aacps_tablegen.h 8.43 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Header file for hardcoded Parametric Stereo tables
 *
 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

23 24
#ifndef AVCODEC_AACPS_TABLEGEN_H
#define AVCODEC_AACPS_TABLEGEN_H
25

26
#include <math.h>
27 28 29 30
#include <stdint.h>

#if CONFIG_HARDCODED_TABLES
#define ps_tableinit()
31
#define TABLE_CONST const
32
#include "libavcodec/aacps_tables.h"
33
#else
34
#include "libavutil/common.h"
35
#include "libavutil/libm.h"
36
#include "libavutil/mathematics.h"
Mans Rullgard's avatar
Mans Rullgard committed
37
#include "libavutil/mem.h"
38 39 40
#define NR_ALLPASS_BANDS20 30
#define NR_ALLPASS_BANDS34 50
#define PS_AP_LINKS 3
41
#define TABLE_CONST
42 43 44 45
static float pd_re_smooth[8*8*8];
static float pd_im_smooth[8*8*8];
static float HA[46][8][4];
static float HB[46][8][4];
Mans Rullgard's avatar
Mans Rullgard committed
46 47 48 49
static DECLARE_ALIGNED(16, float, f20_0_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_0_12)[12][8][2];
static DECLARE_ALIGNED(16, float, f34_1_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_2_4) [ 4][8][2];
50
static TABLE_CONST DECLARE_ALIGNED(16, float, Q_fract_allpass)[2][50][3][2];
Mans Rullgard's avatar
Mans Rullgard committed
51
static DECLARE_ALIGNED(16, float, phi_fract)[2][50][2];
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

static const float g0_Q8[] = {
    0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
    0.09885108575264f, 0.11793710567217f, 0.125f
};

static const float g0_Q12[] = {
    0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
    0.07428313801106f, 0.08100347892914f, 0.08333333333333f
};

static const float g1_Q8[] = {
    0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
    0.10307344158036f, 0.12222452249753f, 0.125f
};

static const float g2_Q4[] = {
    -0.05908211155639f, -0.04871498374946f, 0.0f,   0.07778723915851f,
     0.16486303567403f,  0.23279856662996f, 0.25f
};

73
static av_cold void make_filters_from_proto(float (*filter)[8][2], const float *proto, int bands)
74 75 76 77 78 79 80 81 82 83 84
{
    int q, n;
    for (q = 0; q < bands; q++) {
        for (n = 0; n < 7; n++) {
            double theta = 2 * M_PI * (q + 0.5) * (n - 6) / bands;
            filter[q][n][0] = proto[n] *  cos(theta);
            filter[q][n][1] = proto[n] * -sin(theta);
        }
    }
}

85
static av_cold void ps_tableinit(void)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
{
    static const float ipdopd_sin[] = { 0, M_SQRT1_2, 1,  M_SQRT1_2,  0, -M_SQRT1_2, -1, -M_SQRT1_2 };
    static const float ipdopd_cos[] = { 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2,  0,  M_SQRT1_2 };
    int pd0, pd1, pd2;

    static const float iid_par_dequant[] = {
        //iid_par_dequant_default
        0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
        0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
        5.01187233627272, 7.94328234724282, 17.7827941003892,
        //iid_par_dequant_fine
        0.00316227766017, 0.00562341325190, 0.01,             0.01778279410039,
        0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
        0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
        0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
        3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
        12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
        100,              177.827941003892, 316.227766016837,
    };
    static const float icc_invq[] = {
        1, 0.937,      0.84118,    0.60092,    0.36764,   0,      -0.589,    -1
    };
    static const float acos_icc_invq[] = {
        0, 0.35685527, 0.57133466, 0.92614472, 1.1943263, M_PI/2, 2.2006171, M_PI
    };
    int iid, icc;

