mpegvideo_altivec.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (c) 2002 Dieter Shirley
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
18

19 20 21 22
#include <stdlib.h>
#include <stdio.h>
#include "../dsputil.h"
#include "../mpegvideo.h"
23 24 25

#include "gcc_fixes.h"
 
26
#include "dsputil_altivec.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

// Swaps two variables (used for altivec registers)
#define SWAP(a,b) \
do { \
    __typeof__(a) swap_temp=a; \
    a=b; \
    b=swap_temp; \
} while (0)

// transposes a matrix consisting of four vectors with four elements each
#define TRANSPOSE4(a,b,c,d) \
do { \
  __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  __typeof__(a) _trans_acl = vec_mergel(a, c); \
  __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  __typeof__(a) _trans_bdl = vec_mergel(b, d); \
 \
  a = vec_mergeh(_trans_ach, _trans_bdh); \
  b = vec_mergel(_trans_ach, _trans_bdh); \
  c = vec_mergeh(_trans_acl, _trans_bdl); \
  d = vec_mergel(_trans_acl, _trans_bdl); \
} while (0)

#define TRANSPOSE8(a,b,c,d,e,f,g,h) \
do { \
    __typeof__(a)  _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
    __typeof__(a)  _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
 \
    _A1 = vec_mergeh (a, e); \
    _B1 = vec_mergel (a, e); \
    _C1 = vec_mergeh (b, f); \
    _D1 = vec_mergel (b, f); \
    _E1 = vec_mergeh (c, g); \
    _F1 = vec_mergel (c, g); \
    _G1 = vec_mergeh (d, h); \
    _H1 = vec_mergel (d, h); \
 \
    _A2 = vec_mergeh (_A1, _E1); \
    _B2 = vec_mergel (_A1, _E1); \
    _C2 = vec_mergeh (_B1, _F1); \
    _D2 = vec_mergel (_B1, _F1); \
    _E2 = vec_mergeh (_C1, _G1); \
    _F2 = vec_mergel (_C1, _G1); \
    _G2 = vec_mergeh (_D1, _H1); \
    _H2 = vec_mergel (_D1, _H1); \
 \
    a = vec_mergeh (_A2, _E2); \
    b = vec_mergel (_A2, _E2); \
    c = vec_mergeh (_B2, _F2); \
    d = vec_mergel (_B2, _F2); \
    e = vec_mergeh (_C2, _G2); \
    f = vec_mergel (_C2, _G2); \
    g = vec_mergeh (_D2, _H2); \
    h = vec_mergel (_D2, _H2); \
} while (0)


// Loads a four-byte value (int or float) from the target address
// into every element in the target vector.  Only works if the
// target address is four-byte aligned (which should be always).
#define LOAD4(vec, address) \
{ \
    __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
    vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
    vec = vec_ld(0, _load_addr); \
    vec = vec_perm(vec, vec, _perm_vec); \
    vec = vec_splat(vec, 0); \
}

96 97 98 99 100 101 102

#ifdef CONFIG_DARWIN
#define FOUROF(a) (a)
#else
// slower, for dumb non-apple GCC
#define FOUROF(a) {a,a,a,a}
#endif
103 104 105 106 107 108 109
int dct_quantize_altivec(MpegEncContext* s, 
                        DCTELEM* data, int n,
                        int qscale, int* overflow)
{
    int lastNonZero;
    vector float row0, row1, row2, row3, row4, row5, row6, row7;
    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
110
    const vector float zero = (const vector float)FOUROF(0.);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    // Load the data into the row/alt vectors
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_ld(0, data);
        data1 = vec_ld(16, data);
        data2 = vec_ld(32, data);
        data3 = vec_ld(48, data);
        data4 = vec_ld(64, data);
        data5 = vec_ld(80, data);
        data6 = vec_ld(96, data);
        data7 = vec_ld(112, data);

        // Transpose the data before we start
        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);

