ac3enc_template.c 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * AC-3 encoder float/fixed template
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AC-3 encoder float/fixed template
 */

#include <stdint.h>


32 33 34 35 36 37 38 39 40 41
/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */

static void scale_coefficients(AC3EncodeContext *s);

static void apply_window(DSPContext *dsp, SampleType *output,
                         const SampleType *input, const SampleType *window,
                         unsigned int len);

static int normalize_samples(AC3EncodeContext *s);

42 43
static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);

44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
    int ch;

    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
                     sizeof(*s->windowed_samples), alloc_fail);
    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
                     alloc_fail);
    for (ch = 0; ch < s->channels; ch++) {
        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
                          alloc_fail);
    }

    return 0;
alloc_fail:
    return AVERROR(ENOMEM);
}


65 66 67 68
/**
 * Deinterleave input samples.
 * Channels are reordered from Libav's default order to AC-3 order.
 */
69 70
static void deinterleave_input_samples(AC3EncodeContext *s,
                                       const SampleType *samples)
71 72 73 74 75 76 77 78 79
{
    int ch, i;

    /* deinterleave and remap input samples */
    for (ch = 0; ch < s->channels; ch++) {
        const SampleType *sptr;
        int sinc;

        /* copy last 256 samples of previous frame to the start of the current frame */
80
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
81 82 83 84 85
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));

        /* deinterleave */
        sinc = s->channels;
        sptr = samples + s->channel_map[ch];
86
        for (i = AC3_BLOCK_SIZE; i < AC3_BLOCK_SIZE * (s->num_blocks + 1); i++) {
87 88 89 90 91 92 93 94 95 96 97 98
            s->planar_samples[ch][i] = *sptr;
            sptr += sinc;
        }
    }
}


/**
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
99
static void apply_mdct(AC3EncodeContext *s)
100 101 102 103
{
    int blk, ch;

    for (ch = 0; ch < s->channels; ch++) {
104
        for (blk = 0; blk < s->num_blocks; blk++) {
105 106 107
            AC3Block *block = &s->blocks[blk];
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];

108
            apply_window(&s->dsp, s->windowed_samples, input_samples,
109
                         s->mdct_window, AC3_WINDOW_SIZE);
110 111

            if (s->fixed_point)
112
                block->coeff_shift[ch+1] = normalize_samples(s);
113

114 115
            s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
                               s->windowed_samples);
116 117 118 119 120 121 122 123 124 125 126 127 128
        }
    }
}


/**
 * Calculate a single coupling coordinate.
 */
static inline float calc_cpl_coord(float energy_ch, float energy_cpl)
{
    float coord = 0.125;
    if (energy_cpl > 0)
        coord *= sqrtf(energy_ch / energy_cpl);
129
    return FFMIN(coord, COEF_MAX);
130 131 132 133 134 135
}


/**
 * Calculate coupling channel and coupling coordinates.
 */
136
static void apply_channel_coupling(AC3EncodeContext *s)
137 138 139 140 141 142
{
#if CONFIG_AC3ENC_FLOAT
    LOCAL_ALIGNED_16(float,   cpl_coords,       [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
    int blk, ch, bnd, i, j;
    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
143
    int cpl_start, num_cpl_coefs;
144 145 146 147

    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*fixed_cpl_coords));

148 149 150 151 152 153
    /* align start to 16-byte boundary. align length to multiple of 32.
        note: coupling start bin % 4 will always be 1 */
    cpl_start     = s->start_freq[CPL_CH] - 1;
    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;

154
    /* calculate coupling channel from fbw channels */
155
    for (blk = 0; blk < s->num_blocks; blk++) {
156
        AC3Block *block = &s->blocks[blk];
157
        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
158 159
        if (!block->cpl_in_use)
            continue;
160
        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
161
        for (ch = 1; ch <= s->fbw_channels; ch++) {
162
            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
163 164 165 166 167 168
            if (!block->channel_in_cpl[ch])
                continue;
            for (i = 0; i < num_cpl_coefs; i++)
                cpl_coef[i] += ch_coef[i];
        }

169 170
        /* coefficients must be clipped in order to be encoded */
        clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
171 172

        /* scale coupling coefficients from float to 24-bit fixed-point */
173 174
        s->ac3dsp.float_to_fixed24(&block->fixed_coef[CPL_CH][cpl_start],
                                   cpl_coef, num_cpl_coefs);
175 176 177 178 179 180 181 182 183
    }