    int k, m;
    static const int8_t f_center_20[] = {
        -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
    };
    static const int8_t f_center_34[] = {
         2,  6, 10, 14, 18, 22, 26, 30,
        34,-10, -6, -2, 51, 57, 15, 21,
        27, 33, 39, 45, 54, 66, 78, 42,
       102, 66, 78, 90,102,114,126, 90,
    };
    static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
    const float fractional_delay_gain = 0.39f;

    for (pd0 = 0; pd0 < 8; pd0++) {
        float pd0_re = ipdopd_cos[pd0];
        float pd0_im = ipdopd_sin[pd0];
        for (pd1 = 0; pd1 < 8; pd1++) {
            float pd1_re = ipdopd_cos[pd1];
            float pd1_im = ipdopd_sin[pd1];
            for (pd2 = 0; pd2 < 8; pd2++) {
                float pd2_re = ipdopd_cos[pd2];
                float pd2_im = ipdopd_sin[pd2];
                float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
                float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
139
                float pd_mag = 1 / hypot(im_smooth, re_smooth);
140 141 142 143 144 145 146
                pd_re_smooth[pd0*64+pd1*8+pd2] = re_smooth * pd_mag;
                pd_im_smooth[pd0*64+pd1*8+pd2] = im_smooth * pd_mag;
            }
        }
    }

    for (iid = 0; iid < 46; iid++) {
147
        float c = iid_par_dequant[iid]; ///< Linear Inter-channel Intensity Difference
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        float c1 = (float)M_SQRT2 / sqrtf(1.0f + c*c);
        float c2 = c * c1;
        for (icc = 0; icc < 8; icc++) {
            /*if (PS_BASELINE || ps->icc_mode < 3)*/ {
                float alpha = 0.5f * acos_icc_invq[icc];
                float beta  = alpha * (c1 - c2) * (float)M_SQRT1_2;
                HA[iid][icc][0] = c2 * cosf(beta + alpha);
                HA[iid][icc][1] = c1 * cosf(beta - alpha);
                HA[iid][icc][2] = c2 * sinf(beta + alpha);
                HA[iid][icc][3] = c1 * sinf(beta - alpha);
            } /* else */ {
                float alpha, gamma, mu, rho;
                float alpha_c, alpha_s, gamma_c, gamma_s;
                rho = FFMAX(icc_invq[icc], 0.05f);
                alpha = 0.5f * atan2f(2.0f * c * rho, c*c - 1.0f);
                mu = c + 1.0f / c;
                mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
                gamma = atanf(sqrtf((1.0f - mu)/(1.0f + mu)));
                if (alpha < 0) alpha += M_PI/2;
                alpha_c = cosf(alpha);
                alpha_s = sinf(alpha);
                gamma_c = cosf(gamma);
                gamma_s = sinf(gamma);
                HB[iid][icc][0] =  M_SQRT2 * alpha_c * gamma_c;
                HB[iid][icc][1] =  M_SQRT2 * alpha_s * gamma_c;
                HB[iid][icc][2] = -M_SQRT2 * alpha_s * gamma_s;
                HB[iid][icc][3] =  M_SQRT2 * alpha_c * gamma_s;
            }
        }
    }

    for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_20))
            f_center = f_center_20[k] * 0.125;
        else
            f_center = k - 6.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[0][k][m][0] = cos(theta);
            Q_fract_allpass[0][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[0][k][0] = cos(theta);
        phi_fract[0][k][1] = sin(theta);
    }
    for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_34))
197
            f_center = f_center_34[k] / 24.0;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        else
            f_center = k - 26.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[1][k][m][0] = cos(theta);
            Q_fract_allpass[1][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[1][k][0] = cos(theta);
        phi_fract[1][k][1] = sin(theta);
    }

    make_filters_from_proto(f20_0_8,  g0_Q8,   8);
    make_filters_from_proto(f34_0_12, g0_Q12, 12);
    make_filters_from_proto(f34_1_8,  g1_Q8,   8);
    make_filters_from_proto(f34_2_4,  g2_Q4,   4);
}
#endif /* CONFIG_HARDCODED_TABLES */

217
#endif /* AVCODEC_AACPS_TABLEGEN_H */