mjpegenc_huffman.c 6.25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * MJPEG encoder
 * Copyright (c) 2016 William Ma, Ted Ying, Jerry Jiang
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <string.h>
#include <stdint.h>
#include <stdlib.h>
25
#include "libavutil/avassert.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#include "libavutil/common.h"
#include "libavutil/error.h"
#include "libavutil/qsort.h"
#include "mjpegenc_huffman.h"

/**
 * Comparison function for two PTables by prob
 *
 * @param a First PTable to compare
 * @param b Second PTable to compare
 * @return < 0 for less than, 0 for equals, > 0 for greater than
 */
static int compare_by_prob(const void *a, const void *b)
{
    PTable a_val = *(PTable *) a;
    PTable b_val = *(PTable *) b;
    return a_val.prob - b_val.prob;
}

/**
 * Comparison function for two HuffTables by length
 *
 * @param a First HuffTable to compare
 * @param b Second HuffTable to compare
 * @return < 0 for less than, 0 for equals, > 0 for greater than
 */
static int compare_by_length(const void *a, const void *b)
{
    HuffTable a_val = *(HuffTable *) a;
    HuffTable b_val = *(HuffTable *) b;
    return a_val.length - b_val.length;
}

/**
 * Computes the length of the Huffman encoding for each distinct input value.
 * Uses package merge algorithm as follows:
 * 1. start with an empty list, lets call it list(0), set i = 0
 * 2. add 1 entry to list(i) for each symbol we have and give each a score equal to the probability of the respective symbol
 * 3. merge the 2 symbols of least score and put them in list(i+1), and remove them from list(i). The new score will be the sum of the 2 scores
 * 4. if there is more than 1 symbol left in the current list(i), then goto 3
 * 5. i++
 * 6. if i < 16 goto 2
 * 7. select the n-1 elements in the last list with the lowest score (n = the number of symbols)
 * 8. the length of the huffman code for symbol s will be equal to the number of times the symbol occurs in the select elements
 * Go to guru.multimedia.cx/small-tasks-for-ffmpeg/ for more details
 *
 * All probabilities should be positive integers. The output is sorted by code,
 * not by length.
 *
 * @param prob_table input array of a PTable for each distinct input value
 * @param distincts  output array of a HuffTable that will be populated by this function
 * @param size       size of the prob_table array
 * @param max_length max length of an encoding
 */
void ff_mjpegenc_huffman_compute_bits(PTable *prob_table, HuffTable *distincts, int size, int max_length)
{
    PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;

    int times, i, j, k;

    int nbits[257] = {0};

    int min;

90 91
    av_assert0(max_length > 0);

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    to->nitems = 0;
    from->nitems = 0;
    to->item_idx[0] = 0;
    from->item_idx[0] = 0;
    AV_QSORT(prob_table, size, PTable, compare_by_prob);

    for (times = 0; times <= max_length; times++) {
        to->nitems = 0;
        to->item_idx[0] = 0;

        j = 0;
        k = 0;

        if (times < max_length) {
            i = 0;
        }
        while (i < size || j + 1 < from->nitems) {
            to->nitems++;
            to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
            if (i < size &&
                (j + 1 >= from->nitems ||
                 prob_table[i].prob <
                     from->probability[j] + from->probability[j + 1])) {
                to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
                to->probability[to->nitems - 1] = prob_table[i].prob;
                i++;
            } else {
                for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
                    to->items[to->item_idx[to->nitems]++] = from->items[k];
                }
                to->probability[to->nitems - 1] =
                    from->probability[j] + from->probability[j + 1];
                j += 2;
            }
        }
        temp = to;
        to = from;
        from = temp;
    }

    min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
    for (i = 0; i < from->item_idx[min]; i++) {
        nbits[from->items[i]]++;
    }
    // we don't want to return the 256 bit count (it was just in here to prevent
    // all 1s encoding)
    j = 0;
    for (i = 0; i < 256; i++) {
        if (nbits[i] > 0) {
            distincts[j].code = i;
            distincts[j].length = nbits[i];
            j++;
        }
    }
}

void ff_mjpeg_encode_huffman_init(MJpegEncHuffmanContext *s)
{
    memset(s->val_count, 0, sizeof(s->val_count));
}

/**
 * Produces a Huffman encoding with a given input
 *
 * @param s         input to encode
 * @param bits      output array where the ith character represents how many input values have i length encoding
 * @param val       output array of input values sorted by their encoded length
 * @param max_nval  maximum number of distinct input values
 */
161 162
void ff_mjpeg_encode_huffman_close(MJpegEncHuffmanContext *s, uint8_t bits[17],
                                   uint8_t val[], int max_nval)
163 164 165 166 167 168 169 170 171
{
    int i, j;
    int nval = 0;
    PTable val_counts[257];
    HuffTable distincts[256];

    for (i = 0; i < 256; i++) {
        if (s->val_count[i]) nval++;
    }
172
    av_assert0 (nval <= max_nval);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    j = 0;
    for (i = 0; i < 256; i++) {
        if (s->val_count[i]) {
            val_counts[j].value = i;
            val_counts[j].prob = s->val_count[i];
            j++;
        }
    }
    val_counts[j].value = 256;
    val_counts[j].prob = 0;
    ff_mjpegenc_huffman_compute_bits(val_counts, distincts, nval + 1, 16);
    AV_QSORT(distincts, nval, HuffTable, compare_by_length);

    memset(bits, 0, sizeof(bits[0]) * 17);
    for (i = 0; i < nval; i++) {
        val[i] = distincts[i].code;
        bits[distincts[i].length]++;
    }
}