libm.h 13.9 KB
Newer Older
1
/*
2
 * erf function: Copyright (c) 2006 John Maddock
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
21
 * @file
22 23 24 25 26 27 28 29
 * Replacements for frequently missing libm functions
 */

#ifndef AVUTIL_LIBM_H
#define AVUTIL_LIBM_H

#include <math.h>
#include "config.h"
30
#include "attributes.h"
31
#include "intfloat.h"
32
#include "mathematics.h"
33

34 35 36 37
#if HAVE_MIPSFPU && HAVE_INLINE_ASM
#include "libavutil/mips/libm_mips.h"
#endif /* HAVE_MIPSFPU && HAVE_INLINE_ASM*/

38 39 40
#if !HAVE_ATANF
#undef atanf
#define atanf(x) ((float)atan(x))
41
#endif /* HAVE_ATANF */
42 43 44 45

#if !HAVE_ATAN2F
#undef atan2f
#define atan2f(y, x) ((float)atan2(y, x))
46
#endif /* HAVE_ATAN2F */
47 48 49 50

#if !HAVE_POWF
#undef powf
#define powf(x, y) ((float)pow(x, y))
51
#endif /* HAVE_POWF */
52

53 54 55 56 57
#if !HAVE_CBRT
static av_always_inline double cbrt(double x)
{
    return x < 0 ? -pow(-x, 1.0 / 3.0) : pow(x, 1.0 / 3.0);
}
58
#endif /* HAVE_CBRT */
59

60
#if !HAVE_CBRTF
61 62 63 64
static av_always_inline float cbrtf(float x)
{
    return x < 0 ? -powf(-x, 1.0 / 3.0) : powf(x, 1.0 / 3.0);
}
65
#endif /* HAVE_CBRTF */
66

67 68 69 70 71 72 73
#if !HAVE_COPYSIGN
static av_always_inline double copysign(double x, double y)
{
    uint64_t vx = av_double2int(x);
    uint64_t vy = av_double2int(y);
    return av_int2double((vx & UINT64_C(0x7fffffffffffffff)) | (vy & UINT64_C(0x8000000000000000)));
}
74
#endif /* HAVE_COPYSIGN */
75

76 77 78
#if !HAVE_COSF
#undef cosf
#define cosf(x) ((float)cos(x))
79
#endif /* HAVE_COSF */
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#if !HAVE_ERF
static inline double ff_eval_poly(const double *coeff, int size, double x) {
    double sum = coeff[size-1];
    int i;
    for (i = size-2; i >= 0; --i) {
        sum *= x;
        sum += coeff[i];
    }
    return sum;
}

/**
 * erf function
 * Algorithm taken from the Boost project, source:
 * http://www.boost.org/doc/libs/1_46_1/boost/math/special_functions/erf.hpp
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0 (see notice below).
 * Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
 */
static inline double erf(double z)
{
#ifndef FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0]))
#endif
    double result;

    /* handle the symmetry: erf(-x) = -erf(x) */
    if (z < 0)
        return -erf(-z);

    /* branch based on range of z, and pick appropriate approximation */
    if (z == 0)
        return 0;
    else if (z < 1e-10)
        return z * 1.125 + z * 0.003379167095512573896158903121545171688;
    else if (z < 0.5) {
        // Maximum Deviation Found:                     1.561e-17
        // Expected Error Term:                         1.561e-17
        // Maximum Relative Change in Control Points:   1.155e-04
        // Max Error found at double precision =        2.961182e-17

