aacsbr_template.c 57.8 KB
Newer Older
1 2 3 4 5
/*
 * AAC Spectral Band Replication decoding functions
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 *
6 7 8 9
 * Fixed point code
 * Copyright (c) 2013
 *      MIPS Technologies, Inc., California.
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC Spectral Band Replication decoding functions
 * @author Robert Swain ( rob opendot cl )
31 32
 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33 34
 */

35 36
#include "libavutil/qsort.h"

37
av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
{
    static const struct {
        const void *sbr_codes, *sbr_bits;
        const unsigned int table_size, elem_size;
    } sbr_tmp[] = {
        SBR_VLC_ROW(t_huffman_env_1_5dB),
        SBR_VLC_ROW(f_huffman_env_1_5dB),
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(t_huffman_env_3_0dB),
        SBR_VLC_ROW(f_huffman_env_3_0dB),
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
    };

    // SBR VLC table initialization
    SBR_INIT_VLC_STATIC(0, 1098);
    SBR_INIT_VLC_STATIC(1, 1092);
    SBR_INIT_VLC_STATIC(2, 768);
    SBR_INIT_VLC_STATIC(3, 1026);
    SBR_INIT_VLC_STATIC(4, 1058);
    SBR_INIT_VLC_STATIC(5, 1052);
    SBR_INIT_VLC_STATIC(6, 544);
    SBR_INIT_VLC_STATIC(7, 544);
    SBR_INIT_VLC_STATIC(8, 592);
    SBR_INIT_VLC_STATIC(9, 512);

    aacsbr_tableinit();

69
    AAC_RENAME(ff_ps_init)();
70 71 72 73 74
}

/** Places SBR in pure upsampling mode. */
static void sbr_turnoff(SpectralBandReplication *sbr) {
    sbr->start = 0;
75
    sbr->ready_for_dequant = 0;
76 77 78 79 80 81 82 83
    // Init defults used in pure upsampling mode
    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
    sbr->m[1] = 0;
    // Reset values for first SBR header
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
}

84
av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr)
85 86 87 88 89 90 91 92 93 94
{
    if(sbr->mdct.mdct_bits)
        return;
    sbr->kx[0] = sbr->kx[1];
    sbr_turnoff(sbr);
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
     * and scale back down at synthesis. */
95 96
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
97
    AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
98
    AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
99 100 101
    aacsbr_func_ptr_init(&sbr->c);
}

102
av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
103
{
104 105
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
}

static int qsort_comparison_function_int16(const void *a, const void *b)
{
    return *(const int16_t *)a - *(const int16_t *)b;
}

static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
{
    int i;
    for (i = 0; i <= last_el; i++)
        if (table[i] == needle)
            return 1;
    return 0;
}

/// Limiter Frequency Band Table (14496-3 sp04 p198)
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
{
    int k;
    if (sbr->bs_limiter_bands > 0) {
127 128 129 130
        static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f),   //2^(0.49/1.2)
                                               Q23(1.18509277094158210129f),   //2^(0.49/2)
                                               Q23(1.11987160404675912501f) }; //2^(0.49/3)
        const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
131 132 133 134 135 136 137 138 139 140 141 142 143
        int16_t patch_borders[7];
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;

        patch_borders[0] = sbr->kx[1];
        for (k = 1; k <= sbr->num_patches; k++)
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];

        memcpy(sbr->f_tablelim, sbr->f_tablelow,
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
        if (sbr->num_patches > 1)
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));

144 145
        AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
              uint16_t,
146 147 148 149
              qsort_comparison_function_int16);

        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
        while (out < sbr->f_tablelim + sbr->n_lim) {
150 151 152
#if USE_FIXED
            if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
#else
153
            if (*in >= *out * lim_bands_per_octave_warped) {
154
#endif /* USE_FIXED */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                *++out = *in++;
            } else if (*in == *out ||
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
                in++;
                sbr->n_lim--;
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
                *out = *in++;
                sbr->n_lim--;
            } else {
                *++out = *in++;
            }
        }
    } else {
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
        sbr->n_lim = 1;
    }
}

static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
{
    unsigned int cnt = get_bits_count(gb);
    uint8_t bs_header_extra_1;
    uint8_t bs_header_extra_2;
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
    SpectrumParameters old_spectrum_params;