    /* calculate energy in each band in coupling channel and each fbw channel */
    /* TODO: possibly use SIMD to speed up energy calculation */
    bnd = 0;
    i = s->start_freq[CPL_CH];
    while (i < s->cpl_end_freq) {
        int band_size = s->cpl_band_sizes[bnd];
        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
184
            for (blk = 0; blk < s->num_blocks; blk++) {
185 186 187 188 189 190 191 192 193 194 195 196 197
                AC3Block *block = &s->blocks[blk];
                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
                    continue;
                for (j = 0; j < band_size; j++) {
                    CoefType v = block->mdct_coef[ch][i+j];
                    MAC_COEF(energy[blk][ch][bnd], v, v);
                }
            }
        }
        i += band_size;
        bnd++;
    }

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    /* calculate coupling coordinates for all blocks for all channels */
    for (blk = 0; blk < s->num_blocks; blk++) {
        AC3Block *block  = &s->blocks[blk];
        if (!block->cpl_in_use)
            continue;
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (!block->channel_in_cpl[ch])
                continue;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
                                                          energy[blk][CPL_CH][bnd]);
            }
        }
    }

213
    /* determine which blocks to send new coupling coordinates for */
214
    for (blk = 0; blk < s->num_blocks; blk++) {
215 216 217
        AC3Block *block  = &s->blocks[blk];
        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;

218 219
        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));

220 221 222 223 224 225
        if (block->cpl_in_use) {
            /* send new coordinates if this is the first block, if previous
             * block did not use coupling but this block does, the channels
             * using coupling has changed from the previous block, or the
             * coordinate difference from the last block for any channel is
             * greater than a threshold value. */
226 227 228
            if (blk == 0 || !block0->cpl_in_use) {
                for (ch = 1; ch <= s->fbw_channels; ch++)
                    block->new_cpl_coords[ch] = 1;
229 230
            } else {
                for (ch = 1; ch <= s->fbw_channels; ch++) {
231 232 233
                    if (!block->channel_in_cpl[ch])
                        continue;
                    if (!block0->channel_in_cpl[ch]) {
234
                        block->new_cpl_coords[ch] = 1;
235 236 237 238 239 240 241 242 243
                    } else {
                        CoefSumType coord_diff = 0;
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                            coord_diff += fabs(cpl_coords[blk-1][ch][bnd] -
                                               cpl_coords[blk  ][ch][bnd]);
                        }
                        coord_diff /= s->num_cpl_bands;
                        if (coord_diff > 0.03)
                            block->new_cpl_coords[ch] = 1;
244 245 246 247 248 249 250 251 252 253
                    }
                }
            }
        }
    }

    /* calculate final coupling coordinates, taking into account reusing of
       coordinates in successive blocks */
    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
        blk = 0;
254
        while (blk < s->num_blocks) {
255
            int av_uninit(blk1);
256 257 258 259 260 261 262 263
            AC3Block *block  = &s->blocks[blk];

            if (!block->cpl_in_use) {
                blk++;
                continue;
            }

            for (ch = 1; ch <= s->fbw_channels; ch++) {
264
                CoefSumType energy_ch, energy_cpl;
265 266
                if (!block->channel_in_cpl[ch])
                    continue;
267
                energy_cpl = energy[blk][CPL_CH][bnd];
268 269
                energy_ch = energy[blk][ch][bnd];
                blk1 = blk+1;
270 271 272
                while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
                    if (s->blocks[blk1].cpl_in_use) {
                        energy_cpl += energy[blk1][CPL_CH][bnd];
273
                        energy_ch += energy[blk1][ch][bnd];
274
                    }
275 276 277 278 279 280 281 282 283
                    blk1++;
                }
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
            }
            blk = blk1;
        }
    }

    /* calculate exponents/mantissas for coupling coordinates */
284
    for (blk = 0; blk < s->num_blocks; blk++) {
285
        AC3Block *block = &s->blocks[blk];
286
        if (!block->cpl_in_use)
287 288 289 290 291 292 293 294 295 296 297 298
            continue;

        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
                                   cpl_coords[blk][1],
                                   s->fbw_channels * 16);
        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
                                    fixed_cpl_coords[blk][1],
                                    s->fbw_channels * 16);

        for (ch = 1; ch <= s->fbw_channels; ch++) {
            int bnd, min_exp, max_exp, master_exp;

299 300 301
            if (!block->new_cpl_coords[ch])
                continue;