        // load the data into floating point vectors.  We load
        // the high half of each row into the main row vectors
        // and the low half into the alt vectors.
        row0 = vec_ctf(vec_unpackh(data0), 0);
        alt0 = vec_ctf(vec_unpackl(data0), 0);
        row1 = vec_ctf(vec_unpackh(data1), 0);
        alt1 = vec_ctf(vec_unpackl(data1), 0);
        row2 = vec_ctf(vec_unpackh(data2), 0);
        alt2 = vec_ctf(vec_unpackl(data2), 0);
        row3 = vec_ctf(vec_unpackh(data3), 0);
        alt3 = vec_ctf(vec_unpackl(data3), 0);
        row4 = vec_ctf(vec_unpackh(data4), 0);
        alt4 = vec_ctf(vec_unpackl(data4), 0);
        row5 = vec_ctf(vec_unpackh(data5), 0);
        alt5 = vec_ctf(vec_unpackl(data5), 0);
        row6 = vec_ctf(vec_unpackh(data6), 0);
        alt6 = vec_ctf(vec_unpackl(data6), 0);
        row7 = vec_ctf(vec_unpackh(data7), 0);
        alt7 = vec_ctf(vec_unpackl(data7), 0);
    }

    // The following block could exist as a separate an altivec dct
		// function.  However, if we put it inline, the DCT data can remain
		// in the vector local variables, as floats, which we'll use during the
		// quantize step...
    {
154 155 156 157 158 159 160 161 162 163 164 165
        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318


        int whichPass, whichHalf;

        for(whichPass = 1; whichPass<=2; whichPass++)
        {
            for(whichHalf = 1; whichHalf<=2; whichHalf++)
            {
                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
                vector float tmp10, tmp11, tmp12, tmp13;
                vector float z1, z2, z3, z4, z5;

                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];

                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;


                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
                row0 = vec_add(tmp10, tmp11);

                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
                row4 = vec_sub(tmp10, tmp11);


                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                //		   CONST_BITS-PASS1_BITS);
                row2 = vec_madd(tmp13, vec_0_765366865, z1);

                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                //		   CONST_BITS-PASS1_BITS);
                row6 = vec_madd(tmp12, vec_1_847759065, z1);

                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
                z3 = vec_madd(z3, vec_1_961570560, z5);

                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
                z4 = vec_madd(z4, vec_0_390180644, z5);

                // The following adds are rolled into the multiplies above
                // z3 = vec_add(z3, z5);  // z3 += z5;
                // z4 = vec_add(z4, z5);  // z4 += z5;

                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
                // Wow!  It's actually more effecient to roll this multiply
                // into the adds below, even thought the multiply gets done twice!
                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
                // Same with this one...
                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));

                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));

                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));

                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));

                // Swap the row values with the alts.  If this is the first half,
                // this sets up the low values to be acted on in the second half.
                // If this is the second half, it puts the high values back in
                // the row values where they are expected to be when we're done.
                SWAP(row0, alt0);
                SWAP(row1, alt1);
                SWAP(row2, alt2);
                SWAP(row3, alt3);
                SWAP(row4, alt4);
                SWAP(row5, alt5);
                SWAP(row6, alt6);
                SWAP(row7, alt7);
            }

            if (whichPass == 1)
            {
                // transpose the data for the second pass
                 
                // First, block transpose the upper right with lower left.
                SWAP(row4, alt0);
                SWAP(row5, alt1);
                SWAP(row6, alt2);
                SWAP(row7, alt3);

                // Now, transpose each block of four
                TRANSPOSE4(row0, row1, row2, row3);
                TRANSPOSE4(row4, row5, row6, row7);
                TRANSPOSE4(alt0, alt1, alt2, alt3);
                TRANSPOSE4(alt4, alt5, alt6, alt7);
            }
        }
    }

    // used after quantise step
    int oldBaseValue = 0;

    // perform the quantise step, using the floating point data
    // still in the row/alt registers
    {
        const int* biasAddr;
        const vector signed int* qmat;
        vector float bias, negBias;

        if (s->mb_intra)
        {
            vector signed int baseVector;

            // We must cache element 0 in the intra case
            // (it needs special handling).
            baseVector = vec_cts(vec_splat(row0, 0), 0);
            vec_ste(baseVector, 0, &oldBaseValue);

            qmat = (vector signed int*)s->q_intra_matrix[qscale];
            biasAddr = &(s->intra_quant_bias);
        }
        else
        {
            qmat = (vector signed int*)s->q_inter_matrix[qscale];
            biasAddr = &(s->inter_quant_bias);
        }