    sbr->start = 1;
183
    sbr->ready_for_dequant = 0;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    // Save last spectrum parameters variables to compare to new ones
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));

    sbr->bs_amp_res_header              = get_bits1(gb);
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
                                          skip_bits(gb, 2); // bs_reserved

    bs_header_extra_1 = get_bits1(gb);
    bs_header_extra_2 = get_bits1(gb);

    if (bs_header_extra_1) {
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
    } else {
        sbr->spectrum_params.bs_freq_scale  = 2;
        sbr->spectrum_params.bs_alter_scale = 1;
        sbr->spectrum_params.bs_noise_bands = 2;
    }

    // Check if spectrum parameters changed
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
        sbr->reset = 1;

    if (bs_header_extra_2) {
        sbr->bs_limiter_bands  = get_bits(gb, 2);
        sbr->bs_limiter_gains  = get_bits(gb, 2);
        sbr->bs_interpol_freq  = get_bits1(gb);
        sbr->bs_smoothing_mode = get_bits1(gb);
    } else {
        sbr->bs_limiter_bands  = 2;
        sbr->bs_limiter_gains  = 2;
        sbr->bs_interpol_freq  = 1;
        sbr->bs_smoothing_mode = 1;
    }

    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
        sbr_make_f_tablelim(sbr);

    return get_bits_count(gb) - cnt;
}

static int array_min_int16(const int16_t *array, int nel)
{
    int i, min = array[0];
    for (i = 1; i < nel; i++)
        min = FFMIN(array[i], min);
    return min;
}

static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
{
    // Requirements (14496-3 sp04 p205)
    if (n_master <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
        return -1;
    }
    if (bs_xover_band >= n_master) {
        av_log(avctx, AV_LOG_ERROR,
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
               bs_xover_band);
        return -1;
    }
    return 0;
}

/// Master Frequency Band Table (14496-3 sp04 p194)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
                             SpectrumParameters *spectrum)
{
    unsigned int temp, max_qmf_subbands = 0;
    unsigned int start_min, stop_min;
    int k;
    const int8_t *sbr_offset_ptr;
    int16_t stop_dk[13];

    if (sbr->sample_rate < 32000) {
        temp = 3000;
    } else if (sbr->sample_rate < 64000) {
        temp = 4000;
    } else
        temp = 5000;

    switch (sbr->sample_rate) {
    case 16000:
        sbr_offset_ptr = sbr_offset[0];
        break;
    case 22050:
        sbr_offset_ptr = sbr_offset[1];
        break;
    case 24000:
        sbr_offset_ptr = sbr_offset[2];
        break;
    case 32000:
        sbr_offset_ptr = sbr_offset[3];
        break;
    case 44100: case 48000: case 64000:
        sbr_offset_ptr = sbr_offset[4];
        break;
    case 88200: case 96000: case 128000: case 176400: case 192000:
        sbr_offset_ptr = sbr_offset[5];
        break;
    default:
        av_log(ac->avctx, AV_LOG_ERROR,
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
        return -1;
    }

    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];

    if (spectrum->bs_stop_freq < 14) {
        sbr->k[2] = stop_min;
        make_bands(stop_dk, stop_min, 64, 13);
303
        AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        for (k = 0; k < spectrum->bs_stop_freq; k++)
            sbr->k[2] += stop_dk[k];
    } else if (spectrum->bs_stop_freq == 14) {
        sbr->k[2] = 2*sbr->k[0];
    } else if (spectrum->bs_stop_freq == 15) {
        sbr->k[2] = 3*sbr->k[0];
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
        return -1;
    }
    sbr->k[2] = FFMIN(64, sbr->k[2]);

    // Requirements (14496-3 sp04 p205)
    if (sbr->sample_rate <= 32000) {
        max_qmf_subbands = 48;
    } else if (sbr->sample_rate == 44100) {
        max_qmf_subbands = 35;
    } else if (sbr->sample_rate >= 48000)
        max_qmf_subbands = 32;
    else
        av_assert0(0);

    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
        return -1;
    }

    if (!spectrum->bs_freq_scale) {
        int dk, k2diff;

        dk = spectrum->bs_alter_scale + 1;
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
            return -1;

        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] = dk;