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            /* determine master exponent */
            min_exp = max_exp = block->cpl_coord_exp[ch][0];
            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
                int exp = block->cpl_coord_exp[ch][bnd];
                min_exp = FFMIN(exp, min_exp);
                max_exp = FFMAX(exp, max_exp);
            }
            master_exp = ((max_exp - 15) + 2) / 3;
            master_exp = FFMAX(master_exp, 0);
            while (min_exp < master_exp * 3)
                master_exp--;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
                                                        master_exp * 3, 0, 15);
            }
            block->cpl_master_exp[ch] = master_exp;

            /* quantize mantissas */
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
                if (cpl_exp == 15)
                    cpl_mant >>= 1;
                else
                    cpl_mant -= 16;

                block->cpl_coord_mant[ch][bnd] = cpl_mant;
            }
        }
    }

    if (CONFIG_EAC3_ENCODER && s->eac3)
        ff_eac3_set_cpl_states(s);
#endif /* CONFIG_AC3ENC_FLOAT */
}


/**
 * Determine rematrixing flags for each block and band.
 */
342
static void compute_rematrixing_strategy(AC3EncodeContext *s)
343 344 345 346 347 348 349 350
{
    int nb_coefs;
    int blk, bnd, i;
    AC3Block *block, *av_uninit(block0);

    if (s->channel_mode != AC3_CHMODE_STEREO)
        return;

351
    for (blk = 0; blk < s->num_blocks; blk++) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        block = &s->blocks[blk];
        block->new_rematrixing_strategy = !blk;

        if (!s->rematrixing_enabled) {
            block0 = block;
            continue;
        }

        block->num_rematrixing_bands = 4;
        if (block->cpl_in_use) {
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
                block->new_rematrixing_strategy = 1;
        }
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);

        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
            /* calculate calculate sum of squared coeffs for one band in one block */
            int start = ff_ac3_rematrix_band_tab[bnd];
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
            CoefSumType sum[4] = {0,};
            for (i = start; i < end; i++) {
                CoefType lt = block->mdct_coef[1][i];
                CoefType rt = block->mdct_coef[2][i];
                CoefType md = lt + rt;
                CoefType sd = lt - rt;
                MAC_COEF(sum[0], lt, lt);
                MAC_COEF(sum[1], rt, rt);
                MAC_COEF(sum[2], md, md);
                MAC_COEF(sum[3], sd, sd);
            }

            /* compare sums to determine if rematrixing will be used for this band */
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
                block->rematrixing_flags[bnd] = 1;
            else
                block->rematrixing_flags[bnd] = 0;

            /* determine if new rematrixing flags will be sent */
            if (blk &&
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
                block->new_rematrixing_strategy = 1;
            }
        }
        block0 = block;
    }
}
400 401 402 403 404 405 406 407 408 409 410 411


/**
 * Encode a single AC-3 frame.
 */
int AC3_NAME(encode_frame)(AVCodecContext *avctx, unsigned char *frame,
                           int buf_size, void *data)
{
    AC3EncodeContext *s = avctx->priv_data;
    const SampleType *samples = data;
    int ret;

412
    if (s->options.allow_per_frame_metadata) {
413
        ret = ff_ac3_validate_metadata(s);
414 415 416 417 418 419 420 421 422 423 424
        if (ret)
            return ret;
    }

    if (s->bit_alloc.sr_code == 1 || s->eac3)
        ff_ac3_adjust_frame_size(s);

    deinterleave_input_samples(s, samples);

    apply_mdct(s);

425 426 427 428
    if (s->fixed_point)
        scale_coefficients(s);

    clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
429
                      AC3_MAX_COEFS * s->num_blocks * s->channels);
430 431 432 433 434 435 436 437 438

    s->cpl_on = s->cpl_enabled;
    ff_ac3_compute_coupling_strategy(s);

    if (s->cpl_on)
        apply_channel_coupling(s);

    compute_rematrixing_strategy(s);

439 440 441
    if (!s->fixed_point)
        scale_coefficients(s);

442 443 444 445 446 447 448 449 450 451
    ff_ac3_apply_rematrixing(s);

    ff_ac3_process_exponents(s);

    ret = ff_ac3_compute_bit_allocation(s);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

452 453
    ff_ac3_group_exponents(s);

454 455 456 457 458 459
    ff_ac3_quantize_mantissas(s);

    ff_ac3_output_frame(s, frame);

    return s->frame_size;
}