ac3enc_template.c 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * AC-3 encoder float/fixed template
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AC-3 encoder float/fixed template
 */

#include <stdint.h>

31
#include "libavutil/attributes.h"
32
#include "libavutil/internal.h"
33 34

#include "audiodsp.h"
35 36 37
#include "internal.h"
#include "ac3enc.h"
#include "eac3enc.h"
38

39 40 41 42 43 44
/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */

static void scale_coefficients(AC3EncodeContext *s);

static int normalize_samples(AC3EncodeContext *s);

45 46
static void clip_coefficients(AudioDSPContext *adsp, CoefType *coef,
                              unsigned int len);
47

48 49
static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);

50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
    int ch;

    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
                     sizeof(*s->windowed_samples), alloc_fail);
    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
                     alloc_fail);
    for (ch = 0; ch < s->channels; ch++) {
        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
                          alloc_fail);
    }

    return 0;
alloc_fail:
    return AVERROR(ENOMEM);
}


Justin Ruggles's avatar
Justin Ruggles committed
71
/*
72
 * Copy input samples.
73 74
 * Channels are reordered from Libav's default order to AC-3 order.
 */
75
static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
76
{
77
    int ch;
78

79
    /* copy and remap input samples */
80 81
    for (ch = 0; ch < s->channels; ch++) {
        /* copy last 256 samples of previous frame to the start of the current frame */
82
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
83 84
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));

85 86 87 88
        /* copy new samples for current frame */
        memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
               samples[s->channel_map[ch]],
               AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
89 90 91 92
    }
}


Justin Ruggles's avatar
Justin Ruggles committed
93
/*
94 95 96 97
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
98
static void apply_mdct(AC3EncodeContext *s)
99 100 101 102
{
    int blk, ch;

    for (ch = 0; ch < s->channels; ch++) {
103
        for (blk = 0; blk < s->num_blocks; blk++) {
104 105 106
            AC3Block *block = &s->blocks[blk];
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];

107
#if CONFIG_AC3ENC_FLOAT
108 109
            s->fdsp.vector_fmul(s->windowed_samples, input_samples,
                                s->mdct_window, AC3_WINDOW_SIZE);
110
#else
111 112
            s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
                                         s->mdct_window, AC3_WINDOW_SIZE);
113
#endif
114 115

            if (s->fixed_point)
116
                block->coeff_shift[ch+1] = normalize_samples(s);
117

118 119
            s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
                               s->windowed_samples);
120 121 122 123 124
        }
    }
}


Justin Ruggles's avatar
Justin Ruggles committed
125
/*
126 127
 * Calculate coupling channel and coupling coordinates.
 */
128
static void apply_channel_coupling(AC3EncodeContext *s)
129
{
130
    LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
131 132
#if CONFIG_AC3ENC_FLOAT
    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
133 134 135
#else
    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
#endif
136 137
    int blk, ch, bnd, i, j;
    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
138
    int cpl_start, num_cpl_coefs;
139 140

    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
141 142 143
#if CONFIG_AC3ENC_FLOAT
    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
#endif
144

145 146 147 148 149 150
    /* align start to 16-byte boundary. align length to multiple of 32.
        note: coupling start bin % 4 will always be 1 */
    cpl_start     = s->start_freq[CPL_CH] - 1;
    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;

151
    /* calculate coupling channel from fbw channels */
152
    for (blk = 0; blk < s->num_blocks; blk++) {
153
        AC3Block *block = &s->blocks[blk];
154
        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
155 156
        if (!block->cpl_in_use)
            continue;
157
        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
158
        for (ch = 1; ch <= s->fbw_channels; ch++) {
159
            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
160 161 162 163 164 165
            if (!block->channel_in_cpl[ch])
                continue;
            for (i = 0; i < num_cpl_coefs; i++)
                cpl_coef[i] += ch_coef[i];
        }

166
        /* coefficients must be clipped in order to be encoded */
167
        clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
168 169 170 171 172 173 174 175 176
    }