        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
        if (k2diff < 0) {
            sbr->f_master[1]--;
            sbr->f_master[2]-= (k2diff < -1);
        } else if (k2diff) {
            sbr->f_master[sbr->n_master]++;
        }

        sbr->f_master[0] = sbr->k[0];
        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] += sbr->f_master[k - 1];

    } else {
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
        int two_regions, num_bands_0;
        int vdk0_max, vdk1_min;
        int16_t vk0[49];
361 362 363
#if USE_FIXED
        int tmp, nz = 0;
#endif /* USE_FIXED */
364 365 366 367 368 369 370 371 372

        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
            two_regions = 1;
            sbr->k[1] = 2 * sbr->k[0];
        } else {
            two_regions = 0;
            sbr->k[1] = sbr->k[2];
        }

373 374 375 376 377 378 379 380 381 382 383
#if USE_FIXED
        tmp = (sbr->k[1] << 23) / sbr->k[0];
        while (tmp < 0x40000000) {
          tmp <<= 1;
          nz++;
        }
        tmp = fixed_log(tmp - 0x80000000);
        tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
        tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
        num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
#else
384
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
385
#endif /* USE_FIXED */
386 387 388 389 390 391 392 393 394 395

        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
            return -1;
        }

        vk0[0] = 0;

        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);

396
        AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
397 398 399 400 401 402 403 404 405 406 407 408 409
        vdk0_max = vk0[num_bands_0];

        vk0[0] = sbr->k[0];
        for (k = 1; k <= num_bands_0; k++) {
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
                return -1;
            }
            vk0[k] += vk0[k-1];
        }

        if (two_regions) {
            int16_t vk1[49];
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
#if USE_FIXED
            int num_bands_1;

            tmp = (sbr->k[2] << 23) / sbr->k[1];
            nz = 0;
            while (tmp < 0x40000000) {
              tmp <<= 1;
              nz++;
            }
            tmp = fixed_log(tmp - 0x80000000);
            tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
            tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
            if (spectrum->bs_alter_scale)
                tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
            num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
#else
426 427 428 429
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
                                                     : 1.0f; // bs_alter_scale = {0,1}
            int num_bands_1 = lrintf(half_bands * invwarp *
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
430
#endif /* USE_FIXED */
431 432 433 434 435 436
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);

            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);

            if (vdk1_min < vdk0_max) {
                int change;
437
                AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
438 439 440 441 442
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
                vk1[1]           += change;
                vk1[num_bands_1] -= change;
            }

443
            AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

            vk1[0] = sbr->k[1];
            for (k = 1; k <= num_bands_1; k++) {
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
                    return -1;
                }
                vk1[k] += vk1[k-1];
            }

            sbr->n_master = num_bands_0 + num_bands_1;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(&sbr->f_master[0],               vk0,
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
                    num_bands_1      * sizeof(sbr->f_master[0]));

        } else {
            sbr->n_master = num_bands_0;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
        }
    }

    return 0;
}

/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
{
    int i, k, last_k = -1, last_msb = -1, sb = 0;
    int msb = sbr->k[0];
    int usb = sbr->kx[1];
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    sbr->num_patches = 0;

    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
    } else
        k = sbr->n_master;

    do {
        int odd = 0;
        if (k == last_k && msb == last_msb) {
            av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
            return AVERROR_INVALIDDATA;
        }
        last_k = k;
        last_msb = msb;
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
            sb = sbr->f_master[i];
            odd = (sb + sbr->k[0]) & 1;
        }

        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
        // After this check the final number of patches can still be six which is
        // illegal however the Coding Technologies decoder check stream has a final
        // count of 6 patches
        if (sbr->num_patches > 5) {
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
            return -1;
        }

        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];

        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
            usb = sb;
            msb = sb;
            sbr->num_patches++;
        } else
            msb = sbr->kx[1];

        if (sbr->f_master[k] - sb < 3)
            k = sbr->n_master;
    } while (sb != sbr->kx[1] + sbr->m[1]);

    if (sbr->num_patches > 1 &&
        sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
        sbr->num_patches--;

    return 0;
}

/// Derived Frequency Band Tables (14496-3 sp04 p197)
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
{
    int k, temp;
535 536 537
#if USE_FIXED
    int nz = 0;
#endif /* USE_FIXED */
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
    sbr->n[0] = (sbr->n[1] + 1) >> 1;

