst += stride;
    }
}

static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
                      int bx, int by)
{
    int skip, val, sign, pos = 1, zz_pos, dc;
    int blk_pos = bx + by * bc->prev_dc_stride;

    memset(block, 0, sizeof(*block) * 64);

    dc = decode_coeff(c, &bc->dc_model);
    if (by) {
        if (bx) {
            int l, tl, t;

            l  = bc->prev_dc[blk_pos - 1];
            tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
            t  = bc->prev_dc[blk_pos     - bc->prev_dc_stride];

            if (FFABS(t - tl) <= FFABS(l - tl))
                dc += l;
            else
                dc += t;
        } else {
            dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
        }
    } else if (bx) {
        dc += bc->prev_dc[bx - 1];
    }
    bc->prev_dc[blk_pos] = dc;
    block[0]             = dc * bc->qmat[0];

    while (pos < 64) {
        val = rac_get_model256_sym(c, &bc->ac_model);
        if (!val)
            return 0;
        if (val == 0xF0) {
            pos += 16;
            continue;
        }
        skip = val >> 4;
        val  = val & 0xF;
        if (!val)
            return -1;
        pos += skip;
        if (pos >= 64)
            return -1;

        sign = rac_get_model2_sym(c, &bc->sign_model);
        if (val > 1) {
            val--;
            val = (1 << val) + rac_get_bits(c, val);
        }
        if (!sign)
            val = -val;

557
        zz_pos = ff_zigzag_direct[pos];
558 559 560 561 562 563 564 565
        block[zz_pos] = val * bc->qmat[zz_pos];
        pos++;
    }

    return pos == 64 ? 0 : -1;
}

static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
566
                             uint8_t *dst, ptrdiff_t stride, int block_size,
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                             int *block, int mb_x, int mb_y)
{
    int i, j;
    int bx, by;
    int nblocks = block_size >> 3;

    bx = mb_x * nblocks;
    by = mb_y * nblocks;

    for (j = 0; j < nblocks; j++) {
        for (i = 0; i < nblocks; i++) {
            if (decode_dct(c, bc, block, bx + i, by + j)) {
                c->got_error = 1;
                return;
            }
582
            ff_mss34_dct_put(dst + i * 8, stride, block);
583 584 585 586 587 588
        }
        dst += 8 * stride;
    }
}

static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
589 590
                              uint8_t *dst, ptrdiff_t stride,
                              int block_size, int *block)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
{
    const int hsize = block_size >> 1;
    int A, B, C, D, t1, t2, t3, t4;
    int i, j;

    for (j = 0; j < block_size; j++) {
        for (i = 0; i < block_size; i++) {
            if (i < hsize && j < hsize)
                block[i] = rac_get_model256_sym(c, &hc->coef_model);
            else
                block[i] = decode_coeff(c, &hc->coef_hi_model);
            block[i] *= hc->scale;
        }
        block += block_size;
    }
    block -= block_size * block_size;

    for (j = 0; j < hsize; j++) {
        for (i = 0; i < hsize; i++) {
            A = block[i];
            B = block[i + hsize];
            C = block[i + hsize * block_size];
            D = block[i + hsize * block_size + hsize];

            t1 = A - B;
            t2 = C - D;
            t3 = A + B;
            t4 = C + D;
            dst[i * 2]              = av_clip_uint8(t1 - t2);
            dst[i * 2 + stride]     = av_clip_uint8(t1 + t2);
            dst[i * 2 + 1]          = av_clip_uint8(t3 - t4);
            dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
        }
        block += block_size;
        dst   += stride * 2;
    }
}

static void reset_coders(MSS3Context *ctx, int quality)
{
    int i, j;