    /* calculate energy in each band in coupling channel and each fbw channel */
    /* TODO: possibly use SIMD to speed up energy calculation */
    bnd = 0;
    i = s->start_freq[CPL_CH];
    while (i < s->cpl_end_freq) {
        int band_size = s->cpl_band_sizes[bnd];
        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
177
            for (blk = 0; blk < s->num_blocks; blk++) {
178 179 180 181 182 183 184 185 186 187 188 189 190
                AC3Block *block = &s->blocks[blk];
                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
                    continue;
                for (j = 0; j < band_size; j++) {
                    CoefType v = block->mdct_coef[ch][i+j];
                    MAC_COEF(energy[blk][ch][bnd], v, v);
                }
            }
        }
        i += band_size;
        bnd++;
    }

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    /* calculate coupling coordinates for all blocks for all channels */
    for (blk = 0; blk < s->num_blocks; blk++) {
        AC3Block *block  = &s->blocks[blk];
        if (!block->cpl_in_use)
            continue;
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (!block->channel_in_cpl[ch])
                continue;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
                                                          energy[blk][CPL_CH][bnd]);
            }
        }
    }

206
    /* determine which blocks to send new coupling coordinates for */
207
    for (blk = 0; blk < s->num_blocks; blk++) {
208 209 210
        AC3Block *block  = &s->blocks[blk];
        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;

211 212
        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));

213 214 215 216 217 218
        if (block->cpl_in_use) {
            /* send new coordinates if this is the first block, if previous
             * block did not use coupling but this block does, the channels
             * using coupling has changed from the previous block, or the
             * coordinate difference from the last block for any channel is
             * greater than a threshold value. */
219 220 221
            if (blk == 0 || !block0->cpl_in_use) {
                for (ch = 1; ch <= s->fbw_channels; ch++)
                    block->new_cpl_coords[ch] = 1;
222 223
            } else {
                for (ch = 1; ch <= s->fbw_channels; ch++) {
224 225 226
                    if (!block->channel_in_cpl[ch])
                        continue;
                    if (!block0->channel_in_cpl[ch]) {
227
                        block->new_cpl_coords[ch] = 1;
228 229 230
                    } else {
                        CoefSumType coord_diff = 0;
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
231 232
                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
                                                cpl_coords[blk  ][ch][bnd]);
233 234
                        }
                        coord_diff /= s->num_cpl_bands;
235
                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
236
                            block->new_cpl_coords[ch] = 1;
237 238 239 240 241 242 243 244 245 246
                    }
                }
            }
        }
    }

    /* calculate final coupling coordinates, taking into account reusing of
       coordinates in successive blocks */
    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
        blk = 0;
247
        while (blk < s->num_blocks) {
248
            int av_uninit(blk1);
249 250 251 252 253 254 255 256
            AC3Block *block  = &s->blocks[blk];

            if (!block->cpl_in_use) {
                blk++;
                continue;
            }

            for (ch = 1; ch <= s->fbw_channels; ch++) {
257
                CoefSumType energy_ch, energy_cpl;
258 259
                if (!block->channel_in_cpl[ch])
                    continue;
260
                energy_cpl = energy[blk][CPL_CH][bnd];
261 262
                energy_ch = energy[blk][ch][bnd];
                blk1 = blk+1;
263 264 265
                while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
                    if (s->blocks[blk1].cpl_in_use) {
                        energy_cpl += energy[blk1][CPL_CH][bnd];
266
                        energy_ch += energy[blk1][ch][bnd];
267
                    }
268 269 270 271 272 273 274 275 276
                    blk1++;
                }
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
            }
            blk = blk1;
        }
    }

    /* calculate exponents/mantissas for coupling coordinates */
277
    for (blk = 0; blk < s->num_blocks; blk++) {
278
        AC3Block *block = &s->blocks[blk];
279
        if (!block->cpl_in_use)
280 281
            continue;

282
#if CONFIG_AC3ENC_FLOAT
283 284 285
        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
                                   cpl_coords[blk][1],
                                   s->fbw_channels * 16);
286
#endif
287 288 289 290 291 292 293
        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
                                    fixed_cpl_coords[blk][1],
                                    s->fbw_channels * 16);

        for (ch = 1; ch <= s->fbw_channels; ch++) {
            int bnd, min_exp, max_exp, master_exp;

294 295 296
            if (!block->new_cpl_coords[ch])
                continue;

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            /* determine master exponent */
            min_exp = max_exp = block->cpl_coord_exp[ch][0];
            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
                int exp = block->cpl_coord_exp[ch][bnd];
                min_exp = FFMIN(exp, min_exp);
                max_exp = FFMAX(exp, max_exp);
            }
            master_exp = ((max_exp - 15) + 2) / 3;
            master_exp = FFMAX(master_exp, 0);
            while (min_exp < master_exp * 3)
                master_exp--;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
                                                        master_exp * 3, 0, 15);
            }
            block->cpl_master_exp[ch] = master_exp;