    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
    sbr->kx[1] = sbr->f_tablehigh[0];

    // Requirements (14496-3 sp04 p205)
    if (sbr->kx[1] + sbr->m[1] > 64) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
        return -1;
    }
    if (sbr->kx[1] > 32) {
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
        return -1;
    }

    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
    temp = sbr->n[1] & 1;
    for (k = 1; k <= sbr->n[0]; k++)
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
562 563 564 565 566 567 568 569 570
#if USE_FIXED
    temp = (sbr->k[2] << 23) / sbr->kx[1];
    while (temp < 0x40000000) {
        temp <<= 1;
        nz++;
    }
    temp = fixed_log(temp - 0x80000000);
    temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
    temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
571

572 573 574 575
    sbr->n_q = (temp + 0x400000) >> 23;
    if (sbr->n_q < 1)
        sbr->n_q = 1;
#else
576 577
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
578 579
#endif /* USE_FIXED */

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    if (sbr->n_q > 5) {
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
        return -1;
    }

    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
    temp = 0;
    for (k = 1; k <= sbr->n_q; k++) {
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
    }

    if (sbr_hf_calc_npatches(ac, sbr) < 0)
        return -1;

    sbr_make_f_tablelim(sbr);

    sbr->data[0].f_indexnoise = 0;
    sbr->data[1].f_indexnoise = 0;

    return 0;
}

static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
                                              int elements)
{
    int i;
    for (i = 0; i < elements; i++) {
        vec[i] = get_bits1(gb);
    }
}

/** ceil(log2(index+1)) */
static const int8_t ceil_log2[] = {
    0, 1, 2, 2, 3, 3,
};

static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
                         GetBitContext *gb, SBRData *ch_data)
{
    int i;
    int bs_pointer = 0;
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
    int abs_bord_trail = 16;
    int num_rel_lead, num_rel_trail;
    unsigned bs_num_env_old = ch_data->bs_num_env;

    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];

    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
    case FIXFIX:
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
        num_rel_lead                        = ch_data->bs_num_env - 1;
        if (ch_data->bs_num_env == 1)
            ch_data->bs_amp_res = 0;

        if (ch_data->bs_num_env > 4) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
                   ch_data->bs_num_env;
        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;

        ch_data->bs_freq_res[1] = get_bits1(gb);
        for (i = 1; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
        break;
    case FIXVAR:
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_trail + 1;
        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        for (i = 0; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
        break;
    case VARFIX:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + 1;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    case VARVAR:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;

        if (ch_data->bs_num_env > 5) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    }

    av_assert0(bs_pointer >= 0);
    if (bs_pointer > ch_data->bs_num_env + 1) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
               bs_pointer);
        return -1;
    }

    for (i = 1; i <= ch_data->bs_num_env; i++) {
723 724
        if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
            av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            return -1;
        }
    }

    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;

    ch_data->t_q[0]                     = ch_data->t_env[0];
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
    if (ch_data->bs_num_noise > 1) {
        int idx;
        if (ch_data->bs_frame_class == FIXFIX) {
            idx = ch_data->bs_num_env >> 1;
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
        } else { // VARFIX
            if (!bs_pointer)
                idx = 1;
            else if (bs_pointer == 1)
                idx = ch_data->bs_num_env - 1;
            else // bs_pointer > 1
                idx = bs_pointer - 1;
        }
        ch_data->t_q[1] = ch_data->t_env[idx];
    }

    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
    ch_data->e_a[1] = -1;
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
        ch_data->e_a[1] = bs_pointer - 1;

    return 0;
}

static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
    //These variables are saved from the previous frame rather than copied
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);

    //These variables are read from the bitstream and therefore copied
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
    dst->bs_num_env        = src->bs_num_env;
    dst->bs_amp_res        = src->bs_amp_res;
    dst->bs_num_noise      = src->bs_num_noise;
    dst->bs_frame_class    = src->bs_frame_class;
    dst->e_a[1]            = src->e_a[1];
}

/// Read how the envelope and noise floor data is delta coded
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
}

/// Read inverse filtering data
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    int i;

    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
    for (i = 0; i < sbr->n_q; i++)
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
}