    for (i = 0; i < 3; i++) {
        ctx->btype[i].last_type = SKIP_BLOCK;
        for (j = 0; j < 5; j++)
            model_reset(&ctx->btype[i].bt_model[j]);
        ctx->fill_coder[i].fill_val = 0;
        model_reset(&ctx->fill_coder[i].coef_model);
        model256_reset(&ctx->image_coder[i].esc_model);
        model256_reset(&ctx->image_coder[i].vec_entry_model);
        model_reset(&ctx->image_coder[i].vec_size_model);
        for (j = 0; j < 125; j++)
            model_reset(&ctx->image_coder[i].vq_model[j]);
        if (ctx->dct_coder[i].quality != quality) {
            ctx->dct_coder[i].quality = quality;
646
            ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
        }
        memset(ctx->dct_coder[i].prev_dc, 0,
               sizeof(*ctx->dct_coder[i].prev_dc) *
               ctx->dct_coder[i].prev_dc_stride *
               ctx->dct_coder[i].prev_dc_height);
        model_reset(&ctx->dct_coder[i].dc_model);
        model2_reset(&ctx->dct_coder[i].sign_model);
        model256_reset(&ctx->dct_coder[i].ac_model);
        if (ctx->haar_coder[i].quality != quality) {
            ctx->haar_coder[i].quality = quality;
            ctx->haar_coder[i].scale   = 17 - 7 * quality / 50;
        }
        model_reset(&ctx->haar_coder[i].coef_hi_model);
        model256_reset(&ctx->haar_coder[i].coef_model);
    }
}

static av_cold void init_coders(MSS3Context *ctx)
{
    int i, j;

    for (i = 0; i < 3; i++) {
        for (j = 0; j < 5; j++)
            model_init(&ctx->btype[i].bt_model[j], 5);
        model_init(&ctx->fill_coder[i].coef_model, 12);
        model256_init(&ctx->image_coder[i].esc_model);
        model256_init(&ctx->image_coder[i].vec_entry_model);
        model_init(&ctx->image_coder[i].vec_size_model, 3);
        for (j = 0; j < 125; j++)
            model_init(&ctx->image_coder[i].vq_model[j], 5);
        model_init(&ctx->dct_coder[i].dc_model, 12);
        model256_init(&ctx->dct_coder[i].ac_model);
        model_init(&ctx->haar_coder[i].coef_hi_model, 12);
        model256_init(&ctx->haar_coder[i].coef_model);
    }
}

684
static int mss3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
                             AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    MSS3Context *c = avctx->priv_data;
    RangeCoder *acoder = &c->coder;
    GetByteContext gb;
    uint8_t *dst[3];
    int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
    int x, y, i, mb_width, mb_height, blk_size, btype;
    int ret;

    if (buf_size < HEADER_SIZE) {
        av_log(avctx, AV_LOG_ERROR,
               "Frame should have at least %d bytes, got %d instead\n",
               HEADER_SIZE, buf_size);
        return AVERROR_INVALIDDATA;
    }

    bytestream2_init(&gb, buf, buf_size);
    keyframe   = bytestream2_get_be32(&gb);
    if (keyframe & ~0x301) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
        return AVERROR_INVALIDDATA;
    }
    keyframe   = !(keyframe & 1);
    bytestream2_skip(&gb, 6);
    dec_x      = bytestream2_get_be16(&gb);
    dec_y      = bytestream2_get_be16(&gb);
    dec_width  = bytestream2_get_be16(&gb);
    dec_height = bytestream2_get_be16(&gb);

    if (dec_x + dec_width > avctx->width ||
        dec_y + dec_height > avctx->height ||
        (dec_width | dec_height) & 0xF) {
        av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
               dec_width, dec_height, dec_x, dec_y);
        return AVERROR_INVALIDDATA;
    }
    bytestream2_skip(&gb, 4);
    quality    = bytestream2_get_byte(&gb);
    if (quality < 1 || quality > 100) {
        av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
        return AVERROR_INVALIDDATA;
    }
    bytestream2_skip(&gb, 4);

    if (keyframe && !bytestream2_get_bytes_left(&gb)) {
        av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
        return AVERROR_INVALIDDATA;
    }
    if (!keyframe && c->got_error)
        return buf_size;
    c->got_error = 0;

