snowdec.c 22.9 KB
Newer Older
1 2 3
/*
 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7 8 9 10
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12 13 14 15 16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18 19 20 21 22 23 24 25
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intmath.h"
#include "libavutil/log.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "dsputil.h"
26
#include "snow_dwt.h"
27
#include "internal.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "snow.h"

#include "rangecoder.h"
#include "mathops.h"

#include "mpegvideo.h"
#include "h263.h"

static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
    Plane *p= &s->plane[plane_index];
    const int mb_w= s->b_width  << s->block_max_depth;
    const int mb_h= s->b_height << s->block_max_depth;
    int x, y, mb_x;
    int block_size = MB_SIZE >> s->block_max_depth;
42 43 44 45
    int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
    int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
    const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
    int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
46 47
    int ref_stride= s->current_picture->linesize[plane_index];
    uint8_t *dst8= s->current_picture->data[plane_index];
48 49 50 51 52 53 54 55
    int w= p->width;
    int h= p->height;

    if(s->keyframe || (s->avctx->debug&512)){
        if(mb_y==mb_h)
            return;

        if(add){
56
            for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
57 58 59 60 61 62 63 64 65 66 67
//                DWTELEM * line = slice_buffer_get_line(sb, y);
                IDWTELEM * line = sb->line[y];
                for(x=0; x<w; x++){
//                    int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
                    int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
                    v >>= FRAC_BITS;
                    if(v&(~255)) v= ~(v>>31);
                    dst8[x + y*ref_stride]= v;
                }
            }
        }else{
68
            for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
//                DWTELEM * line = slice_buffer_get_line(sb, y);
                IDWTELEM * line = sb->line[y];
                for(x=0; x<w; x++){
                    line[x] -= 128 << FRAC_BITS;
//                    buf[x + y*w]-= 128<<FRAC_BITS;
                }
            }
        }

        return;
    }

    for(mb_x=0; mb_x<=mb_w; mb_x++){
        add_yblock(s, 1, sb, old_buffer, dst8, obmc,
                   block_w*mb_x - block_w/2,
84 85
                   block_h*mb_y - block_h/2,
                   block_w, block_h,
86 87 88 89 90 91 92 93 94 95 96
                   w, h,
                   w, ref_stride, obmc_stride,
                   mb_x - 1, mb_y - 1,
                   add, 0, plane_index);
    }
}

static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
    const int w= b->width;
    int y;
    const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
97
    int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
    int new_index = 0;

    if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
        qadd= 0;
        qmul= 1<<QEXPSHIFT;
    }

    /* If we are on the second or later slice, restore our index. */
    if (start_y != 0)
        new_index = save_state[0];


    for(y=start_y; y<h; y++){
        int x = 0;
        int v;
        IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
        memset(line, 0, b->width*sizeof(IDWTELEM));
        v = b->x_coeff[new_index].coeff;
        x = b->x_coeff[new_index++].x;
        while(x < w){
            register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
            register int u= -(v&1);
            line[x] = (t^u) - u;

            v = b->x_coeff[new_index].coeff;
            x = b->x_coeff[new_index++].x;
        }
    }

    /* Save our variables for the next slice. */
    save_state[0] = new_index;

    return;
}

134
static int decode_q_branch(SnowContext *s, int level, int x, int y){
135 136 137 138 139 140 141 142 143
    const int w= s->b_width << s->block_max_depth;
    const int rem_depth= s->block_max_depth - level;
    const int index= (x + y*w) << rem_depth;
    int trx= (x+1)<<rem_depth;
    const BlockNode *left  = x ? &s->block[index-1] : &null_block;
    const BlockNode *top   = y ? &s->block[index-w] : &null_block;
    const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
    const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
    int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
144
    int res;
145 146 147

    if(s->keyframe){
        set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
148
        return 0;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    }

    if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
        int type, mx, my;
        int l = left->color[0];
        int cb= left->color[1];
        int cr= left->color[2];
        int ref = 0;
        int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
        int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
        int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));

        type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;