796
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
                              SBRData *ch_data, int ch)
{
    int bits;
    int i, j, k;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
    const int odd = sbr->n[1] & 1;

    if (sbr->bs_coupling && ch) {
        if (ch_data->bs_amp_res) {
            bits   = 5;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
        } else {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
        }
    } else {
        if (ch_data->bs_amp_res) {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
        } else {
            bits   = 7;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
        }
    }

836 837 838 839
    for (i = 0; i < ch_data->bs_num_env; i++) {
        if (ch_data->bs_df_env[i]) {
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
840
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
841
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
842 843 844 845 846
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
                        return AVERROR_INVALIDDATA;
                    }
                }
847 848 849
            } else if (ch_data->bs_freq_res[i + 1]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
850
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
851 852 853 854
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
                        return AVERROR_INVALIDDATA;
                    }
855 856 857 858
                }
            } else {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
859
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
860 861 862 863
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
                        return AVERROR_INVALIDDATA;
                    }
864 865 866
                }
            }
        } else {
867
            ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
868
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
869
                ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
870 871 872 873 874
                if (ch_data->env_facs_q[i + 1][j] > 127U) {
                    av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
                    return AVERROR_INVALIDDATA;
                }
            }
875 876
        }
    }
877

878 879 880
    //assign 0th elements of env_facs_q from last elements
    memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
           sizeof(ch_data->env_facs_q[0]));
881 882

    return 0;
883 884
}

885
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
                           SBRData *ch_data, int ch)
{
    int i, j;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;

    if (sbr->bs_coupling && ch) {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
    } else {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
    }

    for (i = 0; i < ch_data->bs_num_noise; i++) {
        if (ch_data->bs_df_noise[i]) {
907
            for (j = 0; j < sbr->n_q; j++) {
908
                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
909 910 911 912 913
                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
                    return AVERROR_INVALIDDATA;
                }
            }
914
        } else {
915
            ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
916
            for (j = 1; j < sbr->n_q; j++) {
917
                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
918 919 920 921 922
                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
                    return AVERROR_INVALIDDATA;
                }
            }
923 924 925
        }
    }

926 927 928
    //assign 0th elements of noise_facs_q from last elements
    memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
           sizeof(ch_data->noise_facs_q[0]));
929
    return 0;
930 931 932 933 934 935 936 937 938 939 940 941 942 943
}

static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
                               GetBitContext *gb,
                               int bs_extension_id, int *num_bits_left)
{
    switch (bs_extension_id) {
    case EXTENSION_ID_PS:
        if (!ac->oc[1].m4ac.ps) {
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
        } else {
#if 1
944
            *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
#else
            avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
#endif
        }
        break;
    default:
        // some files contain 0-padding
        if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
            avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
        *num_bits_left = 0;
        break;
    }
}

static int read_sbr_single_channel_element(AACContext *ac,
                                            SpectralBandReplication *sbr,
                                            GetBitContext *gb)
{
967 968
    int ret;

969 970 971 972 973 974 975
    if (get_bits1(gb)) // bs_data_extra
        skip_bits(gb, 4); // bs_reserved

    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
        return -1;
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
    read_sbr_invf(sbr, gb, &sbr->data[0]);
976 977
    if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
        return ret;
978 979
    if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
        return ret;
980 981 982 983 984 985 986 987 988 989 990

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static int read_sbr_channel_pair_element(AACContext *ac,
                                          SpectralBandReplication *sbr,
                                          GetBitContext *gb)
{
991 992
    int ret;

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    if (get_bits1(gb))    // bs_data_extra
        skip_bits(gb, 8); // bs_reserved

    if ((sbr->bs_coupling = get_bits1(gb))) {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
            return -1;
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1005 1006
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
            return ret;
1007 1008
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
            return ret;
1009 1010
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
            return ret;
1011 1012
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
            return ret;
1013 1014 1015 1016 1017 1018 1019 1020
    } else {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
            return -1;
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        read_sbr_invf(sbr, gb, &sbr->data[1]);
1021 1022 1023 1024
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
            return ret;
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
            return ret;
1025 1026 1027 1028
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
            return ret;
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
            return ret;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    }