740
    if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
741
        return ret;
742 743
    c->pic->key_frame = keyframe;
    c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
744
    if (!bytestream2_get_bytes_left(&gb)) {
745
        if ((ret = av_frame_ref(data, c->pic)) < 0)
746
            return ret;
747
        *got_frame      = 1;
748 749 750 751 752 753 754 755 756 757

        return buf_size;
    }

    reset_coders(c, quality);

    rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);

    mb_width  = dec_width  >> 4;
    mb_height = dec_height >> 4;
758 759 760
    dst[0] = c->pic->data[0] + dec_x     +  dec_y      * c->pic->linesize[0];
    dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1];
    dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2];
761 762 763 764 765 766 767 768 769 770
    for (y = 0; y < mb_height; y++) {
        for (x = 0; x < mb_width; x++) {
            for (i = 0; i < 3; i++) {
                blk_size = 8 << !i;

                btype = decode_block_type(acoder, c->btype + i);
                switch (btype) {
                case FILL_BLOCK:
                    decode_fill_block(acoder, c->fill_coder + i,
                                      dst[i] + x * blk_size,
771
                                      c->pic->linesize[i], blk_size);
772 773 774 775
                    break;
                case IMAGE_BLOCK:
                    decode_image_block(acoder, c->image_coder + i,
                                       dst[i] + x * blk_size,
776
                                       c->pic->linesize[i], blk_size);
777 778 779 780
                    break;
                case DCT_BLOCK:
                    decode_dct_block(acoder, c->dct_coder + i,
                                     dst[i] + x * blk_size,
781
                                     c->pic->linesize[i], blk_size,
782 783 784 785 786
                                     c->dctblock, x, y);
                    break;
                case HAAR_BLOCK:
                    decode_haar_block(acoder, c->haar_coder + i,
                                      dst[i] + x * blk_size,
787
                                      c->pic->linesize[i], blk_size,
788 789 790 791 792 793 794 795 796 797 798
                                      c->hblock);
                    break;
                }
                if (c->got_error || acoder->got_error) {
                    av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
                           x, y);
                    c->got_error = 1;
                    return AVERROR_INVALIDDATA;
                }
            }
        }
799 800 801
        dst[0] += c->pic->linesize[0] * 16;
        dst[1] += c->pic->linesize[1] * 8;
        dst[2] += c->pic->linesize[2] * 8;
802 803
    }

804
    if ((ret = av_frame_ref(data, c->pic)) < 0)
805 806
        return ret;

807
    *got_frame      = 1;
808 809 810 811

    return buf_size;
}

812 813 814 815 816 817 818 819 820 821 822 823
static av_cold int mss3_decode_end(AVCodecContext *avctx)
{
    MSS3Context * const c = avctx->priv_data;
    int i;

    av_frame_free(&c->pic);
    for (i = 0; i < 3; i++)
        av_freep(&c->dct_coder[i].prev_dc);

    return 0;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static av_cold int mss3_decode_init(AVCodecContext *avctx)
{
    MSS3Context * const c = avctx->priv_data;
    int i;

    c->avctx = avctx;

    if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
        av_log(avctx, AV_LOG_ERROR,
               "Image dimensions should be a multiple of 16.\n");
        return AVERROR_INVALIDDATA;
    }

    c->got_error = 0;
    for (i = 0; i < 3; i++) {
        int b_width  = avctx->width  >> (2 + !!i);
        int b_height = avctx->height >> (2 + !!i);
        c->dct_coder[i].prev_dc_stride = b_width;
        c->dct_coder[i].prev_dc_height = b_height;
        c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
                                            b_width * b_height);
        if (!c->dct_coder[i].prev_dc) {
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
847
            av_frame_free(&c->pic);
848 849 850 851 852 853 854 855
            while (i >= 0) {
                av_freep(&c->dct_coder[i].prev_dc);
                i--;
            }
            return AVERROR(ENOMEM);
        }
    }

856 857 858 859 860 861
    c->pic = av_frame_alloc();
    if (!c->pic) {
        mss3_decode_end(avctx);
        return AVERROR(ENOMEM);
    }

862
    avctx->pix_fmt     = AV_PIX_FMT_YUV420P;
863 864 865 866 867 868 869 870

    init_coders(c);

    return 0;
}

AVCodec ff_msa1_decoder = {
    .name           = "msa1",
871
    .long_name      = NULL_IF_CONFIG_SMALL("MS ATC Screen"),
872
    .type           = AVMEDIA_TYPE_VIDEO,
873
    .id             = AV_CODEC_ID_MSA1,
874 875 876 877
    .priv_data_size = sizeof(MSS3Context),
    .init           = mss3_decode_init,
    .close          = mss3_decode_end,
    .decode         = mss3_decode_frame,
878
    .capabilities   = AV_CODEC_CAP_DR1,
879
};