        if(type){
            pred_mv(s, &mx, &my, 0, left, top, tr);
            l += get_symbol(&s->c, &s->block_state[32], 1);
166 167 168 169
            if (s->nb_planes > 2) {
                cb+= get_symbol(&s->c, &s->block_state[64], 1);
                cr+= get_symbol(&s->c, &s->block_state[96], 1);
            }
170 171 172
        }else{
            if(s->ref_frames > 1)
                ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
173 174
            if (ref >= s->ref_frames) {
                av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
175
                return AVERROR_INVALIDDATA;
176
            }
177 178 179 180 181 182
            pred_mv(s, &mx, &my, ref, left, top, tr);
            mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
            my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
        }
        set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
    }else{
183 184 185 186 187
        if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
            (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
            (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
            (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
            return res;
188
    }
189
    return 0;
190 191 192 193 194
}

static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
    const int w= b->width;
    const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
195
    const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
    int x,y;

    if(s->qlog == LOSSLESS_QLOG) return;

    for(y=start_y; y<end_y; y++){
//        DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
        IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
        for(x=0; x<w; x++){
            int i= line[x];
            if(i<0){
                line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
            }else if(i>0){
                line[x]=  (( i*qmul + qadd)>>(QEXPSHIFT));
            }
        }
    }
}

static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
    const int w= b->width;
    int x,y;

    IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
    IDWTELEM * prev;

    if (start_y != 0)
        line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;

    for(y=start_y; y<end_y; y++){
        prev = line;
//        line = slice_buffer_get_line_from_address(sb, src + (y * stride));
        line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
        for(x=0; x<w; x++){
            if(x){
                if(use_median){
                    if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
                    else  line[x] += line[x - 1];
                }else{
                    if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
                    else  line[x] += line[x - 1];
                }
            }else{
                if(y) line[x] += prev[x];
            }
        }
    }
}

static void decode_qlogs(SnowContext *s){
    int plane_index, level, orientation;

248
    for(plane_index=0; plane_index < s->nb_planes; plane_index++){
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        for(level=0; level<s->spatial_decomposition_count; level++){
            for(orientation=level ? 1:0; orientation<4; orientation++){
                int q;
                if     (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
                else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
                else                    q= get_symbol(&s->c, s->header_state, 1);
                s->plane[plane_index].band[level][orientation].qlog= q;
            }
        }
    }
}

#define GET_S(dst, check) \
    tmp= get_symbol(&s->c, s->header_state, 0);\
    if(!(check)){\
        av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
265
        return AVERROR_INVALIDDATA;\
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    }\
    dst= tmp;

static int decode_header(SnowContext *s){
    int plane_index, tmp;
    uint8_t kstate[32];

    memset(kstate, MID_STATE, sizeof(kstate));

    s->keyframe= get_rac(&s->c, kstate);
    if(s->keyframe || s->always_reset){
        ff_snow_reset_contexts(s);
        s->spatial_decomposition_type=
        s->qlog=
        s->qbias=
        s->mv_scale=
        s->block_max_depth= 0;
    }
    if(s->keyframe){
        GET_S(s->version, tmp <= 0U)
        s->always_reset= get_rac(&s->c, s->header_state);
        s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
        s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
        GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
        s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        if (s->colorspace_type == 1) {
            s->avctx->pix_fmt= AV_PIX_FMT_GRAY8;
            s->nb_planes = 1;
        } else if(s->colorspace_type == 0) {
            s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
            s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);

            if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
                s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
            }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
                s->avctx->pix_fmt= AV_PIX_FMT_YUV444P;
            }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
                s->avctx->pix_fmt= AV_PIX_FMT_YUV410P;
            } else {
                av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
                s->chroma_h_shift = s->chroma_v_shift = 1;
                s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
                return AVERROR_INVALIDDATA;
            }
            s->nb_planes = 3;
311
        } else {
312
            av_log(s, AV_LOG_ERROR, "unsupported color space\n");
313
            s->chroma_h_shift = s->chroma_v_shift = 1;
314
            s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
315 316 317
            return AVERROR_INVALIDDATA;
        }