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
                                  GetBitContext *gb, int id_aac)
{
    unsigned int cnt = get_bits_count(gb);

    sbr->id_aac = id_aac;
1045
    sbr->ready_for_dequant = 1;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else if (id_aac == TYPE_CPE) {
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
        sbr_turnoff(sbr);
        return get_bits_count(gb) - cnt;
    }
    if (get_bits1(gb)) { // bs_extended_data
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
        if (num_bits_left == 15)
            num_bits_left += get_bits(gb, 8); // bs_esc_count

        num_bits_left <<= 3;
        while (num_bits_left > 7) {
            num_bits_left -= 2;
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
        }
        if (num_bits_left < 0) {
            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
        }
        if (num_bits_left > 0)
            skip_bits(gb, num_bits_left);
    }

    return get_bits_count(gb) - cnt;
}

static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
{
    int err;
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
    if (err >= 0)
        err = sbr_make_f_derived(ac, sbr);
    if (err < 0) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
        sbr_turnoff(sbr);
    }
}

/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
1104
int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
{
    unsigned int num_sbr_bits = 0, num_align_bits;
    unsigned bytes_read;
    GetBitContext gbc = *gb_host, *gb = &gbc;
    skip_bits_long(gb_host, cnt*8 - 4);

    sbr->reset = 0;

    if (!sbr->sample_rate)
        sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
    if (!ac->oc[1].m4ac.ext_sample_rate)
        ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;

    if (crc) {
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
        num_sbr_bits += 10;
    }

    //Save some state from the previous frame.
    sbr->kx[0] = sbr->kx[1];
    sbr->m[0] = sbr->m[1];
    sbr->kx_and_m_pushed = 1;

    num_sbr_bits++;
    if (get_bits1(gb)) // bs_header_flag
        num_sbr_bits += read_sbr_header(sbr, gb);

    if (sbr->reset)
        sbr_reset(ac, sbr);

    if (sbr->start)
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);

    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);

    if (bytes_read > cnt) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
    }
    return cnt;
}

/**
 * Analysis QMF Bank (14496-3 sp04 p206)
 *
 * @param   x       pointer to the beginning of the first sample window
 * @param   W       array of complex-valued samples split into subbands
 */
#ifndef sbr_qmf_analysis
1156 1157 1158
#if USE_FIXED
static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
#else
1159
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1160 1161 1162
#endif /* USE_FIXED */
                             SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
                             INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1163 1164
{
    int i;
1165 1166 1167
#if USE_FIXED
    int j;
#endif
1168 1169 1170 1171 1172 1173 1174
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
    memcpy(x+288, in,         1024*sizeof(x[0]));
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
                               // are not supported
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
        sbrdsp->sum64x5(z);
        sbrdsp->qmf_pre_shuffle(z);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
#if USE_FIXED
        for (j = 64; j < 128; j++) {
            if (z[j] > 1<<24) {
                av_log(NULL, AV_LOG_WARNING,
                       "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
                       z[j], 1<<24);
                z[j] = 1<<24;
            } else if (z[j] < -(1<<24)) {
                av_log(NULL, AV_LOG_WARNING,
                       "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
                       z[j], -(1<<24));
                z[j] = -(1<<24);
            }
        }
#endif
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        mdct->imdct_half(mdct, z, z+64);
        sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
        x += 32;
    }
}
#endif

/**
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
 * (14496-3 sp04 p206)
 */
#ifndef sbr_qmf_synthesis
static void sbr_qmf_synthesis(FFTContext *mdct,
1203 1204 1205
#if USE_FIXED
                              SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
#else
1206
                              SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1207 1208 1209 1210
#endif /* USE_FIXED */
                              INTFLOAT *out, INTFLOAT X[2][38][64],
                              INTFLOAT mdct_buf[2][64],
                              INTFLOAT *v0, int *v_off, const unsigned int div)
1211 1212
{
    int i, n;
1213
    const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1214
    const int step = 128 >> div;
1215
    INTFLOAT *v;
1216 1217 1218
    for (i = 0; i < 32; i++) {
        if (*v_off < step) {
            int saved_samples = (1280 - 128) >> div;
1219
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
        } else {
            *v_off -= step;
        }
        v = v0 + *v_off;
        if (div) {
            for (n = 0; n < 32; n++) {
                X[0][i][   n] = -X[0][i][n];
                X[0][i][32+n] =  X[1][i][31-n];
            }
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
        } else {
            sbrdsp->neg_odd_64(X[1][i]);
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
        }
        dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
        out += 64 >> div;
    }
}
#endif