        static const double y = 1.044948577880859375;
        static const double p[] = {
            0.0834305892146531832907,
            -0.338165134459360935041,
            -0.0509990735146777432841,
            -0.00772758345802133288487,
            -0.000322780120964605683831,
        };
        static const double q[] = {
            1,
            0.455004033050794024546,
            0.0875222600142252549554,
            0.00858571925074406212772,
            0.000370900071787748000569,
        };
        double zz = z * z;
        return z * (y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), zz) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), zz));
    }
    /* here onwards compute erfc */
    else if (z < 1.5) {
        // Maximum Deviation Found:                     3.702e-17
        // Expected Error Term:                         3.702e-17
        // Maximum Relative Change in Control Points:   2.845e-04
        // Max Error found at double precision =        4.841816e-17
        static const double y = 0.405935764312744140625;
        static const double p[] = {
            -0.098090592216281240205,
            0.178114665841120341155,
            0.191003695796775433986,
            0.0888900368967884466578,
            0.0195049001251218801359,
            0.00180424538297014223957,
        };
        static const double q[] = {
            1,
            1.84759070983002217845,
            1.42628004845511324508,
            0.578052804889902404909,
            0.12385097467900864233,
            0.0113385233577001411017,
            0.337511472483094676155e-5,
        };
        result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 0.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 0.5);
        result *= exp(-z * z) / z;
        return 1 - result;
    }
    else if (z < 2.5) {
        // Max Error found at double precision =        6.599585e-18
        // Maximum Deviation Found:                     3.909e-18
        // Expected Error Term:                         3.909e-18
        // Maximum Relative Change in Control Points:   9.886e-05
        static const double y = 0.50672817230224609375;
        static const double p[] = {
            -0.0243500476207698441272,
            0.0386540375035707201728,
            0.04394818964209516296,
            0.0175679436311802092299,
            0.00323962406290842133584,
            0.000235839115596880717416,
        };
        static const double q[] = {
            1,
            1.53991494948552447182,
            0.982403709157920235114,
            0.325732924782444448493,
            0.0563921837420478160373,
            0.00410369723978904575884,
        };
        result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 1.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 1.5);
        result *= exp(-z * z) / z;
        return 1 - result;
    }
    else if (z < 4.5) {
        // Maximum Deviation Found:                     1.512e-17
        // Expected Error Term:                         1.512e-17
        // Maximum Relative Change in Control Points:   2.222e-04
        // Max Error found at double precision =        2.062515e-17
        static const double y = 0.5405750274658203125;
        static const double p[] = {
            0.00295276716530971662634,
            0.0137384425896355332126,
            0.00840807615555585383007,
            0.00212825620914618649141,
            0.000250269961544794627958,
            0.113212406648847561139e-4,
        };
        static const double q[] = {
            1,
            1.04217814166938418171,
            0.442597659481563127003,
            0.0958492726301061423444,
            0.0105982906484876531489,
            0.000479411269521714493907,
        };
        result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 3.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 3.5);
        result *= exp(-z * z) / z;
        return 1 - result;
    }
    /* differ from Boost here, the claim of underflow of erfc(x) past 5.8 is
     * slightly incorrect, change to 5.92
     * (really somewhere between 5.9125 and 5.925 is when it saturates) */
    else if (z < 5.92) {
        // Max Error found at double precision =        2.997958e-17
        // Maximum Deviation Found:                     2.860e-17
        // Expected Error Term:                         2.859e-17
        // Maximum Relative Change in Control Points:   1.357e-05
        static const double y = 0.5579090118408203125;
        static const double p[] = {
            0.00628057170626964891937,
            0.0175389834052493308818,
            -0.212652252872804219852,
            -0.687717681153649930619,
            -2.5518551727311523996,
            -3.22729451764143718517,
            -2.8175401114513378771,
        };
        static const double q[] = {
            1,
            2.79257750980575282228,
            11.0567237927800161565,
            15.930646027911794143,
            22.9367376522880577224,
            13.5064170191802889145,
            5.48409182238641741584,
        };
        result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), 1 / z) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), 1 / z);
        result *= exp(-z * z) / z;
        return 1 - result;
    }
    /* handle the nan case, but don't use isnan for max portability */
    else if (z != z)
        return z;
    /* finally return saturated result */
    else
        return 1;
}
279
#endif /* HAVE_ERF */
280

281 282 283
#if !HAVE_EXPF
#undef expf
#define expf(x) ((float)exp(x))
284
#endif /* HAVE_EXPF */
285

286 287
#if !HAVE_EXP2
#undef exp2
288
#define exp2(x) exp((x) * M_LN2)
289 290 291 292 293 294 295
#endif /* HAVE_EXP2 */

#if !HAVE_EXP2F
#undef exp2f
#define exp2f(x) ((float)exp2(x))
#endif /* HAVE_EXP2F */

296
#if !HAVE_ISINF
297 298 299 300 301
#undef isinf
/* Note: these do not follow the BSD/Apple/GNU convention of returning -1 for
-Inf, +1 for Inf, 0 otherwise, but merely follow the POSIX/ISO mandated spec of
returning a non-zero value for +/-Inf, 0 otherwise. */
static av_always_inline av_const int avpriv_isinff(float x)
302 303 304 305 306 307
{
    uint32_t v = av_float2int(x);
    if ((v & 0x7f800000) != 0x7f800000)
        return 0;
    return !(v & 0x007fffff);
}
308 309 310 311 312 313 314 315 316 317 318 319 320

static av_always_inline av_const int avpriv_isinf(double x)
{
    uint64_t v = av_double2int(x);
    if ((v & 0x7ff0000000000000) != 0x7ff0000000000000)
        return 0;
    return !(v & 0x000fffffffffffff);
}