        // Load the bias vector (We add 0.5 to the bias so that we're
				// rounding when we convert to int, instead of flooring.)
        {
            vector signed int biasInt;
319
            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
            LOAD4(biasInt, biasAddr);
            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
            negBias = vec_madd(bias, negOneFloat, zero);
        }

        {
            vector float q0, q1, q2, q3, q4, q5, q6, q7;

            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
            q7 = vec_ctf(qmat[14], QMAT_SHIFT);

            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
                    vec_cmpgt(row0, zero));
            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
                    vec_cmpgt(row1, zero));
            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
                    vec_cmpgt(row2, zero));
            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
                    vec_cmpgt(row3, zero));
            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
                    vec_cmpgt(row4, zero));
            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
                    vec_cmpgt(row5, zero));
            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
                    vec_cmpgt(row6, zero));
            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
                    vec_cmpgt(row7, zero));

            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
            q7 = vec_ctf(qmat[15], QMAT_SHIFT);

            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
                    vec_cmpgt(alt0, zero));
            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
                    vec_cmpgt(alt1, zero));
            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
                    vec_cmpgt(alt2, zero));
            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
                    vec_cmpgt(alt3, zero));
            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
                    vec_cmpgt(alt4, zero));
            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
                    vec_cmpgt(alt5, zero));
            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
                    vec_cmpgt(alt6, zero));
            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
                    vec_cmpgt(alt7, zero));
        }

 
    }

    // Store the data back into the original block
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));

        {
            // Clamp for overflow
            vector signed int max_q_int, min_q_int;
            vector signed short max_q, min_q;

            LOAD4(max_q_int, &(s->max_qcoeff));
            LOAD4(min_q_int, &(s->min_qcoeff));

            max_q = vec_pack(max_q_int, max_q_int);
            min_q = vec_pack(min_q_int, min_q_int);

            data0 = vec_max(vec_min(data0, max_q), min_q);
            data1 = vec_max(vec_min(data1, max_q), min_q);
            data2 = vec_max(vec_min(data2, max_q), min_q);
            data4 = vec_max(vec_min(data4, max_q), min_q);
            data5 = vec_max(vec_min(data5, max_q), min_q);
            data6 = vec_max(vec_min(data6, max_q), min_q);
            data7 = vec_max(vec_min(data7, max_q), min_q);
        }

        vector bool char zero_01, zero_23, zero_45, zero_67;
        vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
        vector signed char negOne = vec_splat_s8(-1);
        vector signed char* scanPtr =
                (vector signed char*)(s->intra_scantable.inverse);

        // Determine the largest non-zero index.
        zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
                vec_cmpeq(data1, (vector short)zero));
        zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
                vec_cmpeq(data3, (vector short)zero));
        zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
                vec_cmpeq(data5, (vector short)zero));
        zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
                vec_cmpeq(data7, (vector short)zero));

        // 64 biggest values
        scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
        scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
        scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
        scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);

        // 32 largest values
        scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
        scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);

        // 16 largest values
        scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);

        // 8 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // 4 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // 2 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // largest value
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        scanIndices_01 = vec_splat(scanIndices_01, 0);

        signed char lastNonZeroChar;

        vec_ste(scanIndices_01, 0, &lastNonZeroChar);

        lastNonZero = lastNonZeroChar;
        
        // While the data is still in vectors we check for the transpose IDCT permute
        // and handle it using the vector unit if we can.  This is the permute used
        // by the altivec idct, so it is common when using the altivec dct.

474
        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        {
            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
        }

        vec_st(data0, 0, data);
        vec_st(data1, 16, data);
        vec_st(data2, 32, data);
        vec_st(data3, 48, data);
        vec_st(data4, 64, data);
        vec_st(data5, 80, data);
        vec_st(data6, 96, data);
        vec_st(data7, 112, data);
    }

    // special handling of block[0]
    if (s->mb_intra)
    {
        if (!s->h263_aic)
        {
            if (n < 4)
                oldBaseValue /= s->y_dc_scale;
            else
                oldBaseValue /= s->c_dc_scale;
        }

        // Divide by 8, rounding the result
        data[0] = (oldBaseValue + 4) >> 3;
    }