318

319 320 321 322 323 324 325 326 327 328
        s->spatial_scalability= get_rac(&s->c, s->header_state);
//        s->rate_scalability= get_rac(&s->c, s->header_state);
        GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
        s->max_ref_frames++;

        decode_qlogs(s);
    }

    if(!s->keyframe){
        if(get_rac(&s->c, s->header_state)){
329
            for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
330 331 332 333 334
                int htaps, i, sum=0;
                Plane *p= &s->plane[plane_index];
                p->diag_mc= get_rac(&s->c, s->header_state);
                htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
                if((unsigned)htaps > HTAPS_MAX || htaps==0)
335
                    return AVERROR_INVALIDDATA;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
                p->htaps= htaps;
                for(i= htaps/2; i; i--){
                    p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
                    sum += p->hcoeff[i];
                }
                p->hcoeff[0]= 32-sum;
            }
            s->plane[2].diag_mc= s->plane[1].diag_mc;
            s->plane[2].htaps  = s->plane[1].htaps;
            memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
        }
        if(get_rac(&s->c, s->header_state)){
            GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
            decode_qlogs(s);
        }
    }

    s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
    if(s->spatial_decomposition_type > 1U){
355
        av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
356
        return AVERROR_INVALIDDATA;
357 358
    }
    if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
359
             s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){
360
        av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
361
        return AVERROR_INVALIDDATA;
362 363
    }

364

365 366 367 368 369
    s->qlog           += get_symbol(&s->c, s->header_state, 1);
    s->mv_scale       += get_symbol(&s->c, s->header_state, 1);
    s->qbias          += get_symbol(&s->c, s->header_state, 1);
    s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
    if(s->block_max_depth > 1 || s->block_max_depth < 0){
370
        av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
371
        s->block_max_depth= 0;
372
        return AVERROR_INVALIDDATA;
373 374 375 376 377 378 379
    }

    return 0;
}

static av_cold int decode_init(AVCodecContext *avctx)
{
380 381 382 383 384 385
    int ret;

    if ((ret = ff_snow_common_init(avctx)) < 0) {
        ff_snow_common_end(avctx->priv_data);
        return ret;
    }
386 387 388 389

    return 0;
}

390
static int decode_blocks(SnowContext *s){
391 392 393
    int x, y;
    int w= s->b_width;
    int h= s->b_height;
394
    int res;
395 396 397

    for(y=0; y<h; y++){
        for(x=0; x<w; x++){
398 399
            if ((res = decode_q_branch(s, 0, x, y)) < 0)
                return res;
400 401
        }
    }
402
    return 0;
403 404
}

405 406 407
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
                        AVPacket *avpkt)
{
408 409 410 411 412 413 414
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    SnowContext *s = avctx->priv_data;
    RangeCoder * const c= &s->c;
    int bytes_read;
    AVFrame *picture = data;
    int level, orientation, plane_index;
415
    int res;
416 417 418 419

    ff_init_range_decoder(c, buf, buf_size);
    ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);

420
    s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
421 422
    if ((res = decode_header(s)) < 0)
        return res;
423 424
    if ((res=ff_snow_common_init_after_header(avctx)) < 0)
        return res;
425 426 427

    // realloc slice buffer for the case that spatial_decomposition_count changed
    ff_slice_buffer_destroy(&s->sb);
428 429
    if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
                                    (MB_SIZE >> s->block_max_depth) +
430
                                    s->spatial_decomposition_count * 11 + 1,
431 432 433
                                    s->plane[0].width,
                                    s->spatial_idwt_buffer)) < 0)
        return res;
434

435
    for(plane_index=0; plane_index < s->nb_planes; plane_index++){
436 437 438 439 440 441 442 443
        Plane *p= &s->plane[plane_index];
        p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
                                              && p->hcoeff[1]==-10
                                              && p->hcoeff[2]==2;
    }

    ff_snow_alloc_blocks(s);

444 445
    if((res = ff_snow_frame_start(s)) < 0)
        return res;
446 447
    //keyframe flag duplication mess FIXME
    if(avctx->debug&FF_DEBUG_PICT_INFO)
448
        av_log(avctx, AV_LOG_ERROR,
449 450 451
               "keyframe:%d qlog:%d qbias: %d mvscale: %d "
               "decomposition_type:%d decomposition_count:%d\n",
               s->keyframe, s->qlog, s->qbias, s->mv_scale,
452 453 454
               s->spatial_decomposition_type,
               s->spatial_decomposition_count
              );
455