/// Generate the subband filtered lowband
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1255
                      INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                      int buf_idx)
{
    int i, k;
    const int t_HFGen = 8;
    const int i_f = 32;
    memset(X_low, 0, 32*sizeof(*X_low));
    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
            X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
            X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
        }
    }
    buf_idx = 1-buf_idx;
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < t_HFGen; i++) {
            X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
            X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
        }
    }
    return 0;
}

/// High Frequency Generator (14496-3 sp04 p215)
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1280 1281 1282
                      INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
                      const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
                      const INTFLOAT bw_array[5], const uint8_t *t_env,
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
                      int bs_num_env)
{
    int j, x;
    int g = 0;
    int k = sbr->kx[1];
    for (j = 0; j < sbr->num_patches; j++) {
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
            const int p = sbr->patch_start_subband[j] + x;
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
                g++;
            g--;

            if (g < 0) {
                av_log(ac->avctx, AV_LOG_ERROR,
                       "ERROR : no subband found for frequency %d\n", k);
                return -1;
            }

            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
                            alpha0[p], alpha1[p], bw_array[g],
                            2 * t_env[0], 2 * t_env[bs_num_env]);
        }
    }
    if (k < sbr->m[1] + sbr->kx[1])
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));

    return 0;
}

/// Generate the subband filtered lowband
1314 1315 1316
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
                     const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
                     const INTFLOAT X_low[32][40][2], int ch)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
    int k, i;
    const int i_f = 32;
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
    memset(X, 0, 2*sizeof(*X));
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = Y0[i + i_f][k][0];
            X[1][i][k] = Y0[i + i_f][k][1];
        }
    }

    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = i_Temp; i < 38; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
        for (i = i_Temp; i < i_f; i++) {
            X[0][i][k] = Y1[i][k][0];
            X[1][i][k] = Y1[i][k][1];
        }
    }
    return 0;
}

/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
 * (14496-3 sp04 p217)
 */
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
                        SBRData *ch_data, int e_a[2])
{
    int e, i, m;

    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
    for (e = 0; e < ch_data->bs_num_env; e++) {
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
        int k;

        if (sbr->kx[1] != table[0]) {
            av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
                   "Derived frequency tables were not regenerated.\n");
            sbr_turnoff(sbr);
            return AVERROR_BUG;
        }
        for (i = 0; i < ilim; i++)
            for (m = table[i]; m < table[i + 1]; m++)
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];

        // ch_data->bs_num_noise > 1 => 2 noise floors
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
        for (i = 0; i < sbr->n_q; i++)
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];

        for (i = 0; i < sbr->n[1]; i++) {
            if (ch_data->bs_add_harmonic_flag) {
                const unsigned int m_midpoint =
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;

                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
            }
        }

        for (i = 0; i < ilim; i++) {
            int additional_sinusoid_present = 0;
            for (m = table[i]; m < table[i + 1]; m++) {
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
                    additional_sinusoid_present = 1;
                    break;
                }
            }
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
        }
    }

    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
    return 0;
}

/// Estimation of current envelope (14496-3 sp04 p218)
1408
static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1409 1410 1411 1412 1413 1414 1415
                             SpectralBandReplication *sbr, SBRData *ch_data)
{
    int e, m;
    int kx1 = sbr->kx[1];

    if (sbr->bs_interpol_freq) {
        for (e = 0; e < ch_data->bs_num_env; e++) {
1416 1417 1418
#if USE_FIXED
            const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
#else
1419
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1420
#endif /* USE_FIXED */
1421 1422 1423 1424
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;

            for (m = 0; m < sbr->m[1]; m++) {
1425 1426 1427 1428
                AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
#if USE_FIXED
                e_curr[e][m] = av_mul_sf(sum, recip_env_size);
#else
1429
                e_curr[e][m] = sum * recip_env_size;
1430
#endif /* USE_FIXED */
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            }
        }
    } else {
        int k, p;

        for (e = 0; e < ch_data->bs_num_env; e++) {
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;

