atrac1.c 12.8 KB
Newer Older
1
/*
2
 * ATRAC1 compatible decoder
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 * Copyright (c) 2009 Maxim Poliakovski
 * Copyright (c) 2009 Benjamin Larsson
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
24
 * @file
25
 * ATRAC1 compatible decoder.
26
 * This decoder handles raw ATRAC1 data and probably SDDS data.
27 28 29 30 31 32 33 34
 */

/* Many thanks to Tim Craig for all the help! */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

35
#include "libavutil/float_dsp.h"
36 37
#include "avcodec.h"
#include "get_bits.h"
38
#include "fft.h"
39
#include "internal.h"
40
#include "sinewin.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

#include "atrac.h"
#include "atrac1data.h"

#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
#define AT1_MAX_CHANNELS 2

#define AT1_QMF_BANDS    3
#define IDX_LOW_BAND     0
#define IDX_MID_BAND     1
#define IDX_HIGH_BAND    2

/**
 * Sound unit struct, one unit is used per channel
 */
60
typedef struct AT1SUCtx {
61 62 63
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
    int                 num_bfus;                           ///< number of Block Floating Units
    float*              spectrum[2];
64 65 66 67
    DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
    DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
    DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
    DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
68
    DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39];    ///< delay line for the last stacked QMF filter
69 70 71 72 73
} AT1SUCtx;

/**
 * The atrac1 context, holds all needed parameters for decoding
 */
74
typedef struct AT1Ctx {
75
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
76
    DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
77

78 79 80
    DECLARE_ALIGNED(32, float,  low)[256];
    DECLARE_ALIGNED(32, float,  mid)[256];
    DECLARE_ALIGNED(32, float, high)[512];
81
    float*              bands[3];
82
    FFTContext          mdct_ctx[3];
83
    AVFloatDSPContext   *fdsp;
84 85 86 87 88 89 90
} AT1Ctx;

/** size of the transform in samples in the long mode for each QMF band */
static const uint16_t samples_per_band[3] = {128, 128, 256};
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};


91 92
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
                      int rev_spec)
93
{
94
    FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
95 96 97 98
    int transf_size = 1 << nbits;

    if (rev_spec) {
        int i;
99
        for (i = 0; i < transf_size / 2; i++)
100
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
101
    }
102
    mdct_context->imdct_half(mdct_context, out, spec);
103 104 105 106 107
}


static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
{
108
    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
109
    unsigned int start_pos, ref_pos = 0, pos = 0;
110

111
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
112 113 114
        float *prev_buf;
        int j;

115 116 117 118 119 120 121
        band_samples = samples_per_band[band_num];
        log2_block_count = su->log2_block_count[band_num];

        /* number of mdct blocks in the current QMF band: 1 - for long mode */
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
        num_blocks = 1 << log2_block_count;

122
        if (num_blocks == 1) {
123 124 125
            /* mdct block size in samples: 128 (long mode, low & mid bands), */
            /* 256 (long mode, high band) and 32 (short mode, all bands) */
            block_size = band_samples >> log2_block_count;
126

127 128
            /* calc transform size in bits according to the block_size_mode */
            nbits = mdct_long_nbits[band_num] - log2_block_count;
129

130
            if (nbits != 5 && nbits != 7 && nbits != 8)
131
                return AVERROR_INVALIDDATA;
132
        } else {
133 134 135 136
            block_size = 32;
            nbits = 5;
        }

137 138 139 140
        start_pos = 0;
        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
        for (j=0; j < num_blocks; j++) {
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
141

142
            /* overlap and window */
143
            q->fdsp->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
144
                                       &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
145

146 147 148 149
            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
            start_pos += block_size;
            pos += block_size;
        }
150 151 152 153

        if (num_blocks == 1)
            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));

154 155 156 157 158 159 160 161 162
        ref_pos += band_samples;
    }

    /* Swap buffers so the mdct overlap works */
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);

    return 0;
}

163 164 165
/**
 * Parse the block size mode byte
 */
166

167
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
168 169 170
{
    int log2_block_count_tmp, i;

171
    for (i = 0; i < 2; i++) {
172 173 174
        /* low and mid band */
        log2_block_count_tmp = get_bits(gb, 2);
        if (log2_block_count_tmp & 1)
175
            return AVERROR_INVALIDDATA;
176
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
177 178 179 180 181
    }

    /* high band */
    log2_block_count_tmp = get_bits(gb, 2);
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
182
        return AVERROR_INVALIDDATA;
183
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
184 185 186 187 188 189

    skip_bits(gb, 2);
    return 0;
}


190 191
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
                              float spec[AT1_SU_SAMPLES])
192 193
{
    int bits_used, band_num, bfu_num, i;
194 195
    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
196 197 198 199 200 201 202 203 204 205 206 207

    /* parse the info byte (2nd byte) telling how much BFUs were coded */
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];

    /* calc number of consumed bits:
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
    bits_used = su->num_bfus * 10 + 32 +
                bfu_amount_tab2[get_bits(gb, 2)] +
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);