            /* quantize mantissas */
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
                if (cpl_exp == 15)
                    cpl_mant >>= 1;
                else
                    cpl_mant -= 16;

                block->cpl_coord_mant[ch][bnd] = cpl_mant;
            }
        }
    }

    if (CONFIG_EAC3_ENCODER && s->eac3)
        ff_eac3_set_cpl_states(s);
}


Justin Ruggles's avatar
Justin Ruggles committed
333
/*
334 335
 * Determine rematrixing flags for each block and band.
 */
336
static void compute_rematrixing_strategy(AC3EncodeContext *s)
337 338 339
{
    int nb_coefs;
    int blk, bnd, i;
340
    AC3Block *block, *block0;
341 342 343 344

    if (s->channel_mode != AC3_CHMODE_STEREO)
        return;

345
    for (blk = 0; blk < s->num_blocks; blk++) {
346 347 348 349 350 351 352 353 354 355 356 357
        block = &s->blocks[blk];
        block->new_rematrixing_strategy = !blk;

        block->num_rematrixing_bands = 4;
        if (block->cpl_in_use) {
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
                block->new_rematrixing_strategy = 1;
        }
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);

358 359 360 361 362
        if (!s->rematrixing_enabled) {
            block0 = block;
            continue;
        }

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
            /* calculate calculate sum of squared coeffs for one band in one block */
            int start = ff_ac3_rematrix_band_tab[bnd];
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
            CoefSumType sum[4] = {0,};
            for (i = start; i < end; i++) {
                CoefType lt = block->mdct_coef[1][i];
                CoefType rt = block->mdct_coef[2][i];
                CoefType md = lt + rt;
                CoefType sd = lt - rt;
                MAC_COEF(sum[0], lt, lt);
                MAC_COEF(sum[1], rt, rt);
                MAC_COEF(sum[2], md, md);
                MAC_COEF(sum[3], sd, sd);
            }

            /* compare sums to determine if rematrixing will be used for this band */
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
                block->rematrixing_flags[bnd] = 1;
            else
                block->rematrixing_flags[bnd] = 0;

            /* determine if new rematrixing flags will be sent */
            if (blk &&
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
                block->new_rematrixing_strategy = 1;
            }
        }
        block0 = block;
    }
}
394 395


396 397
int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
                           const AVFrame *frame, int *got_packet_ptr)
398 399 400 401
{
    AC3EncodeContext *s = avctx->priv_data;
    int ret;

402
    if (s->options.allow_per_frame_metadata) {
403
        ret = ff_ac3_validate_metadata(s);
404 405 406 407 408 409 410
        if (ret)
            return ret;
    }

    if (s->bit_alloc.sr_code == 1 || s->eac3)
        ff_ac3_adjust_frame_size(s);

411
    copy_input_samples(s, (SampleType **)frame->extended_data);
412 413 414

    apply_mdct(s);

415 416 417
    if (s->fixed_point)
        scale_coefficients(s);

418
    clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
419
                      AC3_MAX_COEFS * s->num_blocks * s->channels);
420 421 422 423 424 425 426 427 428

    s->cpl_on = s->cpl_enabled;
    ff_ac3_compute_coupling_strategy(s);

    if (s->cpl_on)
        apply_channel_coupling(s);

    compute_rematrixing_strategy(s);

429 430 431
    if (!s->fixed_point)
        scale_coefficients(s);

432 433 434 435 436 437 438 439 440 441
    ff_ac3_apply_rematrixing(s);

    ff_ac3_process_exponents(s);

    ret = ff_ac3_compute_bit_allocation(s);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

442 443
    ff_ac3_group_exponents(s);

444 445
    ff_ac3_quantize_mantissas(s);

446 447 448 449 450
    if ((ret = ff_alloc_packet(avpkt, s->frame_size))) {
        av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
        return ret;
    }
    ff_ac3_output_frame(s, avpkt->data);
451

452 453 454 455 456
    if (frame->pts != AV_NOPTS_VALUE)
        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);

    *got_packet_ptr = 1;
    return 0;
457
}