            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1443
#if USE_FIXED
1444
                SoftFloat sum = FLOAT_0;
1445 1446 1447 1448 1449 1450
                const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
                for (k = table[p]; k < table[p + 1]; k++) {
                    sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
                }
                sum = av_mul_sf(sum, den);
#else
1451 1452 1453 1454 1455 1456 1457
                float sum = 0.0f;
                const int den = env_size * (table[p + 1] - table[p]);

                for (k = table[p]; k < table[p + 1]; k++) {
                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
                }
                sum /= den;
1458
#endif /* USE_FIXED */
1459 1460 1461 1462 1463 1464 1465 1466
                for (k = table[p]; k < table[p + 1]; k++) {
                    e_curr[e][k - kx1] = sum;
                }
            }
        }
    }
}

1467 1468
void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
                  INTFLOAT* L, INTFLOAT* R)
1469 1470 1471 1472 1473 1474 1475
{
    int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
    int ch;
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
    int err;

    if (id_aac != sbr->id_aac) {
1476
        av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1477 1478 1479 1480
            "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
        sbr_turnoff(sbr);
    }

1481 1482 1483 1484 1485 1486
    if (sbr->start && !sbr->ready_for_dequant) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "No quantized data read for sbr_dequant.\n");
        sbr_turnoff(sbr);
    }

1487 1488 1489 1490 1491 1492 1493 1494 1495
    if (!sbr->kx_and_m_pushed) {
        sbr->kx[0] = sbr->kx[1];
        sbr->m[0] = sbr->m[1];
    } else {
        sbr->kx_and_m_pushed = 0;
    }

    if (sbr->start) {
        sbr_dequant(sbr, id_aac);
1496
        sbr->ready_for_dequant = 0;
1497 1498 1499 1500
    }
    for (ch = 0; ch < nch; ch++) {
        /* decode channel */
        sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1501
                         (INTFLOAT*)sbr->qmf_filter_scratch,
1502 1503
                         sbr->data[ch].W, sbr->data[ch].Ypos);
        sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1504
                          (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1505 1506 1507 1508
                          sbr->data[ch].Ypos);
        sbr->data[ch].Ypos ^= 1;
        if (sbr->start) {
            sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1509
                                         (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1510 1511 1512
            sbr_chirp(sbr, &sbr->data[ch]);
            av_assert0(sbr->data[ch].bs_num_env > 0);
            sbr_hf_gen(ac, sbr, sbr->X_high,
1513 1514 1515
                       (const INTFLOAT (*)[40][2]) sbr->X_low,
                       (const INTFLOAT (*)[2]) sbr->alpha0,
                       (const INTFLOAT (*)[2]) sbr->alpha1,
1516 1517 1518 1519 1520 1521 1522 1523 1524
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
                       sbr->data[ch].bs_num_env);

            // hf_adj
            err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
            if (!err) {
                sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
                sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
                sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1525
                                (const INTFLOAT (*)[40][2]) sbr->X_high,
1526 1527 1528 1529 1530 1531 1532
                                sbr, &sbr->data[ch],
                                sbr->data[ch].e_a);
            }
        }

        /* synthesis */
        sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1533 1534 1535
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[  sbr->data[ch].Ypos],
                  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1536 1537 1538 1539
    }

    if (ac->oc[1].m4ac.ps == 1) {
        if (sbr->ps.start) {
1540
            AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        } else {
            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
        }
        nch = 2;
    }

    sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
                      L, sbr->X[0], sbr->qmf_filter_scratch,
                      sbr->data[0].synthesis_filterbank_samples,
                      &sbr->data[0].synthesis_filterbank_samples_offset,
                      downsampled);
    if (nch == 2)
        sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
                          R, sbr->X[1], sbr->qmf_filter_scratch,
                          sbr->data[1].synthesis_filterbank_samples,
                          &sbr->data[1].synthesis_filterbank_samples_offset,
                          downsampled);
}

static void aacsbr_func_ptr_init(AACSBRContext *c)
{
    c->sbr_lf_gen            = sbr_lf_gen;
    c->sbr_hf_assemble       = sbr_hf_assemble;
    c->sbr_x_gen             = sbr_x_gen;
    c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;

1567
#if !USE_FIXED
1568 1569
    if(ARCH_MIPS)
        ff_aacsbr_func_ptr_init_mips(c);
1570
#endif
1571
}