    /* get word length index (idwl) for each BFU */
208
    for (i = 0; i < su->num_bfus; i++)
209
        idwls[i] = get_bits(gb, 4);
210 211

    /* get scalefactor index (idsf) for each BFU */
212
    for (i = 0; i < su->num_bfus; i++)
213
        idsfs[i] = get_bits(gb, 6);
214 215 216

    /* zero idwl/idsf for empty BFUs */
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
217
        idwls[i] = idsfs[i] = 0;
218 219

    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
220 221
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
222 223 224
            int pos;

            int num_specs = specs_per_bfu[bfu_num];
225
            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
226
            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
227
            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
228 229 230

            /* check for bitstream overflow */
            if (bits_used > AT1_SU_MAX_BITS)
231
                return AVERROR_INVALIDDATA;
232 233 234 235 236

            /* get the position of the 1st spec according to the block size mode */
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];

            if (word_len) {
237
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
238

239
                for (i = 0; i < num_specs; i++) {
240 241 242 243 244
                    /* read in a quantized spec and convert it to
                     * signed int and then inverse quantization
                     */
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
                }
245
            } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
246
                memset(&spec[pos], 0, num_specs * sizeof(float));
247 248 249 250 251 252 253 254
            }
        }
    }

    return 0;
}


255
static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
256
{
257 258
    float temp[256];
    float iqmf_temp[512 + 46];
259 260

    /* combine low and middle bands */
261
    ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
262

263 264 265
    /* delay the signal of the high band by 39 samples */
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  39);
    memcpy(&su->last_qmf_delay[39], q->bands[2],             sizeof(float) * 256);
266 267

    /* combine (low + middle) and high bands */
268
    ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
269 270 271
}


272
static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
273
                               int *got_frame_ptr, AVPacket *avpkt)
274
{
275
    AVFrame *frame     = data;
276
    const uint8_t *buf = avpkt->data;
277 278
    int buf_size       = avpkt->size;
    AT1Ctx *q          = avctx->priv_data;
279
    int ch, ret;
280 281 282
    GetBitContext gb;


283
    if (buf_size < 212 * avctx->channels) {
284
        av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
285
        return AVERROR_INVALIDDATA;
286 287
    }

288
    /* get output buffer */
289
    frame->nb_samples = AT1_SU_SAMPLES;
290
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
291
        return ret;
292

293
    for (ch = 0; ch < avctx->channels; ch++) {
294 295
        AT1SUCtx* su = &q->SUs[ch];

296
        init_get_bits(&gb, &buf[212 * ch], 212 * 8);
297 298

        /* parse block_size_mode, 1st byte */
299
        ret = at1_parse_bsm(&gb, su->log2_block_count);
300 301 302 303 304 305 306 307 308 309
        if (ret < 0)
            return ret;

        ret = at1_unpack_dequant(&gb, su, q->spec);
        if (ret < 0)
            return ret;

        ret = at1_imdct_block(su, q);
        if (ret < 0)
            return ret;
310
        at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
311 312
    }

313
    *got_frame_ptr = 1;
314

315 316 317 318
    return avctx->block_align;
}


319 320 321 322 323 324 325 326
static av_cold int atrac1_decode_end(AVCodecContext * avctx)
{
    AT1Ctx *q = avctx->priv_data;

    ff_mdct_end(&q->mdct_ctx[0]);
    ff_mdct_end(&q->mdct_ctx[1]);
    ff_mdct_end(&q->mdct_ctx[2]);

327 328
    av_freep(&q->fdsp);

329 330 331 332
    return 0;
}


333 334 335
static av_cold int atrac1_decode_init(AVCodecContext *avctx)
{
    AT1Ctx *q = avctx->priv_data;
336
    int ret;
337

338
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
339

340 341 342 343 344
    if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
        av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
               avctx->channels);
        return AVERROR(EINVAL);
    }
345

346
    if (avctx->block_align <= 0) {
347
        av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
348 349 350
        return AVERROR_PATCHWELCOME;
    }

351
    /* Init the mdct transforms */
352 353 354 355 356 357 358
    if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
        (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
        (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
        atrac1_decode_end(avctx);
        return ret;
    }
359

360
    ff_init_ff_sine_windows(5);
361

362
    ff_atrac_generate_tables();
363

364
    q->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
365 366 367 368 369 370 371 372 373 374 375 376 377 378

    q->bands[0] = q->low;
    q->bands[1] = q->mid;
    q->bands[2] = q->high;

    /* Prepare the mdct overlap buffers */
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;

    return 0;
}

379

380
AVCodec ff_atrac1_decoder = {
381
    .name           = "atrac1",
382
    .long_name      = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
383
    .type           = AVMEDIA_TYPE_AUDIO,
384
    .id             = AV_CODEC_ID_ATRAC1,
385
    .priv_data_size = sizeof(AT1Ctx),
386 387 388
    .init           = atrac1_decode_init,
    .close          = atrac1_decode_end,
    .decode         = atrac1_decode_frame,
389
    .capabilities   = AV_CODEC_CAP_DR1,
390 391
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                      AV_SAMPLE_FMT_NONE },
392
};