    // We handled the tranpose permutation above and we don't
    // need to permute the "no" permutation case.
    if ((lastNonZero > 0) &&
507 508
        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
509
    {
510
        ff_block_permute(data, s->dsp.idct_permutation,
511 512 513 514 515
                s->intra_scantable.scantable, lastNonZero);
    }

    return lastNonZero;
}
516
#undef FOUROF
517

518 519 520 521 522 523 524
/*
  AltiVec version of dct_unquantize_h263
  this code assumes `block' is 16 bytes-aligned
*/
void dct_unquantize_h263_altivec(MpegEncContext *s, 
                                 DCTELEM *block, int n, int qscale)
{
525
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
526 527 528 529
    int i, level, qmul, qadd;
    int nCoeffs;
    
    assert(s->block_last_index[n]>=0);
530

531
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    
    qadd = (qscale - 1) | 1;
    qmul = qscale << 1;
    
    if (s->mb_intra) {
        if (!s->h263_aic) {
            if (n < 4) 
                block[0] = block[0] * s->y_dc_scale;
            else
                block[0] = block[0] * s->c_dc_scale;
        }else
            qadd = 0;
        i = 1;
        nCoeffs= 63; //does not allways use zigzag table 
    } else {
        i = 0;
        nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
    }

551
#ifdef ALTIVEC_USE_REFERENCE_C_CODE
552 553 554 555 556 557 558 559 560 561 562
    for(;i<=nCoeffs;i++) {
        level = block[i];
        if (level) {
            if (level < 0) {
                level = level * qmul - qadd;
            } else {
                level = level * qmul + qadd;
            }
            block[i] = level;
        }
    }
563
#else /* ALTIVEC_USE_REFERENCE_C_CODE */
564
    {
565
      register const vector short vczero = (const vector short)vec_splat_s16(0);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
      short __attribute__ ((aligned(16))) qmul8[] =
          {
            qmul, qmul, qmul, qmul,
            qmul, qmul, qmul, qmul
          };
      short __attribute__ ((aligned(16))) qadd8[] =
          {
            qadd, qadd, qadd, qadd,
            qadd, qadd, qadd, qadd
          };
      short __attribute__ ((aligned(16))) nqadd8[] =
          {
            -qadd, -qadd, -qadd, -qadd,
            -qadd, -qadd, -qadd, -qadd
          };
      register vector short blockv, qmulv, qaddv, nqaddv, temp1;
      register vector bool short blockv_null, blockv_neg;
      register short backup_0 = block[0];
      register int j = 0;
      
      qmulv = vec_ld(0, qmul8);
      qaddv = vec_ld(0, qadd8);
      nqaddv = vec_ld(0, nqadd8);

590
#if 0 // block *is* 16 bytes-aligned, it seems.
591 592 593 594 595 596 597 598 599 600 601 602
      // first make sure block[j] is 16 bytes-aligned
      for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
        level = block[j];
        if (level) {
          if (level < 0) {
                level = level * qmul - qadd;
            } else {
                level = level * qmul + qadd;
            }
            block[j] = level;
        }
      }
603
#endif
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
      
      // vectorize all the 16 bytes-aligned blocks
      // of 8 elements
      for(; (j + 7) <= nCoeffs ; j+=8)
      {
        blockv = vec_ld(j << 1, block);
        blockv_neg = vec_cmplt(blockv, vczero);
        blockv_null = vec_cmpeq(blockv, vczero);
        // choose between +qadd or -qadd as the third operand
        temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
        // multiply & add (block{i,i+7} * qmul [+-] qadd)
        temp1 = vec_mladd(blockv, qmulv, temp1);
        // put 0 where block[{i,i+7} used to have 0
        blockv = vec_sel(temp1, blockv, blockv_null);
        vec_st(blockv, j << 1, block);
      }

      // if nCoeffs isn't a multiple of 8, finish the job
      // using good old scalar units.
      // (we could do it using a truncated vector,
      // but I'm not sure it's worth the hassle)
      for(; j <= nCoeffs ; j++) {
        level = block[j];
        if (level) {
          if (level < 0) {
                level = level * qmul - qadd;
            } else {
                level = level * qmul + qadd;
            }
            block[j] = level;
        }
      }
      
      if (i == 1)
      { // cheat. this avoid special-casing the first iteration
        block[0] = backup_0;
      }
    }
642 643
#endif /* ALTIVEC_USE_REFERENCE_C_CODE */

644
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
645
}