#define isinf(x)                  \
    (sizeof(x) == sizeof(float)   \
        ? avpriv_isinff(x)        \
        : avpriv_isinf(x))
321 322 323
#endif /* HAVE_ISINF */

#if !HAVE_ISNAN
324
static av_always_inline av_const int avpriv_isnanf(float x)
325 326 327 328 329 330
{
    uint32_t v = av_float2int(x);
    if ((v & 0x7f800000) != 0x7f800000)
        return 0;
    return v & 0x007fffff;
}
331 332 333 334 335 336

static av_always_inline av_const int avpriv_isnan(double x)
{
    uint64_t v = av_double2int(x);
    if ((v & 0x7ff0000000000000) != 0x7ff0000000000000)
        return 0;
337
    return (v & 0x000fffffffffffff) && 1;
338 339 340 341 342 343
}

#define isnan(x)                  \
    (sizeof(x) == sizeof(float)   \
        ? avpriv_isnanf(x)        \
        : avpriv_isnan(x))
344 345
#endif /* HAVE_ISNAN */

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#if !HAVE_ISFINITE
static av_always_inline av_const int avpriv_isfinitef(float x)
{
    uint32_t v = av_float2int(x);
    return (v & 0x7f800000) != 0x7f800000;
}

static av_always_inline av_const int avpriv_isfinite(double x)
{
    uint64_t v = av_double2int(x);
    return (v & 0x7ff0000000000000) != 0x7ff0000000000000;
}

#define isfinite(x)                  \
    (sizeof(x) == sizeof(float)      \
        ? avpriv_isfinitef(x)        \
        : avpriv_isfinite(x))
#endif /* HAVE_ISFINITE */

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#if !HAVE_HYPOT
static inline av_const double hypot(double x, double y)
{
    double ret, temp;
    x = fabs(x);
    y = fabs(y);

    if (isinf(x) || isinf(y))
        return av_int2double(0x7ff0000000000000);
    if (x == 0 || y == 0)
        return x + y;
    if (x < y) {
        temp = x;
        x = y;
        y = temp;
    }

    y = y/x;
    return x*sqrt(1 + y*y);
}
#endif /* HAVE_HYPOT */

387 388 389
#if !HAVE_LDEXPF
#undef ldexpf
#define ldexpf(x, exp) ((float)ldexp(x, exp))
390
#endif /* HAVE_LDEXPF */
391

392 393 394 395 396
#if !HAVE_LLRINT
#undef llrint
#define llrint(x) ((long long)rint(x))
#endif /* HAVE_LLRINT */

397 398 399 400 401
#if !HAVE_LLRINTF
#undef llrintf
#define llrintf(x) ((long long)rint(x))
#endif /* HAVE_LLRINT */

402 403 404 405 406 407 408 409 410 411
#if !HAVE_LOG2
#undef log2
#define log2(x) (log(x) * 1.44269504088896340736)
#endif /* HAVE_LOG2 */

#if !HAVE_LOG2F
#undef log2f
#define log2f(x) ((float)log2(x))
#endif /* HAVE_LOG2F */

412 413 414
#if !HAVE_LOG10F
#undef log10f
#define log10f(x) ((float)log10(x))
415
#endif /* HAVE_LOG10F */
416 417 418 419

#if !HAVE_SINF
#undef sinf
#define sinf(x) ((float)sin(x))
420
#endif /* HAVE_SINF */
421

422 423 424 425 426 427 428
#if !HAVE_RINT
static inline double rint(double x)
{
    return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5);
}
#endif /* HAVE_RINT */

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
#if !HAVE_LRINT
static av_always_inline av_const long int lrint(double x)
{
    return rint(x);
}
#endif /* HAVE_LRINT */

#if !HAVE_LRINTF
static av_always_inline av_const long int lrintf(float x)
{
    return (int)(rint(x));
}
#endif /* HAVE_LRINTF */

#if !HAVE_ROUND
static av_always_inline av_const double round(double x)
{
    return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5);
}
#endif /* HAVE_ROUND */

#if !HAVE_ROUNDF
static av_always_inline av_const float roundf(float x)
{
    return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5);
}
#endif /* HAVE_ROUNDF */

457 458 459 460 461 462 463
#if !HAVE_TRUNC
static av_always_inline av_const double trunc(double x)
{
    return (x > 0) ? floor(x) : ceil(x);
}
#endif /* HAVE_TRUNC */

464 465 466 467 468 469 470 471
#if !HAVE_TRUNCF
static av_always_inline av_const float truncf(float x)
{
    return (x > 0) ? floor(x) : ceil(x);
}
#endif /* HAVE_TRUNCF */

#endif /* AVUTIL_LIBM_H */