456 457
    if ((res = decode_blocks(s)) < 0)
        return res;
458

459
    for(plane_index=0; plane_index < s->nb_planes; plane_index++){
460 461 462 463 464 465 466 467 468 469 470 471
        Plane *p= &s->plane[plane_index];
        int w= p->width;
        int h= p->height;
        int x, y;
        int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */

        if(s->avctx->debug&2048){
            memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
            predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);

            for(y=0; y<h; y++){
                for(x=0; x<w; x++){
472 473
                    int v= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x];
                    s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                }
            }
        }

        {
        for(level=0; level<s->spatial_decomposition_count; level++){
            for(orientation=level ? 1 : 0; orientation<4; orientation++){
                SubBand *b= &p->band[level][orientation];
                unpack_coeffs(s, b, b->parent, orientation);
            }
        }
        }

        {
        const int mb_h= s->b_height << s->block_max_depth;
        const int block_size = MB_SIZE >> s->block_max_depth;
490
        const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
491 492 493 494 495 496 497 498 499
        int mb_y;
        DWTCompose cs[MAX_DECOMPOSITIONS];
        int yd=0, yq=0;
        int y;
        int end_y;

        ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
        for(mb_y=0; mb_y<=mb_h; mb_y++){

500 501 502
            int slice_starty = block_h*mb_y;
            int slice_h = block_h*(mb_y+1);

503
            if (!(s->keyframe || s->avctx->debug&512)){
504 505
                slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
                slice_h -= (block_h >> 1);
506 507 508 509 510 511 512 513 514 515
            }

            for(level=0; level<s->spatial_decomposition_count; level++){
                for(orientation=level ? 1 : 0; orientation<4; orientation++){
                    SubBand *b= &p->band[level][orientation];
                    int start_y;
                    int end_y;
                    int our_mb_start = mb_y;
                    int our_mb_end = (mb_y + 1);
                    const int extra= 3;
516 517
                    start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
                    end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
518
                    if (!(s->keyframe || s->avctx->debug&512)){
519 520
                        start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
                        end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
                    }
                    start_y = FFMIN(b->height, start_y);
                    end_y = FFMIN(b->height, end_y);

                    if (start_y != end_y){
                        if (orientation == 0){
                            SubBand * correlate_band = &p->band[0][0];
                            int correlate_end_y = FFMIN(b->height, end_y + 1);
                            int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
                            decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
                            correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
                            dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
                        }
                        else
                            decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
                    }
                }
            }

            for(; yd<slice_h; yd+=4){
541
                ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
            }

            if(s->qlog == LOSSLESS_QLOG){
                for(; yq<slice_h && yq<h; yq++){
                    IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
                    for(x=0; x<w; x++){
                        line[x] <<= FRAC_BITS;
                    }
                }
            }

            predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);

            y = FFMIN(p->height, slice_starty);
            end_y = FFMIN(p->height, slice_h);
            while(y < end_y)
                ff_slice_buffer_release(&s->sb, y++);
        }

        ff_slice_buffer_flush(&s->sb);
        }

    }

    emms_c();

    ff_snow_release_buffer(avctx);

    if(!(s->avctx->debug&2048))
571
        res = av_frame_ref(picture, s->current_picture);
572
    else
573 574 575 576
        res = av_frame_ref(picture, s->mconly_picture);

    if (res < 0)
        return res;
577

578
    *got_frame = 1;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    bytes_read= c->bytestream - c->bytestream_start;
    if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME

    return bytes_read;
}

static av_cold int decode_end(AVCodecContext *avctx)
{
    SnowContext *s = avctx->priv_data;

    ff_slice_buffer_destroy(&s->sb);

    ff_snow_common_end(s);

    return 0;
}

AVCodec ff_snow_decoder = {
    .name           = "snow",
599
    .long_name      = NULL_IF_CONFIG_SMALL("Snow"),
600
    .type           = AVMEDIA_TYPE_VIDEO,
601
    .id             = AV_CODEC_ID_SNOW,
602 603 604 605 606 607
    .priv_data_size = sizeof(SnowContext),
    .init           = decode_init,
    .close          = decode_end,
    .decode         = decode_frame,
    .capabilities   = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
};